Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conceptual framework of scheduling applying discrete event simulation as an environment for deep reinforcement learning
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)ORCID-id: 0000-0001-8962-0924
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)ORCID-id: 0000-0002-4091-7732
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)
Research and Technology Development, Volvo Group Trucks Operations, Gothenburg (SWE).
Vise andre og tillknytning
2022 (engelsk)Inngår i: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 107, s. 955-960Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Increased environmental awareness is driving the manufacturing industry towards novel ways of energy reduction to become sustainable yet stay competitive. Climate and enviromental challenges put high priority on incorporating aspects of sustainability into both strategic and operational levels, such as production scheduling, in the manufacturing industry. Considering energy as a parameter when planning makes an already existing highly complex task of production scheduling even more multifaceted. The focus in this study is on inverse scheduling, defined as the problem of finding the number of jobs and duration times to meet a fixed input capacity. The purpose of this study was to investigate how scheduling can be formulated, within the environment of discrete event simulation coupled with reinforcement learning, to meet production demands while simultaneously minimize makespan and reduce energy. The study applied the method of modeling a production robot cell with its uncertainties, using discrete event simulation combined with deep reinforcement learning and trained agents. The researched scheduling approach derived solutions that take into consideration the performance measures of energy use. The method was applied and tested in a simulation environment with data from a real robot production cell. The study revealed opportunities for novel approaches of studying and reducing energy in the manufacturing industry. Results demonstrated a move towards a more holistic approach for production scheduling, which includes energy usage, that can aid decision-making and facilitate increased sustainability in production. We propose a conceptual framework for scheduling for minimizing energy use applying discrete event simulation as an environment for deep reinforcement learning.

sted, utgiver, år, opplag, sider
2022. Vol. 107, s. 955-960
Emneord [en]
Reinforcement learning; Discrete event simulation; Energy optimal scheduling; Inverse scheduling; Industty 4.0
HSV kategori
Forskningsprogram
Arbetsintegrerat lärande; Produktionsteknik
Identifikatorer
URN: urn:nbn:se:hv:diva-18474DOI: 10.1016/j.procir.2022.05.091Scopus ID: 2-s2.0-85132264077OAI: oai:DiVA.org:hv-18474DiVA, id: diva2:1668691
Konferanse
55th CIRP Conference on Manufacturing Systems
Merknad

The work was carried out at the Production Technology Centre at University West, Sweden supported by the Swedish Governmental Agency for Innovation Systems (Vinnova) under the project SmoothIT and by the KK Foundation under the project Artificial and Human Intelligence through Learning (AHIL). Their support is gratefully acknowledged. Assistance provided by Master's students Maria Vincenta Vivo and Mohammadali Zakeriharandi was greatly appreciated. 

Tilgjengelig fra: 2022-06-13 Laget: 2022-06-13 Sist oppdatert: 2024-04-12

Open Access i DiVA

fulltext(3387 kB)127 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3387 kBChecksum SHA-512
e821b8aeb5cf9a514e3cf5f03b4ca7719095b3f6017c1ef96b604791086e3a34f592b329de195c10b39b9091408be9f0fd6638a09645df0798f723e5467283ee
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Eriksson, Kristina M.Ramasamy, SudhaZhang, XiaoxiaoDanielsson, Fredrik

Søk i DiVA

Av forfatter/redaktør
Eriksson, Kristina M.Ramasamy, SudhaZhang, XiaoxiaoDanielsson, Fredrik
Av organisasjonen
I samme tidsskrift
Procedia CIRP

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 127 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 181 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf