Endre søk

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf
Simple rings and degree maps
Högskolan Väst, Institutionen för ingenjörsvetenskap, Avd för elektro, lantmäteri och naturvetenskap.ORCID-id: 0000-0001-6594-7041
Lund University, Centre for Mathematical Sciences.
2014 (engelsk)Inngår i: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 401, s. 201-219Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

For an extension A/B of neither necessarily associative nor necessarily unital rings, we investigate the connection between simplicity of A with a property that we call A-simplicity of B. By this we mean that there is no non-trivial ideal I of B being A-invariant, that is satisfying A I ⊆ I A. We show that A-simplicity of B is a necessary condition for simplicity of A for a large class of ring extensions when B is a direct summand of A. To obtain sufficient conditions for simplicity of A, we introduce the concept of a degree map for A/B. By this we mean a map d from A to the set of non-negative integers satisfying the following two conditions: (d1) if a ∈ A, then d(a) = 0 if and only if a = 0; (d2) there is a subset X of B generating B as a ring such that for each non-zero ideal I of A and each non-zero a ∈ I there is a non-zero a ' ∈ I with d(a ') ≤ d(a) and d(a 'b - ba ') &lt; d(a) for all b ∈ X. We show that if the centralizer C of B in A is an A-simple ring, every intersection of C with an ideal of A is A-invariant, A C A = A and there is a degree map for A/B, then A is simple. We apply these results to various types of graded and filtered rings, such as skew group rings, Ore extensions and Cayley-Dickson doublings. © 2013 Elsevier Inc.

##### sted, utgiver, år, opplag, sider
2014. Vol. 401, s. 201-219
##### Emneord [en]
Degree map, Ideal associativity, Ring extension, Simplicity
##### Forskningsprogram
TEKNIK, Matematik
##### Identifikatorer
ISI: 000330599500011Scopus ID: 2-s2.0-84891812645OAI: oai:DiVA.org:hv-5902DiVA, id: diva2:692909
Tilgjengelig fra: 2014-02-03 Laget: 2014-02-03 Sist oppdatert: 2019-11-29bibliografisk kontrollert

#### Open Access i DiVA

Fulltekst mangler i DiVA

#### Andre lenker

Forlagets fulltekstScopus

Nystedt, Patrik

#### Søk i DiVA

Nystedt, Patrik
##### I samme tidsskrift
Journal of Algebra

doi
urn-nbn

#### Altmetric

doi
urn-nbn
Totalt: 134 treff

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf