Open this publication in new window or tab >>2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The search for increased productivity and cost reduction in machining can be interpreted as desire to increase the Material Removal Rate, , and maximize the cutting tool utilization. The CNC process is complex and involves numerous constraints and parameters; ranging from tolerances to machinability. A well-managed preparation process creates the foundation for achieving a reduction in manufacturing errors and machining time. Along the preparation process of the NC-program, two different studies have been performed and are presented in this thesis. One study examined the CAM programming process from the Lean perspective. The other study includes an evaluation of how the cutting tools are used in terms of and tool utilization. Two distinct combinations of cutting data might provide the same . However, the tool life and machining cost can be different. Therefore, selection of appropriate cutting parameters that best meet all these objectives is challenging. An algorithm for analysis and efficient selection of cutting data for maximal , maximal tool utilization and minimal machining cost has been developed and is presented in this work. The presented algorithm shortens the time dedicated to the optimized cutting data selection and the needed iterations along the program development. Furthermore, the objectives that need to be considered during the estimation of the manufacturing processes sustainability have been identified. In addition, this thesis also includes a theoretical study to estimate energy use, CO2-footprint and water consumption during the manufacture of a workpiece, which can be invaluable for companies in their search for sustainability of their manufacturing processes.
Place, publisher, year, edition, pages
Trollhättan: University West, 2018. p. 108
Series
PhD Thesis: University West ; 16
Keywords
CAM programming; Cutting data; Lean; Manufacturing; Material Removal Rate; Optimization; Tool life; Tool utilization; Tool wear; Sustainability
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-12240 (URN)978-91-87531-82-8 (ISBN)978-91-87531-81-1 (ISBN)
Public defence
2018-05-08, F104, University West, Trollhättan, 10:15 (English)
Opponent
Supervisors
2018-04-122018-04-062018-10-26Bibliographically approved