Transferability of the working envelope approach for parameter selection and optimization in thin wall WAAMShow others and affiliations
2021 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 119, no 1-2, p. 969-989Article in journal (Refereed) Published
Abstract [en]
This work aims to propose and assess a methodology for parameterization for WAAM of thin walls based on a previously existing working envelope built for a basic material (parameter transferability). This work also aimed at investigating whether the working envelope approach can be used to optimize the parameterization for a target wall width in terms of arc energy (which governs microstructure and microhardness), surface finish and active deposition time. To reach the main objective, first, a reference working envelope was developed through a series of deposited walls with a plain C-Mn steel wire. Wire feed speed (WFS) and travel speed (TS) were treated as independent variables, while the geometric wall features were considered dependent variables. After validation, three combinations of WFS and TS capable of achieving the same effective wall width were deposited with a 2.25Cr-1Mo steel wire. To evaluate the parameter transferability between the two materials, the geometric features of these walls were measured and compared with the predicted values. The results showed minor deviations between the predicted and measured values. As a result, WAAM parameter selection for another material showed to be feasible after only fewer experiments (shorter time and lower resource consumption) from a working envelope previously developed. The usage of the approach to optimize parameterization was also demonstrated. For this case, lower values of WFS and TS were capable of achieving a better surface finish. However, higher WFS and TS are advantageous in terms of production time. As long as the same wall width is maintained, variations in WFS and TS do not significantly affect microstructure and microhardness.
Place, publisher, year, edition, pages
Springer Science and Business Media Deutschland GmbH , 2021. Vol. 119, no 1-2, p. 969-989
Keywords [en]
Binary alloys; Chromium alloys; Chromium steel; Manganese alloys; Microhardness; Microstructure; Parameterization; Walls (structural partitions), Feed speed; Optimisations; Parameter selection; Parameter transferability; Steel wire; Surface finishes; Thin walls; Travel speed; WAAM; Working envelope, Wire
National Category
Manufacturing, Surface and Joining Technology Metallurgy and Metallic Materials
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-17915DOI: 10.1007/s00170-021-08326-2ISI: 000717931800003Scopus ID: 2-s2.0-85119017944OAI: oai:DiVA.org:hv-17915DiVA, id: diva2:1623749
Note
Open access funding provided by University West. This work was supported by The National Council for Scientific and Technological Development – CNPq (grant numbers 302863/2016-8), The Coordination for the Improvement of Higher Education Personnel – CAPES (Finance Code 001) and PETROBRAS (project number 23117.018175/2019-80).
2021-12-302021-12-302022-04-04