Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Use of Machine Tool Internal Encoders as Sensors in a Process Monitoring System
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avd för tillverkningsprocesser. Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). (PTW)
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik och naturvetenskap. (PTW)ORCID-id: 0000-0002-3436-3163
Örebro Universitet.
2013 (engelsk)Inngår i: International Journal of Automation Technology, ISSN 1881-7629, E-ISSN 1883-8022, Vol. 7, nr 4, s. 410-417Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Tool wear in machining changes the geometry of the cutting edges, which affects the direction and amplitudes of the cutting force components and the dynamics in the machining process. These changes in the forces and dynamics are picked up by the internal encoders and thus can be used for monitoring of changes in process conditions. This paper presents an approach for the monitoring of a multi-tooth milling process. The method is based on the direct measurement of the output from the position encoders available in the machine tool and the application of advanced signal analysis methods.

The paper investigates repeatability of the developed method and discusses how to implement this in a process monitoring and control system. The results of this work show that various signal features which are correlated with tool wear can be extracted from the first few oscillating components, representing the low-frequency components, of the machine axes velocity signatures. The responses from the position encoders exhibit good repeatability, especially short term repeatability while the long-term repeatability is more unreliable.

sted, utgiver, år, opplag, sider
2013. Vol. 7, nr 4, s. 410-417
Emneord [en]
milling, tool wear detection, encoder signals, monitoring system architecture, work-integrated learning
Emneord [sv]
AIL
HSV kategori
Forskningsprogram
TEKNIK, Produktions- och materialteknik; Arbetsintegrerat lärande
Identifikatorer
URN: urn:nbn:se:hv:diva-5591OAI: oai:DiVA.org:hv-5591DiVA, id: diva2:644739
Tilgjengelig fra: 2013-09-02 Laget: 2013-09-02 Sist oppdatert: 2019-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Innehållsförteckning och fulltext

Personposter BETA

Beno, TomasRepo, Jari

Søk i DiVA

Av forfatter/redaktør
Beno, TomasRepo, Jari
Av organisasjonen
I samme tidsskrift
International Journal of Automation Technology

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 466 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf