Open this publication in new window or tab >>2015 (English)In: Journal of laser applications, ISSN 1042-346X, E-ISSN 1938-1387, Vol. 27, no 2, SI, article id S29011Article in journal (Refereed) Published
Abstract [en]
Ultra high strength steels are frequently used within the automotive industry for several components. Welding of these components is traditionally done by resistance spot welding, but to get further productivity and increased strength, laser welding has been introduced in the past decades. Fusion welding is known to cause distortions due to built in stresses in the material. The distortions result in geometrical issues during assembly which become the origin of low joint quality due to gaps and misfits. U-beam structures of boron steel simulating B-pillars have been welded with laser along the flanges. Welding parameters and clamping have been varied to create different welding sequences and heat input generating a range of distortion levels. The distortions have been recorded dynamically with an optical measurement system during welding. In addition, final distortions have been measured by a digital Vernier caliper. The combined measurements give the possibility to evaluate development, occurrence, and magnitude of distortions with high accuracy. Furthermore, section cuts have been analyzed to assess joint geometry and metallurgy. The results show that final distortions appear in the range of 0-8 mm. Distortions occur mainly transversely and vertically along the profile. Variations in heat input show clear correlation with the magnitude of distortions and level of joint quality. A higher heat input in general generates a higher level of distortion with the same clamping conditions. Section cuts show that weld width and penetration are significantly affected by welding heat input. The present study identifies parameters which significantly influence the magnitude and distribution of distortions. Also, effective measures to minimize distortions and maintain or improve joint quality have been proposed. Finally, transient finite element (FE) simulations have been presented which show the behavior of the profiles during the welding and unclamping process. (C) 2015 Laser Institute of America.
Keywords
ultra high strength steel, boron steel, laser welding, distortions, finite element simulations
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-7648 (URN)10.2351/1.4906468 (DOI)000350544500020 ()2-s2.0-84943625500 (Scopus ID)
2015-06-022015-06-012019-04-01Bibliographically approved