Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Science for In-process Chatter Classification
Högskolan Väst, Institutionen för ingenjörsvetenskap.
2022 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Milling is one of the most crucial processes in machining. Every industry demands a stable milling process for a smoother finish and material cost reduction. Chatter is a vibrating phenomenon which affects the workpiece's quality, its dimensional accuracy, and tool life. It is required to classify the chatter phenomenon to devise an effective chatter prevention strategy.

Several classification strategies are being used, including frequency and time-related strategies. Since the chattering phenomenon is a frequency-based phenomenon so a frequency-based feature set can be of vital importance. However, frequency-based strategies have a problem of noise. The noise problem can be addressed by combining frequency and time-domain methods.

Thus, a hybrid approach based on the frequency and time-based feature set is developed and used in conjunction with k-means-based unsupervised learning to come up with a practical but reliable classifier. The proposed classifier algorithm offers good performance, clearly distinguishing between chatter and stable conditions.

Based on the chatter classification in this work, it is possible to identify thresholds for chattering detection. It is essential to mention that the thresholds obtained from this work will only be useful for the machine and tool used in the experiments and will not be of use for other machines and need more investigation. 

Ort, förlag, år, upplaga, sidor
2022. , s. 7
Nyckelord [en]
Chatter classification, data science, milling process, k-means
Nyckelord [sv]
Vibrationsklassificering, datavetenskap, fräsningsprocesser
Nationell ämneskategori
Metallurgi och metalliska material Teknisk mekanik
Identifikatorer
URN: urn:nbn:se:hv:diva-18501Lokalt ID: EXM903OAI: oai:DiVA.org:hv-18501DiVA, id: diva2:1669959
Ämne / kurs
Maskinteknik
Utbildningsprogram
Masterprogram i tillverkningsteknik
Handledare
Examinatorer
Tillgänglig från: 2022-06-21 Skapad: 2022-06-15 Senast uppdaterad: 2022-06-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för ingenjörsvetenskap
Metallurgi och metalliska materialTeknisk mekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 226 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf