Change search
Link to record
Permanent link

Direct link
BETA
Ålgårdh, Joakim
Publications (5 of 5) Show all publications
Karimi Neghlani, P., Sadeghi, E., Ålgårdh, J., Harlin, P. & Andersson, J. (2020). Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built Alloy 718. The International Journal of Advanced Manufacturing Technology, 106(7-8), 3597-3607
Open this publication in new window or tab >>Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built Alloy 718
Show others...
2020 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 106, no 7-8, p. 3597-3607Article in journal (Refereed) Published
Abstract [en]

Electron beam-powder bed fusion (EB-PBF), a high-temperature additive manufacturing (AM) technique, shows great promise in the production of high-quality metallic parts in different applications such as the aerospace industry. To achieve a higher build efficiency, it is ideal to build multiple parts together with as low spacing as possible between the respective parts. In the EB-PBF technique, there are many unknown variations in microstructural characteristics and functional performance that could be induced as a result of the location of the parts on the build plate, gaps between the parts and part geometry, etc. In the present study, the variations in the microstructure and corrosion performance as a function of the parts location on the build plate in the EB-PBF process were investigated. The microstructural features were correlated with the thermal history of the samples built in different locations on the build plate, including exterior (the outermost), middle (between the outermost and innermost), and interior (the innermost) regions. The cubic coupons located in the exterior regions showed increased level (~ 20 %) of defects (mainly in the form of shrinkage pores) and lower level (~ 30-35 %) of Nb-rich phase fraction due to their higher cooling rates compared to the interior and middle samples. Electrochemical investigations showed that the location indirectly had a substantial influence on the corrosion behavior, verified by a significant increase in polarization resistance (Rp) from the exterior (2.1 ± 0.3 kΩ.cm2) to interior regions (39.2 ± 4.1 kΩ.cm2). © 2020, The Author(s).

Keywords
3D printers; Additives; Aerospace industry; Corrosion; Corrosive effects; Electron beams; Hardness; High temperature applications, Alloy 718; Electrochemical investigations; Functional performance; Micro-structural characteristics; Micro-structural characterization; Microstructural features; Polarization resistances; Powder bed, Location
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:hv:diva-15004 (URN)10.1007/s00170-019-04859-9 (DOI)000511506500069 ()2-s2.0-85077549789 (Scopus ID)
Funder
Knowledge FoundationEuropean Regional Development Fund (ERDF)
Available from: 2020-02-24 Created: 2020-02-24 Last updated: 2020-02-27
Karimi Neghlani, P., Sadeghi, E., Ålgårdh, J. & Andersson, J. (2019). EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics. Materials Characterization, 148, 88-99
Open this publication in new window or tab >>EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics
2019 (English)In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 148, p. 88-99Article in journal (Refereed) Published
Abstract [en]

Electron beam melting-powder bed fusion (EBM-PBF) is an additive manufacturing process, which is able to produce parts in layer-by-layer fashion from a 3D model data. Currently application of this technology in parts manufacturing with high geometrical complexity has acquired growing interest in industry. To recommend the EBM process into industry for manufacturing parts, improved mechanical properties of final part must be obtained. Such properties highly depend on individual single melted track and single layer. In EBM, interactions between the electron beam, powder, and solid underlying layer affect the geometrical (e.g., re-melt depth, track width, contact angle, and track height) and microstructural (e.g., grain structure, and primary dendrite arm spacing) characteristics of the melted tracks. The core of the present research was to explore the influence of linear energy input parameters in terms of beam scanning speed, beam current as well as focus offset and their interactions on the geometry and microstructure of EBM-manufactured single tracks of Alloy 718. Increased scanning speed led to lower linear energy input values (<0.9 J/mm) in an specific range of the focus offset (0–10 mA) which resulted in instability, and discontinuity of the single tracks as well as balling effect. Decreasing the scanning speed and increasing the beam current resulted in higher melt pool depth and width. By statistical evaluations, the most influencing parameters on the geometrical features were primarily the scanning speed, and secondly the beam current. Primary dendrite arm spacing (PDAS) slightly decreased by increasing the scanning speed using lower beam current values as the linear energy input decreased. By increasing the linear energy input, the chance of more equiaxed grain formation was high, however, at lower linear energy input, mainly columnar grains were observed. The lower focus offset values resulted in more uniform grains along the 〈001〉 crystallographic direction. © 2018 Elsevier Inc. 

Keywords
3D printers; Contact angle; Dendrites (metallography); Design of experiments; Electron beam melting; Electron beams; Scanning; Speed, Alloy 718; Geometrical characteristics; Powder bed; Single-tracks; Solidified microstructures, Geometry
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13365 (URN)10.1016/j.matchar.2018.11.033 (DOI)000458228100011 ()2-s2.0-85058512738 (Scopus ID)
Funder
European Regional Development Fund (ERDF)Knowledge Foundation
Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2020-02-04Bibliographically approved
Balachandramurthi, A. R., Olsson, J., Ålgårdh, J., Snis, A., Moverare, J. & Pederson, R. (2019). Microstructure tailoring in Electron Beam Powder Bed Fusion Additive Manufacturing and its potential consequences. Results in Materials, 1
Open this publication in new window or tab >>Microstructure tailoring in Electron Beam Powder Bed Fusion Additive Manufacturing and its potential consequences
Show others...
2019 (English)In: Results in Materials, ISSN 2590-048X, Vol. 1Article in journal (Refereed) Published
Abstract [en]

Electron Beam Powder Bed Fusion process for Alloy 718 was investigated, in the sense of microstructural evolution with varying process conditions. The existence of a geometric relationship between the melt front and the processing parameters was observed. By understanding and capitalizing on this relationship, it was possible to obtain columnar, equiaxed or bimodal microstructure.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Alloy 718, Texture, Microstructure, Additive manufacturing, Powder bed fusion
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-14331 (URN)10.1016/j.rinma.2019.100017 (DOI)
Available from: 2019-08-26 Created: 2019-08-26 Last updated: 2020-05-04Bibliographically approved
Karimi Neghlani, P., Sadeghimeresht, E., Åkerfeldt, P., Ålgårdh, J. & Andersson, J. (2018). Influence of successive thermal cycling on microstructure evolution of EBM-manufactured alloy 718 in track-by-track and layer-by-layer design. Materials & design, 160, 427-441
Open this publication in new window or tab >>Influence of successive thermal cycling on microstructure evolution of EBM-manufactured alloy 718 in track-by-track and layer-by-layer design
Show others...
2018 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 160, p. 427-441Article in journal (Refereed) Published
Abstract [en]

Successive thermal cycling (STC) during multi-track and multi-layer manufacturing of Alloy 718 using electron beam melting (EBM) process leads to a microstructure with a high degree of complexity. In the present study, a detailed microstructural study of EBM-manufactured Alloy 718 was conducted by producing samples in shapes from one single track and single wall to 3D samples with maximum 10 longitudinal tracks and 50 vertical layers. The relationship between STC, solidification microstructure, interdendritic segregation, phase precipitation (MC, δ-phase), and hardness was investigated. Cooling rates (liquid-to-solid and solid-to-solid state) was estimated by measuring primary dendrite arm spacing (PDAS) and showed an increased cooling rate at the bottom compared to the top of the multi-layer samples. Thus, microstructure gradient was identified along the build direction. Moreover, extensive formation of solidification micro-constituents including MC-type carbides, induced by micro-segregation, was observed in all the samples. The electron backscatter diffraction (EBSD) technique showed a high textured structure in 〈001〉 direction with a few grains misoriented at the surface of all samples. Finer microstructure and possibility of more γ″ phase precipitation at the bottom of the samples resulted in slightly higher (~11%) hardness values compared to top of the samples. © 2018 Elsevier Ltd

Keywords
3D printers; Carbides; Cooling; Electron beam melting; Electron beams; Hardness; Segregation (metallography); Solidification; Thermal cycling, Alloy 718; Electron backscatter diffraction technique; Interdendritic segregation; Layer by layer; Micro-structure evolutions; Primary dendrite arm spacings; Solidification microstructures; Track by track, Microstructure
National Category
Manufacturing, Surface and Joining Technology Metallurgy and Metallic Materials
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-13042 (URN)10.1016/j.matdes.2018.09.038 (DOI)000453008100040 ()2-s2.0-85053828514 (Scopus ID)
Funder
Knowledge Foundation
Note

Funders: Simulation and Control of Material affecting Processes (SiCoMap); "SUMAN-Next"

Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2019-05-28Bibliographically approved
Karimi Neghlani, P., Deng, D., Sadeghimeresht, E., Olsson, J., Ålgårdh, J. & Andersson, J. (2018). Microstructure Development in Track-by-Track Melting of EBM-Manufactured Alloy 718. In: Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. and Sudbrack, C. (Ed.), Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. Paper presented at 9th International Symposium on Superalloy 718 & Derivatives, Energy, Aerospace, and Industrial Applications, Pittsburgh, Pennsylvania, USA, 3-6 June, 2018 (pp. 643-654). Springer
Open this publication in new window or tab >>Microstructure Development in Track-by-Track Melting of EBM-Manufactured Alloy 718
Show others...
2018 (English)In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications / [ed] Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. and Sudbrack, C., Springer, 2018, p. 643-654Conference paper, Published paper (Refereed)
Abstract [en]

Electron beam melting (EBM) is a powder-bed fusion process within the group of additive manufacturing (AM) technology that is used to fabricate high performance metallic parts. Nickel-Iron base superalloys, such as Alloy 718, are subjected to successive heating and cooling at temperatures in excess of 800 °C during the EBM process. Characterization of the dendritic structure, carbides, Laves and δ-phase were of particular interest in this study. These successive thermal cycles influence the microstructure of the material resulting in a heterogeneous structure, especially in the building direction. Hence, the aim of this study was to gain increased fundamental understanding of the relationship between the processing history and the microstructure formed within a single layer. Different numbers of tracks with equal heights were for this purpose produced, varying from one to ten tracks. All tracks used the same process parameters regardless of number and/or position. Microstructure characteristics (sub-grain structure, grain structure and phases) were analyzed by optical microscopy, scanning electron microscopy equipped with energy disperse spectroscopy and electron backscatter diffraction. The direction of dendrites changed in the overlap zones within the tracks due to re-melting of material in the overlap zone. The primary dendrite arm spacings slightly increased along multi-tracks owing to a slight decrease in cooling rate by addition of the next tracks. Epitaxial growth of grains were observed in all samples due to partial re-melting of grains in previous layers and surface nucleation was also found to occur in all tracks.

Place, publisher, year, edition, pages
Springer, 2018
Series
The Minerals, Metals & Materials Series, ISSN 2367-1181, E-ISSN 2367-1696
Keywords
Additive manufacturing, Electron beam melting, Alloy 718, Microstructure, Track-by-Track
National Category
Metallurgy and Metallic Materials Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-12345 (URN)10.1007/978-3-319-89480-5_42 (DOI)000445800500042 ()2-s2.0-85053834715 (Scopus ID)978-3-319-89479-9 (ISBN)978-3-319-89480-5 (ISBN)
Conference
9th International Symposium on Superalloy 718 & Derivatives, Energy, Aerospace, and Industrial Applications, Pittsburgh, Pennsylvania, USA, 3-6 June, 2018
Note

First Online: 13 May 2018

Available from: 2018-10-26 Created: 2018-10-26 Last updated: 2020-05-04Bibliographically approved
Organisations

Search in DiVA

Show all publications