New aero engine design puts new demands on the manufacturing methods with increased automation level. Therefore, the use of vision sensors for control and guiding of industrial robots is being increasingly used. In such system, it is need to customise the machine vision system with real components in the real environment which is normally done close to the start-up of the production. This paper addresses a new concept for designing, programming, analysing, testing and verifying a machine vision application early in the design phase, called Virtual Machine Vision. It is based on a robot simulation software where the real machine vision application is simulated before the implementation in the production line. To verify the Virtual Machine Vision concept an advanced stereo vision application was used. Using two captured images from the robot simulated environment, camera calibration, image analysis and stereo vision algorithms are applied to determine a desired welding joint. The information of the weld joint, i.e. robot position and orientation for the weld path, are sent from the machine vision system to the robot control system in the simulation environment and the weld path is updated. The validation of the Virtual Machine Vision concept using the stereo vision application is promising for industrial use, and it is emphasised that the same programs are used in the virtual and real word.