Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Friction Stir Welding case study using Temperature Controlled Robotics with a HPDC Cylinder Block and dissimilar materials joining
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0003-3261-9097
SKB AB, Oskarshamn, Sweden.
University West, Department of Engineering Science, Division of Production Systems. (PTW)ORCID iD: 0000-0001-9553-7131
Volvo Cars, Göteborg, Sweden.
Show others and affiliations
2019 (English)In: Journal of Manufacturing Processes, ISSN 1526-6125, Vol. 46, p. 177-184Article in journal (Refereed) Published
Abstract [en]

The automotive industry is going through a radical transformation from combustion engines to fully electric propulsion, aiming at improving key performance indicators related to efficiency, environmental sustainability and economic competitiveness. In this transition period, it is important to continue the innovation of combustion engines for e.g. plug-in hybrid vehicles. This led Volvo Cars to pursue radically new manufacturing processes such as Friction Stir Welding (FSW). The work presented in this paper is a case study whereby feasibility of using FSW to join a reinforcement element into the aluminium casted Cylinder Block was studied. The complex geometry of the joint required a flexible five-axis manipulator, i.e. an industrial robot, as well as advanced process control, i.e. temperature feedback control, in order to maintain a consistent weld quality throughout the whole component. The process was successfully demonstrated in a lab environment and offers a cost-efficient solution while maintaining the durability and higher efficiency. The outcome of this study shows the great potential of implementing the FSW process in combination with High Pressure Die Casted components, such a Cylinder Block. © 2019 The Society of Manufacturing Engineers

Place, publisher, year, edition, pages
Elsevier , 2019. Vol. 46, p. 177-184
Keywords [en]
Aluminum; Automotive industry; Benchmarking; Casting; Combustion; Competition; Cylinder blocks; Dissimilar materials; Efficiency; Friction; Friction stir welding; Industrial manipulators; Intelligent control; Manipulators; Plug-in hybrid vehicles; Research laboratories; Robots; Sustainable development; Temperature control, Advanced Process Control; Automotive; Economic competitiveness; Environmental sustainability; Friction stir welding(FSW); Key performance indicators; Manufacturing process; Radical transformation, Process control
National Category
Manufacturing, Surface and Joining Technology Robotics
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-14487DOI: 10.1016/j.jmapro.2019.08.012ISI: 000493221100017Scopus ID: 2-s2.0-85072050179OAI: oai:DiVA.org:hv-14487DiVA, id: diva2:1356418
Available from: 2019-10-01 Created: 2019-10-01 Last updated: 2020-02-26Bibliographically approved
In thesis
1. Thermoelectric Measurements for Temperature Control of Robotic Friction Stir Welding
Open this publication in new window or tab >>Thermoelectric Measurements for Temperature Control of Robotic Friction Stir Welding
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Friction stir welding (FSW) has undergone a rapid expansion in several industrial sectors such as in the aerospace, marine, railway and automotive sectors. Current industrial applications are mainly simple long straight welds, but there is a growth of interest in components with higher geometric complexity. However, welding of geometrically complex components represents a challenging task due to the resulting uneven induced thermal dissipation along the weld, but especially due to the need for suitable equipment, able to accurately follow a complex 3D path under high mechanical loads, while managing the machine deflection. This is the case for robots, where the high process forces result in deflections, which affects robots' compliance, leading to weld failures and poor consistency in mechanical properties.

In the presented approach, the rotational speed is controlled during welding in order to maintain the set temperature value along the weld. An innovative method to measure the process temperature, the tool-workpiece thermocouple (TWT), which offers a temperature estimation from the whole tool-workpiece interface (TWT-data), is set as the controlled variable. The overall aim of this thesis is then to demonstrate the industrial applicability of TWT temperature control for joining geometrically complex components using robotic friction stir welding.

The TWT-data signal is demonstrated to be fast, repeatable and representative of the welding temperature. Moreover, TWT-data supplies online information during the whole weld procedure, especially during plunging. The shoulder contact with the workpiece is identified by TWT-data, providing for an improved plunging operation, which was demonstrated to significantly improve the use of robotic FSW, overcoming the lack of stiffness inherent to this equipment type at this welding stage.

Improved joint performance, low tensile strength variation along the weld path and a reduced number of failed welds were achieved by welding under temperature control. As a result, such a welding approach simplifies the development of a welding procedure, allowing for a decrease in time and material. The concept was successfully validated by performing two welds consisting of two dissimilar materials in a two-dimensional weld path on a geometrically complex component by using robotic equipment. The temperature control approach is not limited to robotic equipment, but also suitable for standard FSW equipment, being of interest to a various range of applications where quality and/or time is an important factor.

Abstract [sv]

Friktionsomrörningssvetsning (FSW) genomgår en snabb industriell utveckling inom bland andra flyg-, marin-, järnvägs- och fordonssektorn, speciellt i aluminium. Aktuella industriella tillämpningar har hittills huvudsakligen varit enkla långa raka svetsar, men intresset för komponenter med högre geometrisk komplexitet ökar. Sådana komponenter utgör en utmanande uppgift på grund avvarierande inducerad termisk spridning längs med fogen, och särskilt på grund av behovet av lämplig utrustning, som kan följa en 3D-svetsbana. Detta gäller speciellt när verktyget monteras på en industrirobot, där höga processkrafter resulterar i böjning, vilka kan leda till svetsfel och sämre mekaniska egenskaper. Utgångspunkten i detta arbete är att temperaturen i verktygets kontakt med materialet har störst betydelse för fogkvaliteten.

I det presenterade tillvägagångssättet styrs rotationshastigheten under svetsningen för att bibehålla önskad temperatur längs svetsen. En innovativ temperaturmätmetod baserad på termoelektrisk effekt mellan verktyg och arbetsstycke (TWT) erbjuder en skattning av temperaturen från hela gränssnittet mellan verktyg och arbetsstycke (TWT-data). Denna temperaturskattning används som den styrda variabeln. Det övergripande syftet med denna avhandling är att visa att styrning baserad på TWT-data är industriellt användbar för att bibehålla fogegenskaper vid fogning av geometriskt komplexa komponenter med hjälp av friktionsomröringssvetsning.

TWT-data visar sig vara ett snabbt, repeterbart och genomförbart sätt att få en representativ realtidsskattning av fogens temperatur under hela processen. Som sådan är den lämplig för skattning av processtemperaturen och styrning av processen. TWT-data tillhandahåller information även under startskedet och identifierar när verktyget pressas mot arbetsstycket, och speciellt när verktygets skuldra får kontakt med arbetsstycket. Denna information ger en förbättrad startprocedur, vilket är viktigt speciellt vid robotisering, eftersom robotens vekhet påverkar verktygets z-position.

Svetsning under temperaturreglering gav förbättrad fogprestanda, låg draghållfasthetsvariation längs fogen och ett reducerat antal misslyckade svetsar, och förväntas förenkla utvecklingen av en svetsprocedur, vilket möjliggör en minskning av tid och material.

Konceptet validerades framgångsrikt genom att svetsa en komponent bestående av två olika fogar med en tvådimensionell svetsbana i en geometriskt komplexkomponent med hjälp av robotutrustning. Tillvägagångssättet för temperaturstyrning är inte begränsat till robotutrustning, utan också lämpligt för standard FSW-utrustning, vilket är av intresse för olika applikationer där kvalitet och tid är viktiga faktor.

Place, publisher, year, edition, pages
Trollhättan: University West, 2020. p. 110
Series
PhD Thesis: University West ; 33
Keywords
Friction stir welding, Aluminium, Temperature measurements, Process control, Robotics, Geometrically complex components, Friktionsomrörningssvetsning, Aluminium, temperaturmätning, Processstyrning, Robotik, Geometriskt komplexa komponenter
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-14982 (URN)978-91-88847-48-5 (ISBN)978-91-88847-47-8 (ISBN)
Public defence
2020-02-25, Albertssalen, 09:00 (English)
Opponent
Supervisors
Available from: 2020-02-26 Created: 2020-02-26 Last updated: 2020-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ferreira Magalhães, Ana CatarinaDe Backer, Jeroen

Search in DiVA

By author/editor
Ferreira Magalhães, Ana CatarinaDe Backer, Jeroen
By organisation
Division of Welding TechnologyDivision of Production Systems
Manufacturing, Surface and Joining TechnologyRobotics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf