Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Development of an Intelligent Robotized Machine Vision Automated System for Bacterial Growth Monitoring
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (KAMPT)ORCID-id: 0000-0002-3639-3403
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för produktionssystem (PS). (KAMPT)ORCID-id: 0000-0002-4329-418X
2023 (Engelska)Ingår i: Proceedings of 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication, IEEE, 2023, s. 1-6Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Pathogenic bacterial growth detection and monitoring is an important scientific process in the field of quality control in the food, water, and medical industries. Very-large-scale process of such bacteria growth monitoring is possible only with an automated process. The mechanism must make sure that the sample is continuously monitored, and detected, data is communicated to supervisors and managers, and data is stored historically retrievable for quality control and analysis. A manual bacteria inspection among the Petri dishes incubated of such bacterial growth in food processing was attempted for automation. The manual inspection in a microbiological industry involves; an operator inspecting the input petri discs to check if there are bacteria, writing down the barcode of the corresponding petri dish, and then sorting the Petri discs depending on the bacterial growth. In this automation attempt of automatizing this petri-disc inspection, the project was split into two phases. 1. Building a vision system to detect bacteria, developing of an algorithm to quantify the growth, and registering the barcode in a registry. 2. The second phase is to design a robot system with programming and define the layout of the station. The development of an intelligent robotized machine vision automated system proves the concept of a major industrial practice that has the potential to significantly increase the quality and productivity of bacterial growth, with increased throughput.

Ort, förlag, år, upplaga, sidor
IEEE, 2023. s. 1-6
Nyckelord [en]
—Non-destructive testing, machine vision, automation, bacterial growth, petri dish inspection.
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsteknik
Identifikatorer
URN: urn:nbn:se:hv:diva-20702DOI: 10.1109/IConSCEPT57958.2023.10170642Scopus ID: 2-s2.0-85166367912ISBN: 9798350312126 (digital)OAI: oai:DiVA.org:hv-20702DiVA, id: diva2:1823021
Konferens
IConSCEPT 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication, 25-26 May 2023, Karaikal, India
Forskningsfinansiär
Europeiska regionala utvecklingsfonden (ERUF), 20201192Tillgänglig från: 2023-12-29 Skapad: 2023-12-29 Senast uppdaterad: 2023-12-29

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ramanathan, Prabhu K.Ericsson, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Ramanathan, Prabhu K.Ericsson, Mikael
Av organisationen
Avdelningen för produktionssystem (PS)
Bearbetnings-, yt- och fogningsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 34 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf