The Life of A.R.T: Storing and anonymizing user data from public profiles
2021 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
The Life of A.R.T : Spara och anonymisera användardata from publika profiler (Swedish)
Abstract [en]
In this work we present an implementation of the t-closeness first microaggregation algorithm into a Python program called ART-Analytics. The project requires that user data that it collects from Instagram be anonymized and stored somewhere in a secure location. Over the course of this work an individual test version was created and then implemented into the existing software upon when it was finished. Evaluations of this work were done by calculating the SSE of the algorithm using test data, and whether or not the goals of the project were achieved as a result of this work. Testing and analysis show that the algorithm works well when used with attributes that have a low variance as the basis for the algorithm, and that it fulfills the needs of the project.
Abstract [sv]
Detta arbete presenterar en implementering av ’t-closeness first microaggregation’ algoritmen för ett Python program som heter ART-Analytics. Projektet kräver att användardata som samlas ifrån Instagram måste anonymiseras och sparas på en säker plats. Över arbetets gång så skapades en separat testversion som sedan implementerades i mjukvaran när det var funktionellt. Arbetet var evaluerat genom att beräkna SSE värden för algoritmen för olika klusterstorlekar med testdata, och om målen som ställdes för projektet var uppfyllda genom arbetets resultat. Testerna och analyser visar att algoritmen funkar bra när attribut med låg varians används och att det uppfyller kraven som är satta av projektet.
Place, publisher, year, edition, pages
2021. , p. 16
Keywords [en]
Anonymization, Database, k-Anonymity, t-Closeness, Python, MongoDB
Keywords [sv]
Anonymiseiring, Databas, k-Anonymity, t-Closeness, Python, MongoDB
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:hv:diva-16911Local ID: EXD500OAI: oai:DiVA.org:hv-16911DiVA, id: diva2:1582867
Subject / course
Computer science
Educational program
Nätverksteknik
Supervisors
Examiners
2021-08-202021-08-042021-08-20Bibliographically approved