Introduction: Industry and academia have placed increasing attention on implementing Industry 4.0 (I4.0) in the production ofgoods and services. Named as Industry 4.0 in Brazil, Made in India in India, Society 5.0 in Japan, andProduktion2030 in Sweden (Ribeiro et al., 2022). Hereafter, we apply I4.0 to simplify, which promises customizedproducts produced in smaller lots, and that repetitive manufacturing tasks can be automated very soon (Karre etal., 2017).Country policies play an important role in pushing different sectors of the economy, aligned as new with theregulatory framework of national and international trade, especially industrial (Aguinis et al., 2020). The implementation of I4.0 literature indicates different specificities in each country, including culture, R&D targets,education and vocational training, and their research opportunities related to how I4.0 affects workers (Jerman etal., 2020). The research-question is: How do different countries approach the opportunities and challenges of Engineering Education 4.0 through similar or different country policies?This study aims to discuss engineering education related to I4.0 policies. This discussion is based on policies fromBrazil, India, Japan, and Sweden related to education and workers 5.0, which include students and employees.Investigating how these countries are adjusting to I4.0 is relevant for national industrial sectors to wish to actefficiently in this new technological context. Industry 4.0 demands new professional skills and will impactemployment. It is noteworthy that this research is in line with the Sustainable Development Goals (SDGs) proposedby the United Nations (UN): Quality Education (SDG-4); o Decent Work and Economic Growth (SDG-8); andIndustry, Innovation, and Infrastructure (ODS-9) which seeks to promote inclusive and sustainableindustrialization and foster innovation. This research aims to contribute to sustainable o rganizational practices;formulation of public policies that alleviate social problems; guidance of professional curricula affected by I 4.0.
Papers and Data Selection: A literature search was conducted in the Scopus database, which gathers some of the most important journalsrelated to manufacturing technologies with high impact factors, based on the PRISMA method, which refers to aminimum set of evidence-based items to report studies in systematic reviews and meta -analyses (MOHER et al.,2009). The paper set was assembled from the Scopus core collection, using the following search string: “industry4.0” OR “industry 5.0” AND “policies” AND ". The results were narrowed to texts in English, which yielded 1496papers. All titles and abstracts were read, which resulted in a set composed of 14 papers. We also use official documents relating to I4.0 raised from official government websites.
Comparison of Countries’ Education policies and Industry 4.0: The literature addresses difficulties associated with the implementation of I4.0 in emerging economies (Dalagnore,2018; Hong and Muniz Jr., 2022). Not surprisingly, current literature I4.0 related to technology adoption is themost prevalent theme discussed from a hard, technology-oriented perspective rather than a people-oriented.Production systems are sociotechnical systems, with an explicit understanding that all systems involve ongoinginteractions between people and technology, and they are rapidly transforming virtually all areas of human life,work, and interaction.The European Commission’s (Breque et al., 2021) vision for ‘Industry 5.0’ proposes moves past a narrow andtraditional focus on technology-or economic enabled growth of the existing extractive, production andconsumption driven economic model to a more transformative view of growth that is focused on human progressand well-being based on reducing and shifting consumption to new forms of sustainable, circular and regenerativeeconomic value creation and equitable prosperity. This Human-centric production system design and managementapproach (Industry 5.0) is necessary to support skill development, learning, continuous improvement andcollaboration in the organization (Ribeiro et al., 2022).
Conclusion: Brazil, India, Japan and Sweden create policies to support their own technological independence. All countriesindicate concern about education and development of skills related to I4.0.It can be concluded that the four countries studied from the perspective of Industry 4.0 an d Engineering Education4.0 are all embarking on their journeys towards increased digitalization in industry and society as a whole. Therealization of the human-centered Society 5.0 was realized and highlighted comparatively early for Japan, whereasin the Europe Union and thus in Sweden the focus of the importance of Industry 5.0 development in parallelIndustry 4.0 has risen up since year 2021.The results indicate that although there are many initiatives of meeting the needs for new competence andknowledge in the era of I4.0 to accommodate Engineering Education 4.0 there are still challenges for futureresearch to move forward in the nexus between I4.0 and I5.0. The result, of studying different countries'policies, highlights that it is imperative, when approaching novel technologies in I4.0 and designing Engineering Education 4.0, to in parallel consider technological implementations with the inclusion of I5.0 aspects and humancentric perspectives.
Trollhättan: University West , 2022. p. 95-96
WIL'22 7-9 December 2022, International Conference on Work Integrated Learning, University West, Trollhättan, Sweden
This work was supported by the Sao Paulo Research Foundation (FAPESP, #2021/10944-2); and Coordination ofSuperior Level Staff Improvement (CAPES, #88887.310463/2018-00)