Axial Suspension Plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometre. ASPS Thermal Barrier Coatings (TBCs) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationship between microstructural defects in the coating such as grain boundaries, porosity etc. and thermal conductivity. Object Oriented Finite element analysis (OOF) has been shown to be an effective tool for evaluating thermal conductivity for conventional TBCs as this method is capable of incorporating the inherent microstructure as an input to the model. The objective of this work was to analyse the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyse the thermal conductivity for these coatings. Verification of the model was done using experimental thermal conductivity. Results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller grains, higher overall porosity content and lower columnar density resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.