Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels
Vise andre og tillknytning
2015 (engelsk)Inngår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 328, s. 13-25Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nano-structured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 degrees C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 degrees C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness. (C) 2014 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
2015. Vol. 328, s. 13-25
Emneord [en]
Cold-spray, Ball mill, High-temperature oxidation, Oxide scale, Boiler, steels, NANOCRYSTALLINE, 900-DEGREES-C, DEPOSITION, POWDER, Chemistry, Physical, Materials Science, Coatings & Films, Physics, Applied, Physics, Condensed Matter
HSV kategori
Identifikatorer
URN: urn:nbn:se:hv:diva-8466OAI: oai:DiVA.org:hv-8466DiVA, id: diva2:859830
Tilgjengelig fra: 2015-10-08 Laget: 2015-10-08 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Joshi, Shrikant V.

Søk i DiVA

Av forfatter/redaktør
Joshi, Shrikant V.
I samme tidsskrift
Applied Surface Science

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 83 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf