Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling of beam energy absorbed locally in conduction mode laser metal fusion
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0002-6102-9021
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0002-8018-6145
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0001-5734-294X
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0003-2535-8132
2021 (English)In: Journal of physics. D, Applied physics, ISSN 0022-3727, Vol. 55, no 2, article id 025301Article in journal (Refereed) Published
Abstract [en]

Fluid dynamics models for laser material processing with metal fusion in conduction mode generally assume a constant absorptivity. This parameter is known to govern the process. However, it used to be pre-set by extrapolating absorptance measurements made at different conditions or adjusted to reproduce experimental bead shapes. In this study a new approach isd eveloped. It consists in predicting the absorptance as a function of local surface conditions, including the surface temperature. The proposed absorptance model is applied to the metal alloyTi-6Al-4V. It is found that the absorptance of this alloy changes with surface temperature over awide range of beam incidence angles. Thermo-fluid simulations with tracking of the free-surface deformation are performed for conduction mode beam welding test cases with a Yb fibre laser and different travel speeds. It is found that the absorptivity coefficient commonly used for this process clearly underestimates the absorptance and the melt pool geometry predicted for the process conditions of this study. The computational results are also compared against experimental results and good quantitative agreement of the melt pool depth, width, length, free surface contour geometry, and the curvature of the end depression left afterre-solidification at the laser switch-off location is obtained. The results show that the absorptance field predicted depends on the melt pool development stage, on the spatial location within the beam spot, and on the process conditions.

Place, publisher, year, edition, pages
Bristol: IOP Publishing , 2021. Vol. 55, no 2, article id 025301
Keywords [en]
Surfaces, Coatings and Films, Acoustics and Ultrasonics, Condensed Matter Physics, Electronic, Optical and Magnetic Materials
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-17583DOI: 10.1088/1361-6463/ac296aScopus ID: 2-s2.0-85117731214OAI: oai:DiVA.org:hv-17583DiVA, id: diva2:1604300
Funder
Knowledge FoundationAvailable from: 2021-10-19 Created: 2021-10-19 Last updated: 2022-10-10
In thesis
1. Laser metal fusion and deposition using wire feedstock: Process modelling and CFD simulation
Open this publication in new window or tab >>Laser metal fusion and deposition using wire feedstock: Process modelling and CFD simulation
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Laser metal fusion is widely used in production technology to manufacture parts, as in welding, cladding, and additive manufacturing. In this study, conduction mode laser metal fusion is applied without and with metal deposition from a wire feedstock. This manufacturing process encompasses various physical phenomena that are coupled, such as the interaction of anelectro-magnetic wave with the material, phase changes, thermal fluid dynamics, and free surface deformation, which make it complicated to comprehend.

Deeper process knowledge is thus a key to its improvement. Yet, metal is a non-transparent media, which limits experimental observation of this process.

A modelling approach that describes this multi-physics problem paying special attention to convective phenomena was used in this thesis with a two-fold aim:

1) to improve the model reliability,

2) to gain a deeper understandingof the metal fusion and deposition process.

In the first part of this research, metal fusion without wire was addressed. Different beam power density distributions (beam shapes) were investigated. Their effect on the melt pool geometry, which was known from previous experimental studies, could be predicted. Furthermore, as the simulations give access to the melt flow, it could be established that the flow pattern is modified by elongating the beam shape. In addition, a new calculation procedure was introduced to predict the fraction of laser beam energy absorbed by the metal. To validate the model, the predicted melt pool geometry was evaluated through comparison with experimental measurements. The results showed that the proposed absorptivity model that is a function of local surface conditions lead to good agreement with experimental results, with a maximum discrepancy for the melt pool depth of about 10%.

In the second part, the model was applied to study the fusion process with metal transfer from a wire feedstock without and with resistive heating of the filler wire. It was shown that the multipler eflections of beam rays could be ignored at a low laser beam angle whereas with increasing the beam angle the effect became more considerable. It was also found that the laser absorptivity varied up to 50% within the projected laser spot area. The effect of different process parameters such as depositing rate and angle, laser beam angle, position of the wire relative to the beam (offset), and ambient conditions on the metal transfer, thermal flow field, andstability of the process were studied.

The results showed that three different metal transfer modes occurred depending on the offset value. Applying resistive heating on the filler wire decreased the absorptivity. However, this decrease was compensated by the resistive heating, resulting in an increase of the volume of liquid metal. Resistive heating made the melt pool wider due to the augmented role of the thermocapillary force and also the change in flow direction because of the modified position of the melted wire front.

Applying the model at near-vacuum and no gravity conditions, it was obtained that directed energy deposition of metal with laser and wire could be used for manufacturing metal parts in space. However, the process window could need some adjustment as in-space conditions result in some narrowing of the liquid bridge between wire and workpiece compared to on-Earth.

Place, publisher, year, edition, pages
Trollhättan: University West, 2022. p. 95
Series
PhD Thesis: University West ; 52
Keywords
Directed Energy Deposition with wire, Beam shaping, Absorptivity, Conduction-mode, Free surface deformation, Computational Fluid Dynamics, OpenFOAM., Riktad energideponering med svetstråd, Stråformning, Absorption, Svetsning, Ytdeformation, Beräkningsströmningsdynamik, OpenFOAM.
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-19232 (URN)978-91-89325-34-0 (ISBN)978-91-89325-35-7 (ISBN)
Public defence
2022-11-02, F131, Gustava Melins gata, 10:00 (English)
Opponent
Supervisors
Note

Paper 3 and 4 is to be submitted and not included in the electronic thesis.

Available from: 2022-10-12 Created: 2022-10-10 Last updated: 2023-01-05Bibliographically approved

Open Access in DiVA

fulltext(4474 kB)149 downloads
File information
File name FULLTEXT01.pdfFile size 4474 kBChecksum SHA-512
1704f4e04f3f370dbdf5ef0771df6816b7623622dda0ddf86b1c3834a314028f9460d4cf40b833211ad8d9877146cabade5864bba7071d5e37243e0ecf809c3f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Noori Rahim Abadi, Seyyed Mohammad AliMi, YongcuiSikström, FredrikChoquet, Isabelle

Search in DiVA

By author/editor
Noori Rahim Abadi, Seyyed Mohammad AliMi, YongcuiSikström, FredrikChoquet, Isabelle
By organisation
Division of Welding TechnologyDivision of Production Systems
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 149 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 219 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf