CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt165",{id:"formSmash:upper:j_idt165",widgetVar:"widget_formSmash_upper_j_idt165",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt172_j_idt175",{id:"formSmash:upper:j_idt172:j_idt175",widgetVar:"widget_formSmash_upper_j_idt172_j_idt175",target:"formSmash:upper:j_idt172:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Simple rings and degree mapsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 401, p. 201-219Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 401, p. 201-219
##### Keywords [en]

Degree map, Ideal associativity, Ring extension, Simplicity
##### National Category

Algebra and Logic
##### Research subject

ENGINEERING, Mathematics
##### Identifiers

URN: urn:nbn:se:hv:diva-5902DOI: 10.1016/j.jalgebra.2013.11.023ISI: 000330599500011Scopus ID: 2-s2.0-84891812645OAI: oai:DiVA.org:hv-5902DiVA, id: diva2:692909
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt957",{id:"formSmash:j_idt957",widgetVar:"widget_formSmash_j_idt957",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt970",{id:"formSmash:j_idt970",widgetVar:"widget_formSmash_j_idt970",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt976",{id:"formSmash:j_idt976",widgetVar:"widget_formSmash_j_idt976",multiple:true}); Available from: 2014-02-03 Created: 2014-02-03 Last updated: 2019-11-29Bibliographically approved

For an extension A/B of neither necessarily associative nor necessarily unital rings, we investigate the connection between simplicity of A with a property that we call A-simplicity of B. By this we mean that there is no non-trivial ideal I of B being A-invariant, that is satisfying A I ⊆ I A. We show that A-simplicity of B is a necessary condition for simplicity of A for a large class of ring extensions when B is a direct summand of A. To obtain sufficient conditions for simplicity of A, we introduce the concept of a degree map for A/B. By this we mean a map d from A to the set of non-negative integers satisfying the following two conditions: (d1) if a ∈ A, then d(a) = 0 if and only if a = 0; (d2) there is a subset X of B generating B as a ring such that for each non-zero ideal I of A and each non-zero a ∈ I there is a non-zero a ' ∈ I with d(a ') ≤ d(a) and d(a 'b - ba ') < d(a) for all b ∈ X. We show that if the centralizer C of B in A is an A-simple ring, every intersection of C with an ideal of A is A-invariant, A C A = A and there is a degree map for A/B, then A is simple. We apply these results to various types of graded and filtered rings, such as skew group rings, Ore extensions and Cayley-Dickson doublings. © 2013 Elsevier Inc.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1866",{id:"formSmash:j_idt1866",widgetVar:"widget_formSmash_j_idt1866",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1923",{id:"formSmash:lower:j_idt1923",widgetVar:"widget_formSmash_lower_j_idt1923",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1924_j_idt1926",{id:"formSmash:lower:j_idt1924:j_idt1926",widgetVar:"widget_formSmash_lower_j_idt1924_j_idt1926",target:"formSmash:lower:j_idt1924:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});