Ultra-low refractive index thin films suitable for practical antireflective (AR) applications must be highly transparent, economical, and durable against temperature and weather conditions. In this work, we present a high performance broad band antireflective coating using a facile synthesis of Ink-Bottle mesoporous MgF2 nanoparticles. The nanoparticles having high crystalline and dispersible properties were prepared by a deformation-reformation route from coarse commercial MgF2 hydrate powder by Lyothermal synthesis. These nanoparticles, after dispersion in a suitable solvent were used to develop a single layer AR coating by dip-coating technique. We precisely developed coatings tunable to achieve minimum reflection losses between 400 and 1500 nm. The AR coating exhibited nearly 100% transmittance within visible range (615–660 nm) and an average transmittance of 99% and 97% in the visible (400–800 nm) and active solar range (300–1500 nm) respectively. Further, use of the AR coating on PV glass led to a net improvement of 6% in efficiency for c-Si solar cells. This work opens a promising approach to improve the device performance of solar cells as well as solar collectors by developing broad band antireflective surfaces using mesoporous nanoparticles.