Open this publication in new window or tab >>2021 (English)In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 65, p. 499-511Article in journal (Refereed) Published
Abstract [en]
Avoiding low austenite fractions and nitride formation are major challenges in laser welding of duplex stainless steels (DSS). The present research aims at investigating efficient means of promoting austenite formation during autogenous laser welding of DSS without sacrificing productivity. In this study, effects of shielding gas and laser reheating were investigated in welding of 1.5-mm-thick FDX 27 (UNS S82031) DSS. Four conditions were investigated: Ar-shielded welding, N2-shielded welding, Ar-shielded welding followed by Ar-shielded laser reheating, and N2-shielded welding followed by N2-shielded laser reheating. Optical microscopy, thermodynamic calculations, and Gleeble heat treatment were performed to study the evolution of microstructure and chemical composition. The austenite fraction was 22% for Ar-shielded and 39% for N2-shielded as-welded conditions. Interestingly, laser reheating did not significantly affect the austenite fraction for Ar shielding, while the austenite fraction increased to 57% for N2-shielding. The amount of nitrides was lower in N2-shielded samples compared to in Ar-shielded samples. The same trends were also observed in the heat-affected zone. The nitrogen content of weld metals, evaluated from calculated equilibrium phase diagrams and austenite fractions after Gleeble equilibrating heat treatments at 1100 °C, was 0.16% for N2-shielded and 0.11% for Ar-shielded welds, confirming the importance of nitrogen for promoting the austenite formation during welding and especially reheating. Finally, it is recommended that combining welding with pure nitrogen as shielding gas and a laser reheating pass can significantly improve austenite formation and reduce nitride formation in DSS laser welds. © 2020, The Author(s).
Keywords
Austenite; Duplex stainless steel; Heat affected zone; Heat treatment; Industrial heating; Microstructural evolution; Nitrides; Nitrogen; Shielding; Welding, Austenite formation; Autogenous laser welding; Chemical compositions; Duplex stainless steel (DSS); Equilibrium phase diagrams; Nitride formation; Nitrogen content; Thermodynamic calculations, Argon lasers
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-16028 (URN)10.1007/s40194-020-01026-7 (DOI)000587932200001 ()2-s2.0-85095716448 (Scopus ID)
Funder
EU, European Research Council, H2020-MSCA-RISE-2018 Number 823786
Note
Open access funding provided by University West. James Oliver and Ravi Vishnu from the Outokumpu Stainless AB (Avesta, Sweden) are appreciatively acknowledged for their help and support. This study received great support from the EU-project H2020-MSCA-RISE-2018 Number 823786, i-Weld, and the Swedish Agency for Economic and Regional Growth through the European Union – European Development Fund.
Creative CommonsAttribution 4.0 International License
2020-11-162020-11-162024-02-20Bibliographically approved