Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An energy model for press line tending robots
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)ORCID-id: 0000-0002-0044-2795
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)ORCID-id: 0000-0002-8878-2718
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (PTW)ORCID-id: 0000-0002-6604-6904
2016 (engelsk)Inngår i: ESM'2016, the 2016 European simulation and Modelling Conference: Modelling and Simulation '2016 / [ed] José Evora-Gomez & José Juan Hernandez-Cabrera, Eurosis , 2016, s. 377-383Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Today most industries aim at reducing energy consumption to become sustainable and environment-friendly. The automotive industry, with mass production and large volumes, is one such example. With many robots working round the clock, there is great potential to save energy. In this climate there is a need for robot simulation models that can be used for motion and task execution optimisation and which are aimed lowering energy consumption. This paper presents an energy consumption model for 2D-belt robots for press line tending in the automotive sector. The energy model is generic for 2D-belt robots and is entirely based on component specifications (e.g., dimensions, masses, inertia). An implementation and validation against a real 2D-belt tending robot used in the automotive industry is performed and presented. The purpose and usefulness of the energy model is also demonstrated by two application cases; the investigation of potential energy reductions achieved by reducing the weight of gripper tools, and by using mechanical brakes when the robot is idle.

sted, utgiver, år, opplag, sider
Eurosis , 2016. s. 377-383
Emneord [en]
Industrial robots, energy model, energy consumption, energy minimisation
HSV kategori
Forskningsprogram
Produktionsteknik; TEKNIK, Produktions- och materialteknik
Identifikatorer
URN: urn:nbn:se:hv:diva-10133Scopus ID: 2-s2.0-85016052034ISBN: 9789077381953 (tryckt)OAI: oai:DiVA.org:hv-10133DiVA, id: diva2:1045750
Konferanse
30th European Simulation and Modelling Conference - ESM'2016, October 26-28, 2016, Las Palmas, Gran Canaria, Spain
Merknad

This work was performed at University West’s Production Technology West research centre and supported in part by Västra Götalandsregionen under the grant PROSAM+ RUN 612-0208-16.

Tilgjengelig fra: 2016-11-10 Laget: 2016-11-10 Sist oppdatert: 2019-02-07bibliografisk kontrollert
Inngår i avhandling
1. Multi-Robot Motion Planning Optimisation for Handling Sheet Metal Parts
Åpne denne publikasjonen i ny fane eller vindu >>Multi-Robot Motion Planning Optimisation for Handling Sheet Metal Parts
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Motion planning for robot operations is concerned with path planning and trajectory generation. In multi-robot systems, i.e. with multiple robots operating simultaneously in a shared workspace, the motion planning also needs to coordinate the robots' motions to avoid collisions between them. The multi-robot coordination decides the cycle-time for the planned paths and trajectories since it determines to which extend the operations can take place simultaneously without colliding. To obtain the quickest cycle-time, there needs to bean optimal balance between, on the one hand short paths and fast trajectories, and on the other hand possibly longer paths and slower trajectories to allow that the operations take place simultaneously in the shared workspace. Due to the inter-dependencies, it becomes necessary to consider the path planning, trajectory generation and multi-robot coordination together as one optimisation problem in order to find this optimal balance.This thesis focusses on optimising the motion planning for multi-robot material handling systems of sheet metal parts. A methodology to model the relevant aspects of this motion planning problem together as one multi-disciplinary optimisation problem for Simulation based Optimisation (SBO) is proposed. The identified relevant aspects include path planning,trajectory generation, multi-robot coordination, collision-avoidance, motion smoothness, end-effectors' holding force, cycle-time, robot wear, energy efficiency, part deformations, induced stresses in the part, and end-effectors' design. The cycle-time is not always the (only) objective since it is sometimes equally/more important to minimise robot wear, energy consumption, and/or part deformations. Different scenarios for these other objectives are therefore also investigated. Specialised single- and multi-objective algorithms are proposed for optimising the motion planning of these multi-robot systems. This thesis also investigates how to optimise the velocity and acceleration profiles of the coordinated trajectories for multi-robot material handling of sheet metal parts. Another modelling methodology is proposed that is based on a novel mathematical model that parametrises the velocity and acceleration profiles of the trajectories, while including the relevant aspects of the motion planning problem excluding the path planning since the paths are now predefined.This enables generating optimised trajectories that have tailored velocity and acceleration profiles for the specific material handling operations in order to minimise the cycle-time,energy consumption, or deformations of the handled parts.The proposed methodologies are evaluated in different scenarios. This is done for real world industrial case studies that consider the multi-robot material handling of a multi-stage tandem sheet metal press line, which is used in the automotive industry to produce the cars' body panels. The optimisation results show that significant improvements can be obtained compared to the current industrial practice.

sted, utgiver, år, opplag, sider
Trollhättan: University West, 2017. s. 196
Serie
PhD Thesis: University West ; 10
Emneord
Multi-robot systems, motion planning, modelling and simulation, optimisation
HSV kategori
Forskningsprogram
Produktionsteknik; TEKNIK, Produktions- och materialteknik
Identifikatorer
urn:nbn:se:hv:diva-10947 (URN)978-91-87531-58-3 (ISBN)978-91-87531-57-6 (ISBN)
Veileder
Tilgjengelig fra: 2017-05-24 Laget: 2017-05-24 Sist oppdatert: 2019-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

ScopusLänk till konferensprogramLänk till innehållsförteckning av publicerade konferensbidrag

Personposter BETA

Glorieux, EmileSvensson, BoParthasarathy, PrithwickDanielsson, Fredrik

Søk i DiVA

Av forfatter/redaktør
Glorieux, EmileSvensson, BoParthasarathy, PrithwickDanielsson, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 183 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf