Isothermal oxidation behavior of NiCr and NiCrAlY coatings deposited onto low alloy 16Mo3 steel by high-velocity air fuel (HVAF) process was investigated in 5% O-2+20% H2O+N-2 at 600 degrees C for 168h. Whereas NiCrAlY showed lower mass gain compared to NiCr, both coatings succeeded in maintaining the integrity with the substrate during the exposure without any breakaway oxidation. A thin Cr-rich oxide scale (Cr2O3) formed on NiCr, and a thin mixed oxide scale (Al2O3 with NiCr2O4) formed on NiCrAlY significantly increasing the oxidation protection in the presence of water vapor.