Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of Indicators for Hot and Warm Cracking in Welded Structures
Luleå University of Technology, 971 87 Luleå, Sweden.
University West, Department of Engineering Science, Division of Welding Technology.ORCID iD: 0000-0001-9065-0741
2017 (English)In: Procedia Manufacturing, ISSN 2351-9789, Vol. 7, p. 145-150Article in journal (Refereed) Published
Abstract [en]

Weight reduction of mechanical components is becoming increasingly important as a way to provide more environment friendly production and operation of different equipment. This is true in almost any manufacturing industry, but is especially important to the aerospace industry. Casting has often been replaced by hot and cold metal working operations and welding, usually including an additional heat treatment. This gives components better material properties and provides components with less weight and cost but with increased strength and efficiency. This may even be true for rotating Ni- based superalloy components, and is enabled by welding methods. However, weld cracking of precipitation hardening Ni-based superalloys is a serious problem, both in manufacturing and overhaul since it endangers component life if cracks are allowed to propagate. Cracks can appear in a weld and in it’s surroundings. The triggering mechanisms depend on its location and when it is nucleated. Generally saying, weld cracking in precipitation hardening Ni-based superalloys consists of two different types of cracking, hot cracking and warm cracking which may be further divided into heat affected zone (HAZ) liquation cracking, solidification cracking and strain age cracking, respectively. Finite element simulations of welding and heat treatment processes started in the seventies for small laboratory set-up cases and have today matured, and are now used on large-scale structures like aerospace components. But FE-based crack criteria that can predict the risk of cracking due to welding or heat treatments are rare. In a recent study both hot cracking and warm cracking have been investigated in Ni-based superalloys, and two FE-based indicators showing the risk of hot and warm cracks have been proposed. The objective of the investigation presented in this paper is to compare results from FE-simulations with experimental results from weldability tests, like the Varestraint test and the high temperature mechanical Gleeble test. © 2016

Place, publisher, year, edition, pages
Elsevier B.V. , 2017. Vol. 7, p. 145-150
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-11594DOI: 10.1016/j.promfg.2016.12.038Scopus ID: 2-s2.0-85010219853OAI: oai:DiVA.org:hv-11594DiVA, id: diva2:1143170
Available from: 2017-09-20 Created: 2017-09-20 Last updated: 2017-09-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Andersson, Joel

Search in DiVA

By author/editor
Andersson, Joel
By organisation
Division of Welding Technology
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf