Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Online Path Planning in a Multi-agent-Controlled Manufacturing System
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0002-4091-7732
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0002-7683-7662
University West, Department of Engineering Science, Division of Production Systems. (PTW)
Graniten, Uddevalla, (SWE).
Show others and affiliations
2023 (English)In: Lecture Notes in Mechanical Engineering, ISSN 2195-4356, E-ISSN 2195-4364, p. 124-134Article in journal (Refereed) Published
Abstract [en]

In recent years the manufacturing sectors are migrating from mass production to mass customization. To be able to achieve mass customization, manufacturing systems are expected to be more flexible to accommodate the different customizations. The industries which are using the traditional and dedicated manufacturing systems are expensive to realize this transition. One promising approach to achieve flexibility in their production is called Plug & Produce concept which can be realized using multi-agent-based controllers. In multi-agent systems, parts and resources are usually distributed logically, and they communicate with each other and act as autonomous agents to achieve the manufacturing goals. During the manufacturing process, an agent representing a robot can request a path for transportation from one location to another location. To address this transportation facility, this paper presents the result of a futuristic approach for an online path planning algorithm directly implemented as an agent in a multi-agent system. Here, the agent systems can generate collision-free paths automatically and autonomously. The parts and resources can be configured with a multi-agent system in the manufacturing process with minimal human intervention and production downtime, thereby achieving the customization and flexibility in the production process needed. 

Place, publisher, year, edition, pages
Springer, 2023. p. 124-134
Keywords [en]
Autonomous agents; Computer aided manufacturing; Motion planning; Online systems; Customisation; Manufacturing process; Manufacturing sector; Mass customization; Mass production; Multi agent; On-line path planning; Path planner service; Path planners; Plug & produce; Multi agent systems
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-19432DOI: 10.1007/978-3-031-18326-3_13Scopus ID: 2-s2.0-85141873498OAI: oai:DiVA.org:hv-19432DiVA, id: diva2:1796390
Conference
31st International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, Detroit, 19 June 2022, through 23 June 2022 Code 285199
Funder
Knowledge Foundation, 20200036
Note

CC-BY 4.0

The work was funded by PoPCoRN project by KK-stiftelsen, Sweden.

31st International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022; Conference date: 19 June 2022 through 23 June 2022; Conference code: 285199

Available from: 2023-09-12 Created: 2023-09-12 Last updated: 2024-01-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ramasamy, SudhaBennulf, MattiasZhang, XiaoxiaoDanielsson, Fredrik

Search in DiVA

By author/editor
Ramasamy, SudhaBennulf, MattiasZhang, XiaoxiaoDanielsson, Fredrik
By organisation
Division of Production Systems
In the same journal
Lecture Notes in Mechanical Engineering
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf