Identifying two-phase flow patterns is fundamental to successfully design and subsequently optimize highprecision heat transfer equipment, given that the heat transfer efficiency and pressure gradients occurring in such thermo-hydraulic systems are dependent on the flow structure of the working fluid. This paper shows that with visualization data and artificial neural networks, the flow pattern images of condensation of R-134a refrigerant in inclined smooth tubes can be classified with more than 98% accuracy. The study considers 10 classes of flow pattern images acquired from previous experimental works for a wide range of flow conditions and the full range of tube inclination angles. Although not the focus of this paper, the use of a Principal Component Analysis allowed feature dimensionality reduction, dataset visualization, and decreased associated computational cost when used together with multilayer perceptron neural networks. In addition, the superior two-dimensional spatial learning capability of convolutional neural networks allowed improved image classification and generalization performance. In both cases, the classification was performed sufficiently fast to enable real-time implementation in two-phase flow systems.