Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metallurgical effects and distortions in laser welding of thin sheet steels with variations in strength
University West, Department of Engineering Science, Research Enviroment Production Technology West. University West, Department of Engineering Science, Research Environment Production Technology West. (PTW)ORCID iD: 0000-0001-8933-6720
Volvo Cars, Torslanda, Sweden.
University West, Department of Engineering Science, Research Enviroment Production Technology West. (PTW)ORCID iD: 0000-0001-8822-2705
University West, Department of Engineering Science, Division of Production Engineering. University West, Department of Engineering Science, Division of Welding Technology. (Welding group, PTW)ORCID iD: 0000-0003-2560-0531
2017 (English)In: Science and technology of welding and joining, ISSN 1362-1718, E-ISSN 1743-2936, Vol. 22, no 7, p. 573-579Article in journal (Refereed) Published
Abstract [en]

Geometrical distortions occur while welding, but the understanding of how and why they occur and how to control them is limited. The relation between the weld width, weld metal volume, total energy input, width of hard zone and distortions when laser welding three different thin sheet steels with varying strength has therefore been studied. Weld metal volume and total energy input show a good correlation with distortion for one steel at a time. The best correlation with the when including all three steel grades was the width of the hard zone composed of weld metal and the martensitic area in the heat affected zone. © 2017 Institute of Materials, Minerals and Mining. Published by Taylor & Francis on behalf of the Institute.

Place, publisher, year, edition, pages
2017. Vol. 22, no 7, p. 573-579
Keywords [en]
Distortion (waves); Hardness; Heat affected zone; High strength steel; Laser beam welding; Martensitic steel; Metallurgy; Metals; Sheet metal; Welding; Welds, automotive; Geometrical distortion; Good correlations; Steel grades; Thin sheet; Total energy; Weld metal; Weld widths, Steel metallurgy
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-10936DOI: 10.1080/13621718.2016.1275483ISI: 000406522500004Scopus ID: 2-s2.0-85009275116OAI: oai:DiVA.org:hv-10936DiVA, id: diva2:1136189
Funder
Vinnova, 2012-03656
Note

Published online: 12 Jan 2017

Available from: 2017-08-25 Created: 2017-08-25 Last updated: 2019-05-23Bibliographically approved
In thesis
1. Laser welding of ultra-high strength steel and a cast magnesium alloy for light-weight design
Open this publication in new window or tab >>Laser welding of ultra-high strength steel and a cast magnesium alloy for light-weight design
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is a strong industrial need for developing robust and flexible manufacturing methods for future light-weight design. Better performing, environmental friendly vehicles will gain competitive strength from using light weight structures. In this study, focus has been on laser welding induced distortions for ultra-high strength steel (UHSS) where trials were performed on single hat and double hat beams simulating A-pillar and B-pillar structures. Furthermore, also laser welding induced porosity in cast magnesium alloy AM50 for interior parts were studied. For UHSS, conventional laser welding was done in a fixture designed for research. For cast magnesium, single-spot and twin-spot welding were done. Measurements of final distortions and metallographic investigations have been performed. The results show that the total weld metal volume or the total energy input were good measures for predicting the distortions within one steel grade. For comparing different steel grades, the width of the hard zone should be used. The relation between the width of the hard zone, corresponding to the martensitic area of the weld, and the distortions is almost linear. Additionally, compared with continuous welds, stitching reduced the distortions. For cast magnesium, two-pass (repeated parameters) welding with single-spot gave the lowest porosity of approximately 3%. However, two-pass welding is not considered production friendly. Twin-spot welding was done, where the first beam provided time for nucleation and some growth of pores while reheating by the second beam should provide time for pores to grow and escape. This gave a porosity of around 5%. Distortions and porosity are the main quality problems that occur while laser welding UHSS and cast magnesium, respectively. Low energy input seems to generally minimize quality issues. Laser welding shows high potential regarding weld quality and other general aspects such as productivity in light-weight design for both high strength steel and cast magnesium.

Place, publisher, year, edition, pages
Trollhättan: University West, 2019. p. 94
Series
PhD Thesis: University West ; 29
Keywords
Laser welding, ultra-high strength steel, cast magnesium alloy, light-weight design, automotive industry, distortion, porosity
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-13752 (URN)978-91-88847-29-4 (ISBN)978-91-88847-28-7 (ISBN)
Public defence
2019-04-24, F131, Trollhättan, 10:00 (English)
Opponent
Supervisors
Available from: 2019-04-02 Created: 2019-04-01 Last updated: 2019-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Fahlström, KarlKarlsson, LeifSvensson, Lars-Erik

Search in DiVA

By author/editor
Fahlström, KarlKarlsson, LeifSvensson, Lars-Erik
By organisation
Research Enviroment Production Technology WestResearch Environment Production Technology WestDivision of Production EngineeringDivision of Welding Technology
In the same journal
Science and technology of welding and joining
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf