Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Forecasting prices of Bitcoin and Google stock with ARIMA vs Facebook Prophet
University West, School of Business, Economics and IT, Divison of Law, Economics, Statistics and Politics.
2021 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this thesis we have presented econometrics and forecasts of Bitcoin and Google (GOOG) prices. We have implemented two models, one traditional, “ARIMA” and a relatively new one, “Prophet model” by using Facebook Prophet (ML). Machine learning is still new in the economic field, it has been rewarding to learn its capability. We have evaluated the model’s performance by using root mean square error (RMSE) and compared the result which model performed better. We wanted to compare to different assets, volatile Bitcoin to considerable stable Google (GOOG), thus investigate our models performance and if they differ or not. Regarding our result, we found that the ARIMA models have the best forecasting ability. We also investigate the impact of rational expectation and its impact on an asset price. We found that announcements on Bitcoin cause a significantly change in price and had an impact on the model’s performance. 

Abstract [sv]

I denna avhandling har vi presenterat ekonometriska modeller och prognoserade prisnivåer av Bitcoins och Googles (GOOG). Vi har implementerat två modeller, en traditionell, "ARIMA" samt en relativt ny modell, "Profetmodellen" med Facebook Prophet (ML). Maskininlärning är fortfarande nytt inom det ekonomiska området och det har varit givande att förstå dess förmåga. Vi vill jämföra två typer av tillgångar, Bitcoin som är volatile mot Google som är förhållandevis stabil för att se om våra modeller skiljer sig åt. Vi har utvärderat modellens prestanda med hjälp av root mean square error (RMSE) och jämförde resultatet vilken modell som var mest exakt. Vi fann att ARIMA-modellen gav oss bäst resultat. Vi undersöker också effekterna av rationella förväntningar och dess inverkan på pris av tillgång. Vi fann att nyheter om Bitcoin influerar dess pris och hade en inverkan på modellernas prestanda.

Place, publisher, year, edition, pages
2021. , p. 37
Keywords [en]
Bitcoin, Google, econometrics
National Category
Economics
Identifiers
URN: urn:nbn:se:hv:diva-17345Local ID: EXC513OAI: oai:DiVA.org:hv-17345DiVA, id: diva2:1587108
Subject / course
Nationalekonomi
Educational program
Mäklarekonomprogrammet, fastighet och finans
Supervisors
Examiners
Available from: 2021-08-23 Created: 2021-08-23 Last updated: 2021-08-23Bibliographically approved

Open Access in DiVA

fulltext(1479 kB)1956 downloads
File information
File name FULLTEXT01.pdfFile size 1479 kBChecksum SHA-512
3cfee000739fe65c215dde08b2dd71bf34a7aa18e0bb8b55ffd832c60f86003254183b319c973d51bedc8383d20965e0fdbe5c322a1e56236244cef909090214
Type fulltextMimetype application/pdf

By organisation
Divison of Law, Economics, Statistics and Politics
Economics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1956 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1677 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf