Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Multi-scale Multi-physics Approach to Modelling of Additive Manufacturing in Nickel-based Superalloys
University of Birmingham, School of Metallurgy and Materials, UK.
University of Birmingham, School of Metallurgy and Materials, UK.
University of Birmingham, School of Metallurgy and Materials, UK.
University of Birmingham, School of Metallurgy and Materials, UK.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys / [ed] M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman och S. Tin, Minerals, Metals & Materials Society, 2016, s. 1021-1030Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A multi-scale, multi-physics modelling framework of selective laser melting (SLM) in the nickel-based superalloy IN718 is presented. Representative powder-bed particle distribution is simulated using the measured size distribution from experiment. Thermal fluid dynamics calculations are then used to predict melting behaviour, sub-surface morphology, and porosity development during a single pass scanning of the SLM process. The results suggest that the pores and uneven surface structure are exacerbated by increasing powder layer thicknesses. Predicted porosity volume fraction is up to 12% of the single track when 5 statistical powder distributions are simulated for each powder layer thickness. Processing-induced microstructure is predicted by linking cellular automatons – finite element calculations indicate further that the cooling rate is about 4400 o C/s and grain growth strongly follows the thermal gradient giving rise to a columnar grain morphology if homogeneous nucleation is assumed. Random texture is likely for as-fabricated SLM single pass with approximately 8 Pm and 6 Pm grain size for 20 Pm and 100 Pm powder layer thickness fabrication. Use has been made of the cooling history to predict more detailed microstructure using a γ" precipitation model. With the short time scale of solidification and rapid cooling, it becomes less likely that γ" precipitation will be observed in the condition investigated unless a prolonged hold at temperature is carried out. Future work on extension of the proposed multiscale modelling approach on microstructure predictions in SLM to mechanical properties will be discussed.

sted, utgiver, år, opplag, sider
Minerals, Metals & Materials Society, 2016. s. 1021-1030
Emneord [en]
Multi-scale modelling, additive manufacturing, thermal fluid dynamics, IN718, aerospace component
HSV kategori
Forskningsprogram
TEKNIK, Produktions- och materialteknik; Produktionsteknik
Identifikatorer
URN: urn:nbn:se:hv:diva-10412Scopus ID: 2-s2.0-85008240176ISBN: 978-1-118-99666-9 (tryckt)OAI: oai:DiVA.org:hv-10412DiVA, id: diva2:1060073
Konferanse
13th International Symposium on Superalloys, Seven Springs, Pennsylvania, USA, September 11-15, 2016
Tilgjengelig fra: 2016-12-27 Laget: 2016-12-27 Sist oppdatert: 2017-01-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Choquet, Isabelle

Søk i DiVA

Av forfatter/redaktør
Choquet, Isabelle
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 192 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf