Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Abstraction, mimesis and the evolution of deep learning
Department of Computer Science, University of Copenhagen (DNK) ,GKN Aerospace Engines, Trollhättan (SWE).
Department of Computer Science, University of Copenhagen (DNK).
Center Leo Apostel (CLEA), Vrije Universiteit, Brussels (BEL).
GKN Aerospace Engines, Trollhättan (SWE).
Vise andre og tillknytning
2023 (engelsk)Inngår i: AI & Society: The Journal of Human-Centred Systems and Machine Intelligence, ISSN 0951-5666, E-ISSN 1435-5655, s. 1-9Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Deep learning developers typically rely on deep learning software frameworks (DLSFs)—simply described as pre-packaged libraries of programming components that provide high-level access to deep learning functionality. New DLSFs progressively encapsulate mathematical, statistical and computational complexity. Such higher levels of abstraction subsequently make it easier for deep learning methodology to spread through mimesis (i.e., imitation of models perceived as successful). In this study, we quantify this increase in abstraction and discuss its implications. Analyzing publicly available code from Github, we found that the introduction of DLSFs correlates both with significant increases in the number of deep learning projects and substantial reductions in the number of lines of code used. We subsequently discuss and argue the importance of abstraction in deep learning with respect to ephemeralization, technological advancement, democratization, adopting timely levels of abstraction, the emergence of mimetic deadlocks, issues related to the use of black box methods including privacy and fairness, and the concentration of technological power. Finally, we also discuss abstraction as a symptom of an ongoing technological metatransition.

sted, utgiver, år, opplag, sider
Springer Nature, 2023. s. 1-9
Emneord [en]
Deep learning · Evolution of deep learning · Abstraction · Mimesis
HSV kategori
Forskningsprogram
Arbetsintegrerat lärande
Identifikatorer
URN: urn:nbn:se:hv:diva-20135DOI: 10.1007/s00146-023-01688-zISI: 000999202200001Scopus ID: 2-s2.0-85160720644OAI: oai:DiVA.org:hv-20135DiVA, id: diva2:1776327
Merknad

CC BY 4.0

Open access funding provided by Royal Danish Library.

Tilgjengelig fra: 2023-06-28 Laget: 2023-06-28 Sist oppdatert: 2024-01-02

Open Access i DiVA

fulltext(820 kB)83 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 820 kBChecksum SHA-512
89034dbe8c3b91bf345a8225c42b61750c8dc1c54d8a31cfa741f76e69e4c56347e7fce524ef9df5737930a1d120e89c0d6870d2f4d3e6a1a29e148967de59c9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Lundh Snis, Ulrika

Søk i DiVA

Av forfatter/redaktør
Lundh Snis, Ulrika
Av organisasjonen
I samme tidsskrift
AI & Society: The Journal of Human-Centred Systems and Machine Intelligence

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 83 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf