System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (PTW)ORCID iD: 0000-0001-6610-1486
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (PTW)ORCID iD: 0000-0002-7663-9631
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Powder Materials & Additive Manufacturing, Swerea KIMAB AB, Kista, 164 40, Sweden.
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0001-9065-0741
2019 (English)In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 148, p. 88-99Article in journal (Refereed) Published
Abstract [en]

Electron beam melting-powder bed fusion (EBM-PBF) is an additive manufacturing process, which is able to produce parts in layer-by-layer fashion from a 3D model data. Currently application of this technology in parts manufacturing with high geometrical complexity has acquired growing interest in industry. To recommend the EBM process into industry for manufacturing parts, improved mechanical properties of final part must be obtained. Such properties highly depend on individual single melted track and single layer. In EBM, interactions between the electron beam, powder, and solid underlying layer affect the geometrical (e.g., re-melt depth, track width, contact angle, and track height) and microstructural (e.g., grain structure, and primary dendrite arm spacing) characteristics of the melted tracks. The core of the present research was to explore the influence of linear energy input parameters in terms of beam scanning speed, beam current as well as focus offset and their interactions on the geometry and microstructure of EBM-manufactured single tracks of Alloy 718. Increased scanning speed led to lower linear energy input values (<0.9 J/mm) in an specific range of the focus offset (0–10 mA) which resulted in instability, and discontinuity of the single tracks as well as balling effect. Decreasing the scanning speed and increasing the beam current resulted in higher melt pool depth and width. By statistical evaluations, the most influencing parameters on the geometrical features were primarily the scanning speed, and secondly the beam current. Primary dendrite arm spacing (PDAS) slightly decreased by increasing the scanning speed using lower beam current values as the linear energy input decreased. By increasing the linear energy input, the chance of more equiaxed grain formation was high, however, at lower linear energy input, mainly columnar grains were observed. The lower focus offset values resulted in more uniform grains along the 〈001〉 crystallographic direction. © 2018 Elsevier Inc. 

Place, publisher, year, edition, pages
2019. Vol. 148, p. 88-99
Keywords [en]
3D printers; Contact angle; Dendrites (metallography); Design of experiments; Electron beam melting; Electron beams; Scanning; Speed, Alloy 718; Geometrical characteristics; Powder bed; Single-tracks; Solidified microstructures, Geometry
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-13365DOI: 10.1016/j.matchar.2018.11.033ISI: 000458228100011Scopus ID: 2-s2.0-85058512738OAI: oai:DiVA.org:hv-13365DiVA, id: diva2:1276487
Funder
European Regional Development Fund (ERDF)Knowledge FoundationAvailable from: 2019-01-08 Created: 2019-01-08 Last updated: 2020-11-10Bibliographically approved
In thesis
1. Electron beam-powder bed fusion of Alloy 718: Effect of process parameters on microstructure evolution
Open this publication in new window or tab >>Electron beam-powder bed fusion of Alloy 718: Effect of process parameters on microstructure evolution
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Additive manufacturing (AM) is the technology of building 3D parts through layer-by-layer addition of material. Of the different types of AM techniques, electron beam-powder bed fusion (EB-PBF) has been used in this study. EB-PBF can build parts by melting metallic powders using an electron beam as the energy source. Compared to conventional manufacturing processes, EB-PBF offers a convenient approach and enhanced efficiency in producing customized and specific parts in the aerospace, space, automotive, and medical fields. In addition, the EB-PBF process is used to produce complex parts with less residual stress due to the high-temperature environment within the process.

This thesis has been divided into four stages. In the first stage, the behavior of Alloy 718 during the EB-PBF process as a function of different geometry-related parameters is examined by building single tracks adjacent to each other (track-by track) and single tracks on top of each other (single-wall samples). In this stage,the focus is on understanding the effect of successive thermal cycling on microstructural evolution. In the second stage, the effect of the position-related parameters–including the distance or gap between samples, height from the build plate (in the Z direction), and sample location on the build plate (in the X–Y plane) –on the microstructural characteristics, are revealed. These three position related parameters can have significant effects on the defect content and niobium rich phase fraction. In the third stage, the correlations between the main machinerelated parameters, geometric (melt pool width, track height, remelted depth, and contact angle), and microstructural (grain structure, niobium-rich phase fraction,and primary dendrite arm spacing) characteristics of a single track are delineated.

The results obtained in stages one to three were used as a guideline for the reduction of the internal–external defects and columnar-to-equiaxed transition(CET) in the grain structure of a typical cubic part. The final stage reveals two different strategies that were developed using machine-related parameters (scanning speed, beam current, focus offset, line offset, and line order number) to tailor the grain structures. All investigated parameters with respect to the proper selection of the processing window played a critical role in the solidification parameters (thermal gradient, growth rate, and cooling rate) on the solidification front, which could induce formation of more fine equiaxed grains.

Place, publisher, year, edition, pages
Trollhättan: University West, 2020. p. 75
Series
PhD Thesis: University West ; 2020:37
Keywords
Additive manufacturing; Electron beam-powder bed fusion; Microstructure evolution; Microstructure tailoring; Process understanding; Alloy 718
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-16013 (URN)978-91-88847-65-2 (ISBN)978-91-88847-64-5 (ISBN)
Public defence
2020-12-01, F131, Trollhättan, 10:00 (English)
Opponent
Supervisors
Available from: 2020-11-10 Created: 2020-11-10 Last updated: 2020-11-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Karimi Neghlani, PariaSadeghi, EsmaeilÅlgårdh, JoakimAndersson, Joel

Search in DiVA

By author/editor
Karimi Neghlani, PariaSadeghi, EsmaeilÅlgårdh, JoakimAndersson, Joel
By organisation
Division of Subtractive and Additive ManufacturingDivision of Welding Technology
In the same journal
Materials Characterization
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 346 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf