Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hur påverkar hushållens disponibla inkomster bostadspriser i Sverige?
University West, School of Business, Economics and IT, Divison of Law, Economics, Statistics and Politics.
University West, School of Business, Economics and IT, Divison of Law, Economics, Statistics and Politics.
2020 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Syftet med studien är att undersöka hur hushållens disponibla inkomster påverkar bostadspriserna i Sverige då bostadsprisutvecklingen länge varit en het debatt i landet. Claussen (2012) menar på att hushållens disponibla inkomster och sjunkande bolåneräntor är förklaringsfaktorerna till prisutvecklingen varpå en modell med detta som grund utformats med tillägg av kontrollvariabler. En kvantitativ metod med en multipel regressionsanalys utfördes med hjälp av inhämtad tidsseriedata för perioden 1991, kvartal 1 till 2019, kvartal 3 och innehöll totalt 115 observationer. Först genomfördes ett Dickey-Fuller test för att testa om tidsserien var stationär. När testet var klart gjordes tester för multikollinearitet för att till sist övergå till en regressionsanalys. Resultatet visar på ett positivt samband mellan bostadspriserna och hushållens disponibla inkomster. Vidare utläses även i enhetlighet med vad tidigare studier presenterat att ytterligare variabler påverkar den beroende variabeln i modellen. Detta resultat ligger i linje med vad tidigare forskning inom ämnet redovisat.

Abstract [en]

The purpose of the study is to investigate how household disposable income affects housing prices in Sweden, as housing price developments have long been a hot debate in the country. Claussen (2012) argues that households' disposable income and falling mortgage rates are the explanatory factors for price developments, on which a model with this has been formulated, with the addition of control variables. A quantitative method with a multiple regression analysis was performed using the collected time series data for the period 1991, quarters 1 to 2019, quarter 3 and contained a total of 115 observations. First, a Dickey-Fuller test was performed to test if the time series was stationary. When the test was complete, tests for multicollinearity were made to eventually pass to a regression analysis. The result shows a positive relationship between housing prices and household disposable income. Furthermore, it is also read out in agreement with what previous studies have presented that additional variables affect the dependent variable in the model. This result is in line with what previous research in the subject has reported.

Place, publisher, year, edition, pages
2020. , p. 24
Keywords [en]
Housing Price, Available Income, Multiple Linear Regression, Sweden, Correlation
Keywords [sv]
Bostadspris, Disponibel inkomst, Multipel linjär regression, Sverige, Korrelation
National Category
Economics
Identifiers
URN: urn:nbn:se:hv:diva-15604Local ID: EXC513OAI: oai:DiVA.org:hv-15604DiVA, id: diva2:1455779
Subject / course
Nationalekonomi
Educational program
Mäklarekonomprogrammet, fastighet och finans
Supervisors
Examiners
Available from: 2020-08-24 Created: 2020-07-29 Last updated: 2020-08-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Divison of Law, Economics, Statistics and Politics
Economics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf