Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt221",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1464",{id:"formSmash:j_idt1464",widgetVar:"widget_formSmash_j_idt1464",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Nystedt, Patrik
#### Search in DiVA

##### By author/editor

Nystedt, Patrik
##### By organisation

Division of Natural Sciences and Electrical and Surveying Engineering
##### In the same journal

Journal of Algebra
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1963",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[1,1,1,1,2,3,37,25,2,1]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:40,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:692909'}],ticks:["Jun -22","Sep -22","Jan -23","Mar -23","Jul -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 253 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt2111",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt196",{id:"formSmash:upper:j_idt196",widgetVar:"widget_formSmash_upper_j_idt196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt199",{id:"formSmash:upper:j_idt197:j_idt199",widgetVar:"widget_formSmash_upper_j_idt197_j_idt199",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Simple rings and degree mapsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 401, p. 201-219Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 401, p. 201-219
##### Keywords [en]

Degree map, Ideal associativity, Ring extension, Simplicity
##### National Category

Algebra and Logic
##### Research subject

ENGINEERING, Mathematics
##### Identifiers

URN: urn:nbn:se:hv:diva-5902DOI: 10.1016/j.jalgebra.2013.11.023ISI: 000330599500011Scopus ID: 2-s2.0-84891812645OAI: oai:DiVA.org:hv-5902DiVA, id: diva2:692909
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt706",{id:"formSmash:j_idt706",widgetVar:"widget_formSmash_j_idt706",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt714",{id:"formSmash:j_idt714",widgetVar:"widget_formSmash_j_idt714",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt722",{id:"formSmash:j_idt722",widgetVar:"widget_formSmash_j_idt722",multiple:true}); Available from: 2014-02-03 Created: 2014-02-03 Last updated: 2019-11-29Bibliographically approved

For an extension A/B of neither necessarily associative nor necessarily unital rings, we investigate the connection between simplicity of A with a property that we call A-simplicity of B. By this we mean that there is no non-trivial ideal I of B being A-invariant, that is satisfying A I ⊆ I A. We show that A-simplicity of B is a necessary condition for simplicity of A for a large class of ring extensions when B is a direct summand of A. To obtain sufficient conditions for simplicity of A, we introduce the concept of a degree map for A/B. By this we mean a map d from A to the set of non-negative integers satisfying the following two conditions: (d1) if a ∈ A, then d(a) = 0 if and only if a = 0; (d2) there is a subset X of B generating B as a ring such that for each non-zero ideal I of A and each non-zero a ∈ I there is a non-zero a ' ∈ I with d(a ') ≤ d(a) and d(a 'b - ba ') < d(a) for all b ∈ X. We show that if the centralizer C of B in A is an A-simple ring, every intersection of C with an ideal of A is A-invariant, A C A = A and there is a degree map for A/B, then A is simple. We apply these results to various types of graded and filtered rings, such as skew group rings, Ore extensions and Cayley-Dickson doublings. © 2013 Elsevier Inc.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1993",{id:"formSmash:j_idt1993",widgetVar:"widget_formSmash_j_idt1993",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2082",{id:"formSmash:lower:j_idt2082",widgetVar:"widget_formSmash_lower_j_idt2082",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2084_j_idt2088",{id:"formSmash:lower:j_idt2084:j_idt2088",widgetVar:"widget_formSmash_lower_j_idt2084_j_idt2088",target:"formSmash:lower:j_idt2084:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});