Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Robotic Friction Stir Welding of complex geometry and mixed materials
Linnaeus University, Växjö, Sweden.ORCID iD: 0000-0002-1869-232X
University West, Department of Engineering Science, Division of Production Systems. University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0003-3261-9097
SKB AB, Oskarshamn, Sweden.
University West, Department of Engineering Science, Division of Production Systems.ORCID iD: 0000-0001-9553-7131
2018 (English)In: 50th International Symposium on Robotics, ISR 2018, VDE Verlag GmbH , 2018, p. 35-41Conference paper, Published paper (Refereed)
Abstract [en]

Friction stir welding (FSW) is a solid state process for joining materials which has demonstrated advantages compares with other methods which include joining of mixed materials, hard to weld alloys and consistent and high quality. This paper presents a study of robotic FSW initiated by Volvo Skövde plant to join an insert workpiece of extruded aluminium with a cylinder block of aluminium casting. A three-stage procedure was decided to determine the feasibility to apply robotic FSW. The stages included study of welding the mixed materials, weld along the complex joint line with holes and channels close to the joint, and finally welding the cylinder block. The results based on preliminary analysis indicate that the final tests were successful and the process is feasible for the challenging case study. However, further studies are recommended in order to identify the operating parameters window, tool design, and control of the process in order to optimize productivity and quality. © VDE VERLAG GMBH

Place, publisher, year, edition, pages
VDE Verlag GmbH , 2018. p. 35-41
Keywords [en]
Aluminum castings, Cylinder blocks, Cylinders (shapes), Die casting inserts, Friction, Joining, Quality control, Research laboratories, Robotics, Welds, Complex geometries, Friction stir welding(FSW), Joining materials, Mixed materials, Operating parameters, Preliminary analysis, Robotic friction stir welding, Solid-state process, Friction stir welding
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-13431Scopus ID: 2-s2.0-85059384869ISBN: 978-3-8007-4699-6 (print)OAI: oai:DiVA.org:hv-13431DiVA, id: diva2:1280867
Conference
50th International Symposium on Robotics, ISR 2018; Messe Munchen East EntranceMunich; Germany; 20 June 2018 through 21 June 2018
Available from: 2019-01-21 Created: 2019-01-21 Last updated: 2020-02-26Bibliographically approved
In thesis
1. Thermoelectric Measurements for Temperature Control of Robotic Friction Stir Welding
Open this publication in new window or tab >>Thermoelectric Measurements for Temperature Control of Robotic Friction Stir Welding
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Friction stir welding (FSW) has undergone a rapid expansion in several industrial sectors such as in the aerospace, marine, railway and automotive sectors. Current industrial applications are mainly simple long straight welds, but there is a growth of interest in components with higher geometric complexity. However, welding of geometrically complex components represents a challenging task due to the resulting uneven induced thermal dissipation along the weld, but especially due to the need for suitable equipment, able to accurately follow a complex 3D path under high mechanical loads, while managing the machine deflection. This is the case for robots, where the high process forces result in deflections, which affects robots' compliance, leading to weld failures and poor consistency in mechanical properties.

In the presented approach, the rotational speed is controlled during welding in order to maintain the set temperature value along the weld. An innovative method to measure the process temperature, the tool-workpiece thermocouple (TWT), which offers a temperature estimation from the whole tool-workpiece interface (TWT-data), is set as the controlled variable. The overall aim of this thesis is then to demonstrate the industrial applicability of TWT temperature control for joining geometrically complex components using robotic friction stir welding.

The TWT-data signal is demonstrated to be fast, repeatable and representative of the welding temperature. Moreover, TWT-data supplies online information during the whole weld procedure, especially during plunging. The shoulder contact with the workpiece is identified by TWT-data, providing for an improved plunging operation, which was demonstrated to significantly improve the use of robotic FSW, overcoming the lack of stiffness inherent to this equipment type at this welding stage.

Improved joint performance, low tensile strength variation along the weld path and a reduced number of failed welds were achieved by welding under temperature control. As a result, such a welding approach simplifies the development of a welding procedure, allowing for a decrease in time and material. The concept was successfully validated by performing two welds consisting of two dissimilar materials in a two-dimensional weld path on a geometrically complex component by using robotic equipment. The temperature control approach is not limited to robotic equipment, but also suitable for standard FSW equipment, being of interest to a various range of applications where quality and/or time is an important factor.

Abstract [sv]

Friktionsomrörningssvetsning (FSW) genomgår en snabb industriell utveckling inom bland andra flyg-, marin-, järnvägs- och fordonssektorn, speciellt i aluminium. Aktuella industriella tillämpningar har hittills huvudsakligen varit enkla långa raka svetsar, men intresset för komponenter med högre geometrisk komplexitet ökar. Sådana komponenter utgör en utmanande uppgift på grund avvarierande inducerad termisk spridning längs med fogen, och särskilt på grund av behovet av lämplig utrustning, som kan följa en 3D-svetsbana. Detta gäller speciellt när verktyget monteras på en industrirobot, där höga processkrafter resulterar i böjning, vilka kan leda till svetsfel och sämre mekaniska egenskaper. Utgångspunkten i detta arbete är att temperaturen i verktygets kontakt med materialet har störst betydelse för fogkvaliteten.

I det presenterade tillvägagångssättet styrs rotationshastigheten under svetsningen för att bibehålla önskad temperatur längs svetsen. En innovativ temperaturmätmetod baserad på termoelektrisk effekt mellan verktyg och arbetsstycke (TWT) erbjuder en skattning av temperaturen från hela gränssnittet mellan verktyg och arbetsstycke (TWT-data). Denna temperaturskattning används som den styrda variabeln. Det övergripande syftet med denna avhandling är att visa att styrning baserad på TWT-data är industriellt användbar för att bibehålla fogegenskaper vid fogning av geometriskt komplexa komponenter med hjälp av friktionsomröringssvetsning.

TWT-data visar sig vara ett snabbt, repeterbart och genomförbart sätt att få en representativ realtidsskattning av fogens temperatur under hela processen. Som sådan är den lämplig för skattning av processtemperaturen och styrning av processen. TWT-data tillhandahåller information även under startskedet och identifierar när verktyget pressas mot arbetsstycket, och speciellt när verktygets skuldra får kontakt med arbetsstycket. Denna information ger en förbättrad startprocedur, vilket är viktigt speciellt vid robotisering, eftersom robotens vekhet påverkar verktygets z-position.

Svetsning under temperaturreglering gav förbättrad fogprestanda, låg draghållfasthetsvariation längs fogen och ett reducerat antal misslyckade svetsar, och förväntas förenkla utvecklingen av en svetsprocedur, vilket möjliggör en minskning av tid och material.

Konceptet validerades framgångsrikt genom att svetsa en komponent bestående av två olika fogar med en tvådimensionell svetsbana i en geometriskt komplexkomponent med hjälp av robotutrustning. Tillvägagångssättet för temperaturstyrning är inte begränsat till robotutrustning, utan också lämpligt för standard FSW-utrustning, vilket är av intresse för olika applikationer där kvalitet och tid är viktiga faktor.

Place, publisher, year, edition, pages
Trollhättan: University West, 2020. p. 110
Series
PhD Thesis: University West ; 33
Keywords
Friction stir welding, Aluminium, Temperature measurements, Process control, Robotics, Geometrically complex components, Friktionsomrörningssvetsning, Aluminium, temperaturmätning, Processstyrning, Robotik, Geometriskt komplexa komponenter
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-14982 (URN)978-91-88847-48-5 (ISBN)978-91-88847-47-8 (ISBN)
Public defence
2020-02-25, Albertssalen, 09:00 (English)
Opponent
Supervisors
Available from: 2020-02-26 Created: 2020-02-26 Last updated: 2020-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Ferreira Magalhães, Ana CatarinaDe Backer, Jeroen

Search in DiVA

By author/editor
Bolmsjö, GunnarFerreira Magalhães, Ana CatarinaDe Backer, Jeroen
By organisation
Division of Production SystemsDivision of Welding Technology
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 526 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf