Solid oxide cell electrolytes fabricated by atmospheric plasma spraying are frequently found to have considerable gas leak rates.Electrode surface roughness is known to have an influence on electrolyte leak rates. A jet of high velocity air, produced with an airknife, was aimed at the plasma plume during fuel electrode deposition to reduce the surface roughness prior to electrolyte deposition.The resulting fuel electrode masses, electrode compositions, and electrode surface roughnesses were measured for varying air knifeinlet pressures. Surface asperity populations and maximum heights were significantly reduced using air knife pressures of >6 barat the expense of deposition efficiency. The nickel volume fraction in the fuel electrode increased slightly with increasing air knifepressure. Open circuit voltages were larger on the smoother fuel electrodes that were produced at higher air knife pressures, but nosignificant effect of air knife pressure on cell power density could be discerned.© 2018 The Electrochemical Society
Funders: Natural Sciences and Engineering Research Council of Canada