Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of tool wear when machining alloy 718 with high-pressure cooling using conventional and surface-modified WC-Co tools
Chalmers University of Technology, Department of Materials and Manufacturing Technology,GothenburgSweden.
Chalmers University of Technology, Department of Materials and Manufacturing Technology,GothenburgSweden.
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (PTW)ORCID iD: 0000-0002-0895-3303
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (PTW)ORCID iD: 0000-0003-0976-9820
Show others and affiliations
2017 (English)In: Journal of Superhard Materials, ISSN 1063-4576, Vol. 39, no 3, p. 178-185Article in journal (Refereed) Published
Abstract [en]

Coolant supplied by high pressure into the cutting zone has shown the lower thermal loads on the tool when machining difficult-to-cut materials as the Alloy 718. In this study, we investigate how the combination of high-pressure cooling and tool-surface modifications can lead to further improvements regarding tool life. The general approach is to enhance the coolant-tool interaction by increasing the contact area. Therefore, we machined cooling features into flank and rake faces of commercially available cemented tungsten carbide inserts. In this way, the surface area was increased by similar to 12%. After the cutting tests, the tools were analyzed by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Compared with conventional tools, the tool modifications reduced the flank wear by 45% for the investigated cutting parameters. Furthermore, we were able to significantly increase the cutting speed and feed rate without failure of the tool. The investigated surface modifications have great potential to enhance the productivity of metal cutting processes.

Place, publisher, year, edition, pages
Allerton Press , 2017. Vol. 39, no 3, p. 178-185
Keywords [en]
superalloy; high pressure jet assisted machining; tool modification; wear characterization
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-11562DOI: 10.3103/S1063457617030054ISI: 000404329700005Scopus ID: 2-s2.0-85021233099OAI: oai:DiVA.org:hv-11562DiVA, id: diva2:1142708
Available from: 2017-09-20 Created: 2017-09-20 Last updated: 2019-11-18Bibliographically approved
In thesis
1. Textured insert for improved heat extraction in combination with high-pressure cooling in turning of superalloys
Open this publication in new window or tab >>Textured insert for improved heat extraction in combination with high-pressure cooling in turning of superalloys
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Heat generated in a machining process is a common and critical obstacle faced in today's machining industries. The heat generated in the cutting zone has a direct negative influence on the tool life which, in turn contributes to increase the manufacturing costs. Especially, in machining of Heat Resistant Super Alloys, HRSA this is a very limiting factor. HRSA are capable of retaining their mechanical strength and hardness at elevated temperatures. This property is advantageous in the application in e.g. aero-engines but also a disadvantage, since it also lowers the machinability significantly. This work is an attempt to improve the heat transfer from the cutting zone, which would lead to an increase in the tool life. To achieve this goal, the cutting tool has been modified to create an improved interface between the coolant and tool in the high-temperature areas. Two generations of inserts have been designed and investigated. Firstly, an insert with surface texture features has been created with the purpose of increasing the available surface area for heat dissipation: First generation, Gen I. Secondly, a GenII was designed as a further improvement of Gen I. Here, several channel features on the rake face were added, reaching out from the contact zone to the near proximity of the cutting edge. This with the purpose of improving access of the coolant closer to the cutting edge. The experiments were conducted in facing operations of Alloy 718 with uncoated round carbide inserts. All experiments were carried out with high-pressure coolant assistance, with a pressure of 16 MPa on the rake face and 8 MPa on the flankface, respectively.The two generations of inserts, Gen I and Gen II, were experimentally evaluated by tool wear analysis in comparison with a regular insert. The results shows that the tool life increased significantly for the Gen I insert, compared to a catastrophic failure of the regular insert at the same conditions. Regarding the Gen II insert,an increase in tool life by approximately 30 to 40 percent compared to Gen I insert was observed.

Place, publisher, year, edition, pages
Trollhättan: University West, 2017. p. 90
Series
Licentiate Thesis: University West ; 19
Keywords
Alloy 718; High-pressure coolant; Heat dissipation, Textured insert; Tungsten carbide, Tool life, Tool wear
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-11738 (URN)978-91-87531-63-7 (ISBN)978-91-87531-62-0 (ISBN)
Presentation
2017-10-12, F315, University West, Trollhättan, 13:00 (English)
Supervisors
Available from: 2017-10-06 Created: 2017-10-06 Last updated: 2019-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tamil Alagan, NageswaranBeno, Tomas

Search in DiVA

By author/editor
Tamil Alagan, NageswaranBeno, Tomas
By organisation
Division of Subtractive and Additive Manufacturing
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 190 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf