Open this publication in new window or tab >>2022 (English)In: Frontiers in Space Technologies, E-ISSN 2673-5075, Vol. 3, p. 1-13, article id 880012Article in journal (Refereed) Published
Abstract [en]
Additive manufacturing of parts on-site in space requires investigating the feasibility ofadapting to zero-gravity and near-vacuum conditions, a technology applied today on Earthat standard conditions. While a few studies have been conducted for powder bed fusion, afeasibility study remains to be explored for direct energy deposition using a laser beam anda metal wire. This is the purpose of this study, which is conducted using a modelingapproach based on computational fluid dynamics. The simulation model developedincludes melting, re-solidification, vaporization, prediction of beam energy absorptionas a function of the local surface temperature and curvature, ray tracing, tracking of freesurface deformation and metal transfer, and wire-resistive heating. The study is carried outby starting from process parameters suited for stable on-Earth metal deposition. Theseconditions were also studied experimentally to validate the simulation model, leading tosatisfactorily results. A total of three other test cases with ambient pressure lowered downto near-vacuum and/or gravitation down to zero are investigated. It is found that,compared to on-Earth conditions, in-space conditions can induce vaporization of themetal alloy that is large enough to result in a curvature of the melt pool free surface but toosmall to lead to the formation of a keyhole. The in-space conditions can also modify theforce balance at the liquid melt bridge between the wire and the melt pool, leading to smallchanges in the curvature and temperature field at the free surface of the wire tip. Among theobserved consequences are a small increase of the melt pool length and a small elevationof the bead height. More importantly, for process control, changing to in-space conditionsmight also affect the stability of the process, which could be assessed through the width ofthe liquid metal bridge. However, by using appropriate process control to maintain acontinuous liquid metal bridge, it is concluded that direct energy deposition of metal usinga laser and a wire could be used for manufacturing metal parts in-space in a temperedatmosphere.
Place, publisher, year, edition, pages
Frontiers Media S.A., 2022
Keywords
LDEDw, ambient pressure, gravity, metal deposition, melt pool simulation, OpenFOAM
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-19031 (URN)10.3389/frspt.2022.880012 (DOI)001188287500001 ()
Note
This research work is supported by grants from the SwedishKnowledge Foundation projects AdOpt (20170315) and SAMw(20170060), which is gratefully acknowledged.
2022-08-102022-08-102024-04-12Bibliographically approved