Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integral Approaches to Determine Sub-Crustal Stress from Terrestrial Gravimetric Data
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avd för elektro, lantmäteri och naturvetenskap.ORCID-id: 0000-0003-0067-8631
2016 (Engelska)Ingår i: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 173, nr 3, s. 805-825Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The spherical harmonic expressions of the horizontal sub-crustal stress components induced by the mantle convection are convergent only to low degrees. In this paper, we use the method of stress (S) function with numerical differentiation and present a formula for determining the degree of convergence from the mean Moho depth. We found that for the global mean Moho depth, 23 km, this convergence degree is 622 and for Iran, 35 km, it is 372. Also, three methods are developed and applied for computing the sub-crustal stress, (1) direct integration with a spectral kernel limited up to the degree of convergence, (2) integral inversion with a kernel having closed-form formula without any frequency limit, and (3) solving an integral equation with limited spectral kernel to the convergence degree. The second method has no divergence problem and its kernel function is well behaving so that the system of equations from which the S function is determined is stable, and no regularisation is needed to solve it. It should be noted that for using this method the resolution of the recovery should be higher than 0.5° × 0.5°, otherwise the recovered S function and correspondingly the stress components will have smaller magnitude than those derived from the other two methods. Our numerical studies for stress recovery in Iran and its surrounding areas show that the methods, which use the limited spectral kernels to the convergence degree, deliver consistent results to that of the spherical harmonic expansion.

Ort, förlag, år, upplaga, sidor
2016. Vol. 173, nr 3, s. 805-825
Nyckelord [en]
Inversion, Integral equations, Integral method, Moho spectra, Stress function with numerical differentiation, Stress, Gravity
Nationell ämneskategori
Geofysik
Forskningsämne
TEKNIK, Geodesi
Identifikatorer
URN: urn:nbn:se:hv:diva-7660DOI: 10.1007/s00024-015-1107-9ISI: 000372305100006Scopus ID: 2-s2.0-84961266907OAI: oai:DiVA.org:hv-7660DiVA, id: diva2:816132
Tillgänglig från: 2015-06-02 Skapad: 2015-06-02 Senast uppdaterad: 2019-12-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Eshagh, Mehdi

Sök vidare i DiVA

Av författaren/redaktören
Eshagh, Mehdi
Av organisationen
Avd för elektro, lantmäteri och naturvetenskap
I samma tidskrift
Pure and Applied Geophysics
Geofysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 122 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf