Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Slurry erosion studies on surface modified 13Cr-4Ni steels: Effect of angle of impingement and particle size
2007 (English)In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 16, no 5, p. 567-572Article in journal (Refereed) Published
Abstract [en]

Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 mu m size was twice compared to 150 mu m size slurry particulates.

Place, publisher, year, edition, pages
2007. Vol. 16, no 5, p. 567-572
Keywords [en]
angle of impingement, erosion damage, laser hardening, silt erosion, slurry-jet erosion, surface modification on 13Cr-Ni steels, MARTENSITIC STAINLESS-STEEL, COATINGS, PERFORMANCE, IMPACT, WEAR, Materials Science, Multidisciplinary
Identifiers
URN: urn:nbn:se:hv:diva-8478OAI: oai:DiVA.org:hv-8478DiVA, id: diva2:860167
Available from: 2015-10-10 Created: 2015-10-08 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Joshi, S. V.

Search in DiVA

By author/editor
Joshi, S. V.
In the same journal
Journal of materials engineering and performance (Print)

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf