Open this publication in new window or tab >>2016 (English)In: Proceedings of 11th International Symposium on Friction Stir Welding, Cambridge, UK, 2016, p. 1-11Conference paper, Published paper (Other academic)
Abstract [en]
Friction stir welding (FSW) and variants of the process have generated high interest in many industries due to its several advantages such as low distortion, superior mechanical properties over arc welding and the possibility of joining dissimilar materials. Increased complexity of industrial applications require a better control of the welding process in order to guarantee a consistent weld quality. This can be achieved by implementing feedback control based on sensor measurements. Previous studies have demonstrated a direct effect of weld temperature on the mechanical properties of FSW joints, [1], and therefore, temperature is chosen as primary process variable in this study.A new method for temperature measurement in FSW referred to as the Tool-WorkpieceThermocouple (TWT) method has recently been developed by De Backer. The TWT method is based on thermoelectric effect and allows accurate, fast and industrially suitable temperature monitoring during welding, without the need for thermocouples inside the tool [2].This paper presents an application of the TWT method for optimisation of the initial weld phases, plunge and dwell, operation in conventional FSW, which can also be applied to friction stir spot welding (FSSW). An analysis of the operation parameters by using feedback temperature control is presented aiming to better control of the initial weld phases through temperature feedback.
The introduction of the TWT temperature sensor provides additional process information during welding. Fast data acquisition gives opportunity to differentiate different process phases: contact of probe tip with workpiece surface; plunge phase; dwell phase. This would be followed by tool retraction for FSSW or tool traverse phase for FSW.The effect of the plunge parameters on weld temperature and duration of each phase were studied for the purpose of optimising the process with respect to process (i) robustness, (ii)time, (iii) robot deflection and (iv) quality. By using temperature feedback, it is possible to control the plunge phase to reach a predefined weld temperature, avoiding overheating of the material, which is known to have a detrimental influence on mechanical properties. The work presented in this paper is an important step in the optimization of robotic FSSW and FSW.
Place, publisher, year, edition, pages
Cambridge, UK: , 2016
Keywords
Plunging, Friction Stir Spot Welding, Temperature, TWT, Robot
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-9530 (URN)
Conference
11th International Symposium on Friction Stir Welding, Cambridge, UK, 17-19 May, 2016
2016-07-082016-07-082020-02-26Bibliographically approved