Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Substrate Orientation on Melt Pool during Multi-Layer Deposition in V-Groove with Gas Metal Arc
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0002-9692-2506
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0002-0234-3168
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0001-5734-294X
Chalmers University of Technology Mechanics and Maritime Sciences, Fluid Dynamics, SE-412 96 Gothenburg, (SWE).
Show others and affiliations
2021 (English)In: Proceedings of the 7th World Congress on Mechanical, Chemical, and Material Engineering (MCM'21) / [ed] Huihe Qiu, 2021, article id HTFF 130Conference paper, Published paper (Refereed)
Abstract [en]

Thermo-fluid dynamic and experimental approaches are used to investigate the influence of 20° uphill, downhill and sideway substrate orientation during metal deposition over a previously deposited bead in a V-groove. The computational fluid dynamic model with free surface deformation and metal transfer gives insight into the melt pool flow and causes of defect formation observed on the solidified beads. The experimental metallographs, high-speed images and computational results show good agreement. It is found that the deposition of a second layer on a smooth first layer cooled down to room temperature leads to large changes in melt pool flow patternat 20° substrate inclination compared to flat condition. It results in undercut and humps with the uphill orientation and undercut with the side inclination. Therefore, lower angle range is necessary for multilayer gas metal arc deposition for these two last configurations.

Place, publisher, year, edition, pages
2021. article id HTFF 130
Keywords [en]
metal deposition, gas metal arc welding, V-groove, substrate orientation, melt flow, reinforced bead, hump, OpenFOAM
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-17668DOI: 10.11159/htff21.130ISBN: 978-1-927877-93-7 (electronic)OAI: oai:DiVA.org:hv-17668DiVA, id: diva2:1607490
Conference
7th World Congress on Mechanical, Chemical, and Material Engineering (MCM'21)
Funder
EU, Horizon 2020, INTEGRADDESwedish National Infrastructure for Computing (SNIC)Available from: 2021-11-01 Created: 2021-11-01 Last updated: 2023-08-31Bibliographically approved
In thesis
1. Gas Metal Arc Melt Pool Modelling: Effect of welding position and electromagnetic force mode
Open this publication in new window or tab >>Gas Metal Arc Melt Pool Modelling: Effect of welding position and electromagnetic force mode
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Gas metal arc is a high-efficiency and widely used heat source for metal processing applied predominantly in welding and additive manufacturing. In this study, it was applied to welding. It offers high productivity, low production and investment cost, as well as suffers from some drawbacks such as humping or undercut when welding large parts that are curved and impose changing the orientation of the welding torch along the joint path. Deeper process understanding was therefore sought to mitigate these drawbacks. The difficulty is then the non-lineardependence of the process to the welding parameters and material properties. Besides, visual observation of this process is also difficult. For instance, the elevated temperature and the intense radiative emission from the electric arc, smoke, spatter, as well as the non-transparency of the processed alloy can hinder in-process observation or limit it. Process simulation provides a complementary means to reach process knowledge. It was thus the approach used in this study. For this, a thermo-fluid melt pool model that can predict melting and solidification, track free surface deformation, metal transfer, and coalescence with the melt pool was developed. Two main research questions were identified and addressed.The first one led to studying the effect of the substrate orientation during multilayer welding of a V-groove joint with INVAR and gas metal arc. It was foundthat the force balance in the melt pool changes significantly when the workpieceorientation is changed, resulting in distinct melt flow patterns, melt pool and bead geometries, and in some conditions defect initiation such as humping, undercut, and lack of fusion. As a result, multi-layer welding with flat substrate and downhill welding of a 20◦ inclined substrate are recommended with these process conditions. On the contrary, welding of a side inclined substrate and uphill welding of a 20◦ inclined substrate are not recommended. The second question gave rise to the comparative investigation of the three electromagnetic force models commonly used when modelling a melt pool produced by an electric arc. The underlying modelling assumptions were retrieved and investigated. It was found that each of these three models predicts a different melt flow pattern, different heat convection, melt pool shape, free surface oscillation, and interaction with the transferred metal drops, and thus result in different bead geometry. All these models can be adjusted to predict the penetration depth, however, only the most complete of them is recommended for developing a predictive melt pool model. For this, it is proposed as a future work to improve this model through predicting an electromagnetic force that takes also into account the local deformation of the free surface.

Abstract [sv]

Gasmetallbåge är en effektiv och allmänt använd värmekälla vid svetsning och additiv tillverkning. I denna studie tillämpas den på svetsning. Den erbjuder hög produktivitet, låg kostnad vid inköp och användning, såväl som vissa nackdelarsom ojämn "bucklig" svetssträng och smältdiken vid svetsning av stora komponenter som är krökta och medför att svetsbrännarens orientering ändras utmed fogen. Bättre processförståelse eftersträvas därför för att mildra dessa nackdelar. En utmaning är processens icke-linjära beroende av svetsparametrarna och materialegenskaperna. Dessutom är experimentell optisk övervakning svår. Till exempel kan den höga temperaturen och den intensiva elektromagnetiska strålningen från ljusbågen, rök, sprut, såväl som legeringens ogenomskinlighet, förhindra observation under processen eller begränsa den. Processimulering erbjuder en komplementär metod för att nå processkunskap. Det är alltså detta tillvägagångssätt som används i denna studie. För detta har en modell av värme och materialflödena i smältan utvecklats som kan prediktera smältning och stelning, spåra smältytans deformation, metallflöde och koalescens med smältan.Två huvudsakliga forskningsfrågor har identifierats och adresserats.

Den första studerade gravitationens påverkan vid flersträngs-, gasmetallbågsvetsning av V-fogar i INVAR. Olika svetslägen har visat sig ha en betydande påverkan på kraftbalanserna i svetssmältan vilket resulterar i distinkta smältflöden, smält- och svetsförbandgeometrier, och under vissa förhållanden svetsdefekter såsom ojämn "bucklig" svetssträng, smältdiken och bindfel. Som ett resultat rekommenderas horisontellt och 20◦ fallande läge vid flersträngssvetsning, medan 20◦ stigande och sidolutande inte rekommenderas.

Den andra frågan undersökte inverkan av de tre huvudsakliga modellerna för den elektromagnetiska kraften som idag används vid svetssimuleringar. För modelleringen har antaganden lagts fram och undersökts. Det visade sig att de tre modellerna predikterar olika flödesmönster i smältan, olika värmekonvektion, smältgeometri, ytvågor och interaktion med de överförda metalldropparna, och därmed också predikterar olika svetsstränggeometrier. Alla tre modeller kan justeras för att prediktera svetspenetrationen, men endast den mest kompletta av dessa rekommenderas för sant prediktiv modellering. Det föreslås också att ytterligare förbättra den mest kompletta modellen så att det elektromagnetiska kraftfältet följer deformationen av den fria smältytan.

Place, publisher, year, edition, pages
Trollhättan: University West, 2021. p. 144
Series
Licentiate Thesis: University West ; 37
Keywords
Gas metal arc welding, Gravitational force, Substrate orientation, Electromagnetic force modelling, Free surface deformation, Computational Fluid Dynamics, OpenFOAM, Gasmetallbågsvetsning, Gravitation, Svetsläge, Elektromagnetisk kraftmodellering, Smältytans rörelser, Computational Fluid Dynamics, OpenFOAM
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-17876 (URN)978-91-89325-17-3 (ISBN)978-91-89325-16-6 (ISBN)
Presentation
2021-12-21, Zoom meeting, Gustava Melins gata, Trollhättan, 09:00 (English)
Supervisors
Funder
Swedish National Infrastructure for Computing (SNIC)EU, Horizon Europe
Note

Submitted papers or manuscripts have been excluded from the fulltext file. 

Available from: 2021-12-21 Created: 2021-12-03 Last updated: 2022-01-05Bibliographically approved
2. Metal fusion using pulsed GasMetal Arc: Melt pool modellingand CFD simulation
Open this publication in new window or tab >>Metal fusion using pulsed GasMetal Arc: Melt pool modellingand CFD simulation
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Pulsed gas metal arc is a highly efficient technique used in manufacturing processes like welding and additive manufacturing. It offers high productivity and cost benefits but it is also prone to defect formation when process parameters are not properly controlled and optimized. A deeper process understanding can support achieving improved process control and mitigate these potential drawbacks. Nevertheless, there are still several challenges. For instance, the correlation between the input and output process parameters is non-linear and complex due to the multi-physics nature of the process. In addition, the elevated temperature and the intense radiative emission from the arc, along with the smoke, and the non-transparency of metal, make in-process observation challenging. Modelling and simulation offer a complementary approach to gain a deeper process understanding. In this study, a thermo- and fluid dynamics model was developed, focusing on the melt pool and metal deposition, while simplifying the arc to boundary conditions (decoupled approach). This model incorporates various forces and phenomena such as thermocapillary and electromagnetic forces, melting and solidification, and tracking of surface deformation and droplet coalescence.

In the first part of the thesis, the developed model was applied to investigate the effect of workpiece orientations on the melt pool dynamics and reinforced bead geometry in multi-layer gas metal arc welding of a V-groove joint. The comparison of the predicted fusion zone with macrographs obtained from the experiments showed good qualitative agreement. It was found that the force balance in the melt pool changes significantly when changing the workpiece orientation by as little as 20◦ relative to the flat position. This results in distinct melt flow patterns, melt pool shapes, bead geometries, and in some cases, defect formation such as humping, undercut, and insufficient fusion. It was concluded that to avoid these defects a lower angle range is necessary for multilayer welding with the uphill orientation and side inclination.

The second part of the thesis focused on analyzing different variants of the model for the electromagnetic force with a decoupled approach. Three commonly used models were compared: (1) the analytical models proposed by Kou and Sun inintegral form, (2) by Tsao and Wu in algebraic form, and (3) the partial differential equations governing the electric and magnetic fields. The comparative investigation was supported by experimental tests that also provided estimates of unknown model parameters and validation data. It was found that the distinct assumptions on which these models rely are not all justified. They resulted inpredicting different melt flow patterns and amplitude of the free surface oscillations, as well as different melt pool shapes and bead geometries. Model (3) is recommended to advance to a predictive melt pool model and was subsequentlyused in the remaining work of the thesis.

Furthermore, the literature shows that modeling the effect of pulsed arc on the melt pool using a decoupled approach involves various simplifications. Arc pulsation affects energy and force balance in the melt pool through arc heat flux, arc pressure, and electromagnetic force. A systematic investigation of model variants considering pulsing was conducted using previously documented experimental test cases. The results showed that the influence of arc pressure was insignificant in those cases. However, model variants simplifying arc pulsing to a time-averaged effect underestimated the amplitude of the Marangoni flow and downward flow compared to a more comprehensive approach that considered the time dependence of arc pulsation. Thus, it is recommended to use a meltpool model that accounts for the time-dependent arc pulsation, which was also subsequently utilized in the remaining work of the thesis.

The electromagnetic force models discussed earlier assume a stationary free surface when computing the electromagnetic force. However, this force is often at leading order in the vicinity of the arc. In the same region, the metal drop transfer leads to a periodic deformation of the melt pool free surface. In the final part of the thesis, the model was extended to account for free surface deformation when computing the electromagnetic force. This extension was applied to experimental test cases, and a comparison was made with simulation results obtained using the stationary electromagnetic force model. Significant differences in the results were observed, particularly in predicting the experimentally observed fingertip-shaped fusion zone geometry. The proposed improvement in the electromagnetic force model provided better predictions in this regard.

Abstract [sv]

Gasmetallbågsprocessen har revolutionerat metallbearbetning och produktionsteknik under ett århundrade med sin påfallande effektivitet och mångsidighet, speciellt vid svetsning. På senare år har denna teknik också tillämpats alltmer inom additiv tillverkning (AM), även känt som 3D-printing. Gasmetallbågsbaserad AM har väckt ett stort industriellt intresse på grund av dess förmåga att tillverka stora och komplexa komponenter. Det finns dock problem, dels kring defekter i processen, dels kring numeriska modellers förmåga att simulera processen. Följaktligen finns det ett behov av en djupare förståelse och förbättrade modeller för att övervinna dessa utmaningar och frigöra den fulla potentialen i denna teknologi. För att angripa detta problem utvecklades och tillämpades modellering med hjälp strömningsmekaniska beräkningar (CFD) i detta avhandlingsarbete, tillsammans med fysiska experiment för att komplettera modelleringsarbetet. Det utförda modelleringsarbetet har gjort det möjligt att förklara hur flödet i smältan och dess geometri orsakar defekter vid ändringar av ett arbetsstyckesorientering så lite som 20◦ jämfört med horisontell positionering vid svets iV-fog. Dessutom använder moderna numeriska modeller för smältans fysikolika delmodeller för att beräkna den elektromagnetiska kraften och tidsberoendet hos en pulserande ljusbåge. Dessa delmodeller jämförandes i en analys föratt förklara deras signifikanta skillnader vid simulering av smältflödet, termisk konvektion, ytvågor, smältans form och stelnade geometri. De föreslagna förbättringarna i modelleringen baserat på denna analys har gett mer noggranna förutsägelser av processens smältzon, vilket bidrar till utvecklingen av en sant prediktiv simuleringsmodell som kommer att vara användbar i den efterfrågade utvecklingen av gasmetallbågsprocessen.

Place, publisher, year, edition, pages
Trollhättan: University West, 2023. p. 112
Series
PhD Thesis: University West ; 56
Keywords
Gas metal arc, Electromagnetic force modelling, Free surface deformation, Computational Fluid Dynamics, OpenFOAM, Gasmetallbågsvetsning, Svetsläge, Elektromagnetiskkraftmodellering, Smältytans rörelser, Computational Fluid Dynamics, OpenFOAM
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-20642 (URN)978-91-89325-46-3 (ISBN)978-91-89325-46-3 (ISBN)
Public defence
2023-10-03, C118, Trollhättan, 10:00 (English)
Opponent
Supervisors
Note

Paper I is an Open Access article.

Submitted articles are not included in the electronic thesis.

Available from: 2023-09-12 Created: 2023-08-31 Last updated: 2024-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Aryal, PradipHurtig, KjellSikström, FredrikChoquet, Isabelle

Search in DiVA

By author/editor
Aryal, PradipHurtig, KjellSikström, FredrikChoquet, Isabelle
By organisation
Division of Welding TechnologyDivision of Production Systems
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 475 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf