Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monitoring and control of laser beam butt joint welding
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0002-8771-7404
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Laser beam welding is one important technology in automated production. It has several advantages, such as the ability to produce deep and narrow welds giving limited heat induced deformations. The laser beam welding process is however sensitive to how the high power laser is positioned with regards to the joint position. Therefore, to achieve a seam without defects, the joint position needs to be measured and controlled. The laser beam welding process is also sensitive to variations in joint gap width. Costly joint preparations are required to achieve the tight fit up tolerances needed to produce high quality welds. However, the demand on joint preparation can be somewhat relaxed by allowing the joint gap width to vary and controlling the process. One way of doing this is to control the filler wire feed rate based on joint gap width measurements.This thesis presents experimental studies on how to track closed-square-butt joints and also how to handle varying square-butt joints in laser beam welding.

Different optical sensor systems are evaluated for their performance to estimate the joint position and the joint gap width. The possibility of detecting beam offsets is studied by using sensors systems based on a photo diode and on a spectrometer. Estimations of the joint position, to be used for closed loop position control, is studied by using a camera and external LED illumination. Variations in joint gap width is evaluated using a spectrometer, a camera and a laser profile sensor. Experimental results show that both the photodiode system and the spectometer system is able to detect beam offsets and that the beam position can be estimated with sufficient accuracy when welding closed-square-butt joints. It is also shown that the joint gap width can be estimated by the selected sensor systems and that the estimates can be used for controlling the wire feed rate in order to obtain a constant weld geometry and avoid defects related to the gap width.

Place, publisher, year, edition, pages
Trollhättan: University West , 2019. , p. 84
Series
PhD Thesis: University West ; 27
Keywords [en]
Laser beam welding, Optical sensors, Joint tracking, Varying gap
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-13650ISBN: 978-91-88847-23-2 (print)ISBN: 978-91-88847-22-5 (electronic)OAI: oai:DiVA.org:hv-13650DiVA, id: diva2:1292567
Public defence
2019-02-05, F104, Albertsalen, Trollhättan, 10:15 (English)
Opponent
Supervisors
Available from: 2019-03-15 Created: 2019-02-28 Last updated: 2020-01-08
List of papers
1. Optical Methods for In-Process Monitoring of Laser Beam Welding
Open this publication in new window or tab >>Optical Methods for In-Process Monitoring of Laser Beam Welding
2014 (English)In: Proceedings of the 6th International Swedish Production Symposium 2014 / [ed] Stahre, Johan, Johansson, Björn & Björkman, Mats, 2014, p. 1-9Conference paper, Published paper (Refereed)
Abstract [en]

This paper addresses the issue of evaluating and selecting optical sensors to be integrated with a 1μm laser beam welding system. The method used for this evaluation is mainly a survey of relevant research litterature. The result of this work is a matrix showing the different methods and distinct features related to relevant process conditions that can be estimated or detected with respective methods. This evaluation also includes considerations on the required sensor bandwidth in relation to inertia and time constants in the physical process.

Keywords
Optical methods, process monitoring, laser beam welding
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
ENGINEERING, Mechatronics; Production Technology
Identifiers
urn:nbn:se:hv:diva-6854 (URN)978-91-980974-1-2 (ISBN)
Conference
The 6th Swedish Production Symposium
Available from: 2014-10-15 Created: 2014-10-15 Last updated: 2019-02-28Bibliographically approved
2. Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal
Open this publication in new window or tab >>Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal
Show others...
2019 (English)In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 109, p. 178-185Article in journal (Refereed) Published
Abstract [en]

Robotized laser beam welding of closed-square-butt joints is sensitive to the positioning of the laser beam with respect to the joint since even a small offset may result in a detrimental lack of sidewall fusion. An evaluation of a system using a photodiode aligned coaxial to the processing laser beam confirms the ability to detect variations of the process conditions, such as when there is an evolution of an offset between the laser beam and the joint. Welding with different robot trajectories and with the processing laser operating in both continuous and pulsed mode provided data for this evaluation. The detection method uses wavelet analysis of the photodetector signal that carries information of the process condition revealed by the plasma plume optical emissions during welding. This experimental data have been evaluated offline. The results show the potential of this detection method that is clearly beneficial for the development of a system for welding joint tracking.

Keywords
Laser beam welding, Joint tracking, Butt joints, Photodiode, Wavelet analysis
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-12832 (URN)10.1016/j.optlastec.2018.08.006 (DOI)000446949600023 ()2-s2.0-85051138319 (Scopus ID)
Funder
Vinnova, 2016-03291
Note

Funding: People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 608473 (MoRE program project "Hy-Las"

Available from: 2018-08-21 Created: 2018-08-21 Last updated: 2021-02-03Bibliographically approved
3. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding
Open this publication in new window or tab >>Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding
2017 (English)In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 96, p. 107-116Article in journal (Refereed) Published
Abstract [en]

The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced incase of narrow gap butt welding, where most of the commercial automatic joint tracing system fail to detect the exact position and size of the gap. In this work, adual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative the joint position. The spectral emissions from the laser induced plasma plume has been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments where artificial abrupt as well as gradual excursions of the laser beam out of the joint were produced. Results indicate thata combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

Keywords
Laser beam welding, Joint tracing, Butt joints, Optical spectroscopy, Vision sensor, Hybrid sensing
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-10639 (URN)10.1016/j.optlastec.2017.05.011 (DOI)000405051800015 ()2-s2.0-85019735734 (Scopus ID)
Funder
Vinnova, 2014-05227Knowledge Foundation, 2010/0283EU, FP7, Seventh Framework Programme, FP7/2007-2013
Note

Ingår i lic. avhandling

Available from: 2017-02-03 Created: 2017-02-03 Last updated: 2019-05-23Bibliographically approved
4. Robust vision-based joint tracking for laser welding of curved closed-square-butt joints
Open this publication in new window or tab >>Robust vision-based joint tracking for laser welding of curved closed-square-butt joints
2019 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 101, no 5-8, p. 1967-1978Article in journal (Refereed) Published
Abstract [en]

Robotized laser beam welding of closed-square-butt joints is sensitive to how the focused laser beam is positioned in relation to the joint, and existing joint tracking systems tend to fail in detecting the joint when the gap and misalignment between the work pieces are close to zero. A camera-based system is presented based on a high dynamic range camera operating with LED illumination at a specific wavelength and a matching optical filter. An image processing algorithm based on the Hough transform extracts the joint position from the camera images, and the joint position is then estimated using a Kalman filter. The filter handles situations, when the joint is not detectable in the image, e.g., when tack welds cover the joint. Surface scratches, which can be misinterpreted as being the joint, are handled by a joint curve prediction model based on known information about the nominal path defined by the robot program. The performance of the proposed system has been evaluated off line with image data obtained during several welding experiments.

Keywords
Laser beam welding, Joint tracking, Butt joints, Camera, Hough transform, Kalman filter
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13211 (URN)10.1007/s00170-018-3044-0 (DOI)000463240400065 ()2-s2.0-85057563235 (Scopus ID)
Projects
VINNOVA project VarGa
Funder
Vinnova, 2016-03291
Note

First Online: 27 November 2018

Funders: SWE-DEMO MOTOR ; [2015-06047]

Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2020-05-04Bibliographically approved
5. Monitoring of Varying Joint Gap Width During Laser Beam Welding by a Dual Vision and Spectroscopic Sensing System
Open this publication in new window or tab >>Monitoring of Varying Joint Gap Width During Laser Beam Welding by a Dual Vision and Spectroscopic Sensing System
2017 (English)In: Physics Procedia, E-ISSN 1875-3892, Vol. 89, p. 100-107Article in journal (Refereed) Published
Abstract [en]

A vision and spectroscopic system for estimation of the joint gap width in autogenous laser beam butt welding is presented. Variations in joint gap width can introduce imperfections in the butt joint seam, which in turn influence fatigue life and structural integrity. The aim of the monitoring approach explored here is to acquire sufficiently robust process data to be used to guide post inspection activities and/or to enable feedback control for a decreased process variability. The dual-sensing approach includes a calibrated CMOS camera and a miniature spectrometer integrated with a laser beam tool. The camera system includes LED illumination and matching optical filters and captures images of the area in front of the melt pool in order to estimate the joint gap width from the information in the image. The intensity of different spectral lines acquired by the spectrometer has been investigated and the correlation between the intensity of representative lines and the joint gap width has been studied. Welding experiments have been conducted using a 6 kW fiber laser. Results from both systems are promising, the camera system is able to give good estimations of the joint gap width, and good correlations between the signal from the spectrometer and the joint gap width have been found. However, developments of the camera setup and vision algorithm can further improve the joint gap estimations and more experimental work is needed in order to evaluate the robustness of the systems.

Keywords
Laser beam welding; Butt joints; Varying gap width; Vision sensor; Spectroscopic sensor
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-11898 (URN)10.1016/j.phpro.2017.08.014 (DOI)000495016600011 ()2-s2.0-85037711817 (Scopus ID)
Conference
16th Nordic Laser Materials Processing Conference, NOLAMP16, Aalborg, DENMARK, AUG 22-24, 2017
Funder
Vinnova, 2016-03291
Note

Funders: People programme (Marie Curie Actions) of the European Union's 29 seventh framework progamme (FP7/2007-2013), no 608473

Available from: 2017-12-11 Created: 2017-12-11 Last updated: 2023-11-03Bibliographically approved
6. Adaptive control of the filler wire rate during laser beam welding of squared butt joints with varying gap width
Open this publication in new window or tab >>Adaptive control of the filler wire rate during laser beam welding of squared butt joints with varying gap width
2019 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 102, no 9-12, p. 3667-3676Article in journal (Refereed) Published
Abstract [en]

Adding filler wire control to autogenous laser beam welding of squared butt joints offers a means to widen up the tight fit-up tolerances associated with this process. When the gap width varies, the filler wire rate should be controlled to assure a constant geometry of the resulting weld seam. A dual mode sensing system is proposed to estimate the joint gap width and thereby control the filler wire rate. A vision camera integrated into the welding tool together with external LED illumination and a laser line projection enables two sensing modes, one surface feature extraction mode and one laser triangulation-based mode. Data from the both modes are fused in a Kalman filter, and comparisons show that the fusing of the data gives more robust estimation than estimates from each single mode. A feed-forward control system adaptively adjusts the filler wire rate based on the estimations ofthe joint gap width in front of the keyhole. The focus is on keeping the data processing simple and affordable, and the real-time performance of the sensor and control system has been evaluated by welding experiments. It is shown that the proposed system can be used for on-line control of the filler wire rate to achieve a constant weld geometry during varying joint gap widths

Keywords
Laser beam welding, Filler wire, Squared butt joints, Varying gap width, Feature extraction, Laser triangulation, Sensor fusion
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13640 (URN)10.1007/s00170-019-03325-w (DOI)000469060700066 ()2-s2.0-85067693903 (Scopus ID)
Funder
Vinnova, 2016-03291
Available from: 2019-02-28 Created: 2019-02-28 Last updated: 2020-02-03Bibliographically approved

Open Access in DiVA

fulltext(9526 kB)1346 downloads
File information
File name FULLTEXT01.pdfFile size 9526 kBChecksum SHA-512
7aa1e0e6359d6e685e914792709bb0d9f3d9355124115683a6910520b6875b470bcd34aef0fb9f2a4eb58dd384a33f46dbaae0d7da35e008db18514e75fe338b
Type fulltextMimetype application/pdf

Authority records

Nilsen, Morgan

Search in DiVA

By author/editor
Nilsen, Morgan
By organisation
Division of Production Systems
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1346 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 953 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf