Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigation of Modified Cutting Insert with Forced Coolant Application in Machining of Alloy 718
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). (PTW)ORCID-id: 0000-0002-0895-3303
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). (PTW)ORCID-id: 0000-0003-0976-9820
GKN Aerospace Engine Systems AB, Trollhättan, 461 81, Sweden.
2016 (engelsk)Inngår i: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 42, s. 481-486Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Abstract In the last decades machining methods have witnessed an advancement in both cutting tools and coolant/lubrication, sometimes in combination with high pressure jet. The aim of this work is to investigate a modified cutting insert with forced coolant application, FCA, how it influences the tool-chip contact in the secondary shear zone and how it affects the tool wear when turning Alloy 718. During the machining process the main and frequent problems are heat generation and friction in the cutting zone, which has a direct impact on the cutting tool life. High pressure jet cooling have headwayed the cutting technology for the last five decades, showing an improvment of tool life, reduced temperature in the cutting zone and better surface integrity of the workpiece. These developments have practically enhanced the capability and quality in machining of superalloys. This paper is an advancement of the previous work, increasing surface area of the insert, with a additional channel design to improve the coolant reachability in the tool-chip contact area on the rake face. The influence in tool wear has been investigated. Through a set of experiments, a channel design insert with forced coolant application, has shown about 24-33% decrease in tool wear compared to only a textured insert. Hybrid inserts with its cooling and channel features have even widened the operational cutting region with significantly less tool wear.

sted, utgiver, år, opplag, sider
2016. Vol. 42, s. 481-486
Emneord [en]
Turning, Alloy 718, Modified cutting insert, Tool wear, Secondary shear zone, Forced coolant application
HSV kategori
Forskningsprogram
TEKNIK, Produktions- och materialteknik; Produktionsteknik
Identifikatorer
URN: urn:nbn:se:hv:diva-9245DOI: 10.1016/j.procir.2016.02.236ISI: 000379246600088Scopus ID: 2-s2.0-84966621725OAI: oai:DiVA.org:hv-9245DiVA, id: diva2:912872
Konferanse
18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII)
Forskningsfinansiär
Region Västra GötalandTilgjengelig fra: 2016-03-18 Laget: 2016-03-18 Sist oppdatert: 2020-02-10bibliografisk kontrollert
Inngår i avhandling
1. Textured insert for improved heat extraction in combination with high-pressure cooling in turning of superalloys
Åpne denne publikasjonen i ny fane eller vindu >>Textured insert for improved heat extraction in combination with high-pressure cooling in turning of superalloys
2017 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Heat generated in a machining process is a common and critical obstacle faced in today's machining industries. The heat generated in the cutting zone has a direct negative influence on the tool life which, in turn contributes to increase the manufacturing costs. Especially, in machining of Heat Resistant Super Alloys, HRSA this is a very limiting factor. HRSA are capable of retaining their mechanical strength and hardness at elevated temperatures. This property is advantageous in the application in e.g. aero-engines but also a disadvantage, since it also lowers the machinability significantly. This work is an attempt to improve the heat transfer from the cutting zone, which would lead to an increase in the tool life. To achieve this goal, the cutting tool has been modified to create an improved interface between the coolant and tool in the high-temperature areas. Two generations of inserts have been designed and investigated. Firstly, an insert with surface texture features has been created with the purpose of increasing the available surface area for heat dissipation: First generation, Gen I. Secondly, a GenII was designed as a further improvement of Gen I. Here, several channel features on the rake face were added, reaching out from the contact zone to the near proximity of the cutting edge. This with the purpose of improving access of the coolant closer to the cutting edge. The experiments were conducted in facing operations of Alloy 718 with uncoated round carbide inserts. All experiments were carried out with high-pressure coolant assistance, with a pressure of 16 MPa on the rake face and 8 MPa on the flankface, respectively.The two generations of inserts, Gen I and Gen II, were experimentally evaluated by tool wear analysis in comparison with a regular insert. The results shows that the tool life increased significantly for the Gen I insert, compared to a catastrophic failure of the regular insert at the same conditions. Regarding the Gen II insert,an increase in tool life by approximately 30 to 40 percent compared to Gen I insert was observed.

sted, utgiver, år, opplag, sider
Trollhättan: University West, 2017. s. 90
Serie
Licentiate Thesis: University West ; 19
Emneord
Alloy 718; High-pressure coolant; Heat dissipation, Textured insert; Tungsten carbide, Tool life, Tool wear
HSV kategori
Forskningsprogram
Produktionsteknik; TEKNIK, Produktions- och materialteknik
Identifikatorer
urn:nbn:se:hv:diva-11738 (URN)978-91-87531-63-7 (ISBN)978-91-87531-62-0 (ISBN)
Presentation
2017-10-12, F315, University West, Trollhättan, 13:00 (engelsk)
Veileder
Tilgjengelig fra: 2017-10-06 Laget: 2017-10-06 Sist oppdatert: 2019-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Tamil Alagan, NageswaranBeno, Tomas

Søk i DiVA

Av forfatter/redaktør
Tamil Alagan, NageswaranBeno, Tomas
Av organisasjonen
I samme tidsskrift
Procedia CIRP

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 182 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf