Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling and simulation of weld solidification cracking part I: A pore-based crack criterion
Luleå University of Technology, Luleå, 97187, Sweden.
Luleå University of Technology, Luleå, 97187, Sweden.
University West, Department of Engineering Science, Division of Welding Technology. (PTW PRIMUS)ORCID iD: 0000-0001-9065-0741
Luleå University of Technology, Luleå, 97187, Sweden.
2019 (English)In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 63, no 5, p. 1489-1502Article in journal (Refereed) Published
Abstract [en]

Several advanced alloy systems are susceptible to weld solidification cracking. One example is nickel-based superalloys, which are commonly used in critical applications such as aerospace engines and nuclear power plants. Weld solidification cracking is often expensive to repair and, if not repaired, can lead to catastrophic failure. This study, presented in three papers, presents an approach for simulating weld solidification cracking applicable to large-scale components. The results from finite element simulation of welding are post-processed and combined with models of metallurgy, as well as the behavior of the liquid film between the grain boundaries, in order to estimate the risk of crack initiation. The first paper in this study describes the crack criterion for crack initiation in a grain boundary liquid film. The second paper describes the model for computing the pressure and the thickness of the grain boundary liquid film, which are required to evaluate the crack criterion in paper 1. The third and final paper describes the application of the model to Varestraint tests of alloy 718. The derived model can fairly well predict crack locations, crack orientations, and crack widths for the Varestraint tests. The importance of liquid permeability and strain localization for the predicted crack susceptibility in Varestraint tests is shown. © 2019, The Author(s).

Place, publisher, year, edition, pages
2019. Vol. 63, no 5, p. 1489-1502
Keywords [en]
Crack initiation; Grain boundaries; Liquid films; Nickel alloys; Nuclear fuels; Nuclear power plants; Paper; Risk perception; Solidification; Welding; Welds, Alloy 718; Catastrophic failures; Crack susceptibilities; Critical applications; Finite element simulations; Hot cracking; Nickel- based superalloys; Solidification cracking, Cracks
National Category
Manufacturing, Surface and Joining Technology Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:hv:diva-14477DOI: 10.1007/s40194-019-00760-xISI: 000482459300029Scopus ID: 2-s2.0-85068801005OAI: oai:DiVA.org:hv-14477DiVA, id: diva2:1356413
Funder
Vinnova, 2013-01140Swedish Armed Forces, 2017-04837
Note

Funders: FMV;

Available from: 2019-10-01 Created: 2019-10-01 Last updated: 2019-10-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Andersson, Joel

Search in DiVA

By author/editor
Andersson, Joel
By organisation
Division of Welding Technology
In the same journal
Welding in the World
Manufacturing, Surface and Joining TechnologyMetallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf