Superhydrophobic surfaces that are durable and can be easily manufactured are of high interest for many industrial applications. Measuring and understanding roughness in the context of superhydrophobicity is the first step in creation of a surface that does not require activation to be hydrophobic. In this study, the as sprayed surface of different cermet (WC-10Co4Cr and Cr3C2-25Ni20Cr) coatings produced by High Velocity Air Fuel (HVAF) spraying â have been investigated to assess their wetting ability. In order to address the challenges raised by the specific roughness profile of thermal spray surfaces, two routes have been adapted and used for surface characteristics analysis i.e. statistical and fractal. Results show that both methods have a strong correlation to wettability. Roughness parameters Sdq and Sdr show good correlation with advancing contact angle. Hausdorff Dimension of a sub-micrometer profile shows good relation with the contact angle and provides information for state of the droplet. To determine how to increase the contact angle of the coating surface, coating parameters such as CGS Density have been correlated with Hausdorff Dimension. Both methods provide good understanding in terms of wettability of rough cermet surfaces. © 2019 Elsevier B.V.