Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Self-dual Normal Integral Bases for Infinite Unramified Extensions
Högskolan Väst, Institutionen för teknik, matematik och datavetenskap.ORCID-id: 0000-0001-6594-7041
2002 (engelsk)Inngår i: Journal of Number Theory, ISSN 0022-314X, E-ISSN 1096-1658, Vol. 97, nr 2, s. 350-367Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We prove a generalization to infinite Galois extensions of local fields, of a classical result by Noether on the existence of normal integral bases for finite tamely ramified Galois extensions. We also prove a self-dual normal integral basis theorem for infinite unramified Galois field extensions of local fields with finite residue fields of characteristic different from 2. This generalizes a result by Fainsilber for the finite case. To do this, we obtain an injectivity result concerning pointed cohomology sets, defined by inverse limits of norm-one groups of free finite-dimensional algebras with involution over complete discrete valuation rings.

sted, utgiver, år, opplag, sider
2002. Vol. 97, nr 2, s. 350-367
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:hv:diva-2345DOI: 10.1016/S0022-314X(02)00015-XOAI: oai:DiVA.org:hv-2345DiVA, id: diva2:311179
Tilgjengelig fra: 2010-04-20 Laget: 2010-04-20 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Lundström, Patrik

Søk i DiVA

Av forfatter/redaktør
Lundström, Patrik
Av organisasjonen
I samme tidsskrift
Journal of Number Theory

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 120 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf