Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data quality and analysts’ role in AI enhanced C2
Mälardalen University (SWE).ORCID-id: 0000-0003-4572-9623
Högskolan Väst, Institutionen för individ och samhälle, Avdelningen för psykologi, pedagogik och sociologi.ORCID-id: 0000-0003-0394-9724
Mälardalen University (SWE).ORCID-id: 0000-0002-5792-7240
Swedish Defence Research Agency (SWE).
2023 (engelsk)Inngår i: International Command and Control Research and Technology Symposium (ICCRTS) proceedings, 2023Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
Abstract [en]

Artificial Intelligence (AI) in Command and Control (C2) raises questions about the interaction between operators on different levels on the one hand and AI-supported information systems on the other. For some purposes, the aggregation and analysis of large “big data”-sets creates potential for prediction and calculations of probabilities, while for other purposes human heuristics may be as promising depending on the situation. What has been more rarely discussed, is the very quality of data underpinning such calculations, and thus also operators’ awareness of the validity of predictions in relation to any specific situation. This is an urgent debate, considering the fact that full transparency may be impossible and underpinning data may be based on exercises, simulations, real-time data, or a mix thereof. Based on a fundamental classification of different kinds of uncertainties, this article discusses how data of different origins and quality can be managed and communicated to allow for operators to assess on what basis predictions are made. The article further suggests that looking at other fields of research may be useful for exploring unconventional ways of highlighting the existence and quality of different kinds of data of different origins in order to assess its predictive power. Finally, the article discusses how AI may change the role of analysts with regard to such issues.

sted, utgiver, år, opplag, sider
2023.
Serie
International Command and Control Research and Technology Symposium (ICCRTS) proceedings, ISSN 2577-1604
Emneord [en]
Artificial Intelligence (AI), Command and Control (C2)
HSV kategori
Identifikatorer
URN: urn:nbn:se:hv:diva-21138OAI: oai:DiVA.org:hv-21138DiVA, id: diva2:1822636
Konferanse
28th International Command And Control Research & Technology Symposium 28-30 November 2023 - Laurel, Maryland, USA
Tilgjengelig fra: 2023-12-27 Laget: 2023-12-27 Sist oppdatert: 2023-12-27

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Schüler, Martin

Søk i DiVA

Av forfatter/redaktør
Bjurström, ErikSchüler, MartinStrömberg, Anette
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 53 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf