Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 110) Show all publications
Mahade, S., Curry, N., Jonnalagadda, K. P., Peng, R. L., Markocsan, N. & Nylén, P. (2019). Influence of YSZ layer thickness on the durability of gadolinium zirconate/YSZ double-layered thermal barrier coatings produced by suspension plasma spray. Surface & Coatings Technology, 357, 456-465
Open this publication in new window or tab >>Influence of YSZ layer thickness on the durability of gadolinium zirconate/YSZ double-layered thermal barrier coatings produced by suspension plasma spray
Show others...
2019 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 357, p. 456-465Article in journal (Refereed) Published
Abstract [en]

In this work, three double layered thermal barrier coating (TBC) variations with different gadolinium zirconate (GZ) and YSZ thickness (400GZ/100YSZ, 250GZ/250YSZ and 100GZ/400YSZ respectively, where the prefixed numbers before GZ and YSZ represent the layer thickness in μm), were produced by suspension plasma spray (SPS) process. The objective was to investigate the influence of YSZ thickness on the thermal conductivity and thermal shock lifetime of the GZ/YSZ double layered TBCs. The as sprayed TBCs were characterized using SEM, XRD and porosity measurements. Thermal diffusivity measurements were made using laser flash analysis and the thermal conductivity of the TBCs was calculated. The double layered TBC with the lowest YSZ (400GZ/100YSZ) thickness showed lower thermal diffusivity and thermal conductivity. The double layered TBCs were subjected to thermal shock test at a TBC surface temperature of 1350 °C. Results indicate that the TBC with a higher YSZ thickness (100GZ/400YSZ) showed inferior thermal shock lifetime whereas the TBCs with low YSZ thickness showed comparatively higher thermal shock lifetimes. Failure of the TBCs after thermal shock test was analyzed using SEM and XRD to gain further insights.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Gadolinium; Plasma jets; Plasma spraying; Thermal conductivity; Thermal shock; X ray diffraction; Yttria stabilized zirconia; Yttrium oxide; Zirconia, Diffusivity measurements; Double layered; Gadolinium zirconate; Layer thickness; Porosity measurement; Surface temperatures; Suspension plasma sprays; Thermal barrier coating (TBC), Thermal barrier coatings
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-13106 (URN)10.1016/j.surfcoat.2018.10.046 (DOI)000455691100067 ()2-s2.0-85055204877 (Scopus ID)
Funder
Knowledge Foundation, 20140130
Available from: 2018-11-07 Created: 2018-11-07 Last updated: 2019-02-04Bibliographically approved
Kumara, C., Segerstark, A., Hanning, F., Dixit, N., Joshi, S. V., Moverare, J. & Nylén, P. (2019). Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Additive Manufacturing, 25, 357-364
Open this publication in new window or tab >>Microstructure modelling of laser metal powder directed energy deposition of alloy 718
Show others...
2019 (English)In: Additive Manufacturing, ISSN 2214-8604, Vol. 25, p. 357-364Article in journal (Refereed) Published
Abstract [en]

A multi-component and multi-phase-field modelling approach, combined with transformation kinetics modelling, was used to model microstructure evolution during laser metal powder directed energy deposition of Alloy 718 and subsequent heat treatments. Experimental temperature measurements were utilised to predict microstructural evolution during successive addition of layers. Segregation of alloying elements as well as formation of Laves and δ phase was specifically modelled. The predicted elemental concentrations were then used in transformation kinetics to estimate changes in Continuous Cooling Transformation (CCT) and Time Temperature Transformation (TTT) diagrams for Alloy 718. Modelling results showed good agreement with experimentally observed phase evolution within the microstructure. The results indicate that the approach can be a valuable tool, both for improving process understanding and for process development including subsequent heat treatment.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Phase-field, DED, Heat treatment, Thermal cycle, Modelling
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13195 (URN)10.1016/j.addma.2018.11.024 (DOI)000456378800034 ()2-s2.0-85057193791 (Scopus ID)
Funder
Knowledge Foundation
Note

Funders: European Regional Development Fund for project 3Dprint

Available from: 2018-12-12 Created: 2018-12-12 Last updated: 2019-04-03Bibliographically approved
Kumara, C., Deng, D., Hanning, F., Raanes, M., Moverare, J. & Nylén, P. (2019). Predicting the Microstructural Evolution of Electron Beam Melting of Alloy 718 with Phase-Field Modeling. Metallurgical and Materials Transactions. A, 50A(5), 527-2537
Open this publication in new window or tab >>Predicting the Microstructural Evolution of Electron Beam Melting of Alloy 718 with Phase-Field Modeling
Show others...
2019 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 50A, no 5, p. 527-2537Article in journal (Refereed) Published
Abstract [en]

Electron beam melting (EBM) is a powder bed additive manufacturing process where a powder material is melted selectively in a layer-by-layer approach using an electron beam. EBM has some unique features during the manufacture of components with high-performance superalloys that are commonly used in gas turbines such as Alloy 718. EBM has a high deposition rate due to its high beam energy and speed, comparatively low residual stresses, and limited problems with oxidation. However, due to the layer-by-layer melting approach and high powder bed temperature, the as-built EBM Alloy 718 exhibits a microstructural gradient starting from the top of the sample. In this study, we conducted modeling to obtain a deeper understanding of microstructural development during EBM and the homogenization that occurs during manufacturing with Alloy 718. A multicomponent phase-field modeling approach was combined with transformation kinetic modeling to predict the microstructural gradient and the results were compared with experimental observations. In particular, we investigated the segregation of elements during solidification and the subsequent "in situ" homogenization heat treatment at the elevated powder bed temperature. The predicted elemental composition was then used for thermodynamic modeling to predict the changes in the continuous cooling transformation and time-temperature transformation diagrams for Alloy 718, which helped to explain the observed phase evolution within the microstructure. The results indicate that the proposed approach can be employed as a valuable tool for understanding processes and for process development, including post-heat treatments. © 2019, The Author(s).

Keywords
3D printers; Deposition rates; Electron beam melting; Electron beams; Forecasting; Gas turbines; Microstructural evolution; Solid solutions; Temperature, Additive manufacturing process; Continuous cooling transformation; Elemental compositions; Layer-by-layer approaches; Microstructural development; Microstructural gradients; Transformation diagrams; Transformation kinetics, Heat treatment
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13756 (URN)10.1007/s11661-019-05163-7 (DOI)000463991300038 ()2-s2.0-85062604965 (Scopus ID)
Funder
Knowledge FoundationEuropean Regional Development Fund (ERDF)
Available from: 2019-05-10 Created: 2019-05-10 Last updated: 2019-07-25Bibliographically approved
Mahade, S., Zhou, D., Curry, N., Markocsan, N., Nylén, P. & Vassen, R. (2019). Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: Durability and erosion testing. Journal of Materials Processing Technology, 264, 283-294
Open this publication in new window or tab >>Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: Durability and erosion testing
Show others...
2019 (English)In: Journal of Materials Processing Technology, ISSN 0924-0136, E-ISSN 1873-4774, Vol. 264, p. 283-294Article in journal (Refereed) Published
Abstract [en]

This work employed an axial suspension plasma spray (SPS) process to deposit two different gadolinium zirconate (GZ) based triple layered thermal barrier coatings (TBCs). The first was a 'layered' TBC (GZ dense/GZ/YSZ) where the base layer was YSZ, intermediate layer was a relatively porous GZ and the top layer was a relatively dense GZ. The second triple layered TBC was a 'composite' TBC (GZ dense/GZ + YSZ/YSZ) comprising of an YSZ base layer, a GZ + YSZ intermediate layer and a dense GZ top layer. The as sprayed TBCs (layered and composite) were characterized using SEM/EDS and XRD. Two different methods (water intrusion and image analysis) were used to measure the porosity content of the as sprayed TBCs. Fracture toughness measurements were made on the intermediate layers (GZ + YSZ layer of the composite TBC and porous GZ layer of the layered TBC respectively) using micro indentation tests. The GZ + YSZ layer in the composite TBC was shown to have a slightly higher fracture toughness than the relatively porous GZ layer in the layered TBC. Erosion performance of the as sprayed TBCs was evaluated at room temperature where the composite TBC showed higher erosion resistance than the layered TBC. However, in the burner rig test conducted at 1400 °C, the layered TBC showed higher thermal cyclic lifetime than the composite TBC. Failure analysis of the thermally cycled and eroded TBCs was performed using SEM and XRD. © 2018 Elsevier B.V.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Composite materials, Durability, Erosion, Failure (mechanical), Gadolinium, Plasma jets, Plasma spraying, Thermal barrier coatings, X ray diffraction, Yttria stabilized zirconia, Burner rig, Erosion resistance, Fracture toughness measurements, Gadolinium zirconate, Intermediate layers, Micro-indentation tests, Suspension plasma sprays, Thermal barrier coating (TBCs), Fracture toughness
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-13041 (URN)10.1016/j.jmatprotec.2018.09.016 (DOI)000450135400028 ()2-s2.0-85053777782 (Scopus ID)
Funder
Knowledge Foundation, 20140130
Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-12-20Bibliographically approved
Mahade, S., Ruelle, C., Curry, N., Holmberg, J., Björklund, S., Markocsan, N. & Nylén, P. (2019). Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings. Applied Surface Science, 488, 170-184
Open this publication in new window or tab >>Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings
Show others...
2019 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 488, p. 170-184Article in journal (Refereed) Published
Abstract [en]

In this work, three different TBC compositions comprising of yttria partially stabilized zirconia (8YSZ), yttria fully stabilized zirconia (48YSZ) and gadolinium zirconate (GZ) respectively, were processed by suspension plasma spray (SPS) to obtain columnar microstructured TBCs. Additionally, for comparison, lamellar microstructured, 7YSZ TBC was deposited by air plasma spray (APS) process. SEM analysis was carried out to investigate the microstructure and white light interferometry was used to evaluate the surface morphology of the as-sprayed TBCs. Porosity measurements were made using water intrusion and image analysis methods and it was observed that the SPS-YSZ and APS-YSZ TBCs showed higher porosity content than SPS-GZ and SPS-48YSZ. The as-sprayed TBC variations (APS-YSZ, SPS-YSZ, SPS-GZ, and SPS-48YSZ) were subjected to erosion test. Results indicate that the erosion resistance of APS-YSZ TBC was inferior to the SPS-YSZ, SPS-GZ and SPS-48YSZ TBCs respectively. Among the SPS processed TBCs, SPS-YSZ showed the highest erosion resistance whereas the SPS-48YSZ showed the lowest erosion resistance. SEM analysis of the eroded TBCs (cross section and surface morphology) was performed to gain further insights on their erosion behavior. Based on the erosion results and post erosion SEM analysis, erosion mechanisms for splat like microstructured APS TBC and columnar microstructured SPS TBCs were proposed. The findings from this work provide new insights on the erosion mechanisms of columnar microstructured TBCs and lamellar microstructured TBCs deposited by plasma spray. © 2019 Elsevier B.V.

Keywords
Erosion; Microstructure; Morphology; Plasma jets; Porosity; Sprayed coatings; Surface morphology; Thermal barrier coatings; Yttria stabilized zirconia; Yttrium oxide; Zirconia, Atmospheric plasma spray; Gadolinium zirconate; Stabilized zirconia; Suspension plasma sprays; Yttria partially stabilized zirconia, Plasma spraying
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-13987 (URN)10.1016/j.apsusc.2019.05.245 (DOI)2-s2.0-85066427612 (Scopus ID)
Funder
Knowledge Foundation, 20140130
Available from: 2019-06-20 Created: 2019-06-20 Last updated: 2019-07-25Bibliographically approved
Karimi Neghlani, P., Sadeghimeresht, E., Deng, D., Gruber, H., Andersson, J. & Nylen, P. (2018). Influence of build layout and orientation on microstructural characteristics of electron beam melted Alloy 718. The International Journal of Advanced Manufacturing Technology, 99(S1), 2903-2913
Open this publication in new window or tab >>Influence of build layout and orientation on microstructural characteristics of electron beam melted Alloy 718
Show others...
2018 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 99, no S1, p. 2903-2913Article in journal (Refereed) Published
Abstract [en]

Effects of build layout and orientation consisting of (a) height from the build plate (Z-axis), (b) distance between samples, and (c) location in the build plate (X-Y plane) on porosity, NbC fraction, and hardness in electron beam melted (EBM) Alloy 718 were studied. The as-built samples predominantly showed columnar structure with strong ˂001˃ crystallographic orientation parallel to the build direction, as well as NbC and ÎŽ-phase in inter-dendrites and grain boundaries. These microstructural characteristics were correlated with the thermal history, specifically cooling rate, resulted from the build layout and orientation parameters. The hardness and NbC fraction of the samples increased around 6% and 116%, respectively, as the height increased from 2 to 45 mm. Moreover, by increasing the height, formation of ÎŽ-phase was also enhanced associated with lower cooling rate in the samples built with a greater distance from the build plate. However, the porosity fraction was unaffected. Increasing the sample gap from 2 to 10 mm did not change the NbC fraction and hardness; however, the porosity fraction increased by 94%. The sample location in the build chamber influenced the porosity fraction, particularly in interior and exterior areas of the build plate. The hardness and NbC fraction were not dependent on the sample location in the build chamber. © 2018, The Author(s).

Keywords
3D printers, Cooling, Electron beam melting, Electron beams, Grain boundaries, Hardness, Location, Niobium compounds, Porosity, Alloy 718, Build direction, Columnar structures, Crystallographic orientations, Micro-structural characteristics, Micro-structural characterization, Orientation parameter, Sample location, Porous plates
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-13043 (URN)10.1007/s00170-018-2621-6 (DOI)000452076900065 ()2-s2.0-85053670925 (Scopus ID)
Funder
European Regional Development Fund (ERDF)Knowledge Foundation
Note

First Online: 17 September 2018

Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2019-05-28Bibliographically approved
Kumara, C., Deng, D., Moverare, J. & Nylén, P. (2018). Modelling of anisotropic elastic properties in alloy 718 built by electron beam melting. Materials Science and Technology, 34(5), 529-537
Open this publication in new window or tab >>Modelling of anisotropic elastic properties in alloy 718 built by electron beam melting
2018 (English)In: Materials Science and Technology, ISSN 0267-0836, E-ISSN 1743-2847, Vol. 34, no 5, p. 529-537Article in journal (Refereed) Published
Abstract [en]

Owing to the inherent nature of the process, typically material produced via electron beam melting (EBM) has a columnar microstructure. As a result of that, the material will have anisotropic mechanical properties. In this work, anisotropic elastic properties of EBM built Alloy 718 samples at room temperature were investigated by using experiments and modelling work. Electron backscatter diffraction data from the sample microstructure was used to predict the Young’s modulus. The results showed that the model developed in the finite element software OOF2 was able to capture the anisotropy in the Young’s modulus. The samples showed transversely isotropic elastic properties having lowest Young’s modulus along build direction. In addition to that, complete transversely isotropic stiffness tensor of the sample was also calculated. © 2018 Institute of Materials, Minerals and Mining.

Keywords
Elastic constants; Elasticity; Electron beam melting; Electron beams; Finite element method; Melting; Microstructure; Models, Alloy 718; Anisotropic elastic properties; Anisotropic mechanical properties; Columnar microstructures; EBSD; Electron back scatter diffraction; Finite element software; Transversely isotropic, Anisotropy
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-12134 (URN)10.1080/02670836.2018.1426258 (DOI)000428303200005 ()2-s2.0-85041234684 (Scopus ID)
Funder
Knowledge Foundation, SUMAN-Next
Note

Published online: 28 Jan 2018

Funders:  European Regional Development Fund, 3Dprint

Available from: 2018-02-20 Created: 2018-02-20 Last updated: 2019-05-28Bibliographically approved
Gupta, M. K., Kumara, C. & Nylén, P. (2017). Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling. Journal of thermal spray technology (Print), 26(6), 1038-1051
Open this publication in new window or tab >>Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling
2017 (English)In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 26, no 6, p. 1038-1051Article in journal (Refereed) Published
Abstract [en]

Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

Keywords
bilayer coating system; finite element modeling; lifetime; suspension plasma spraying; stresses; thermal barrier coatings
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-11411 (URN)10.1007/s11666-017-0595-9 (DOI)000407335200005 ()2-s2.0-85022002318 (Scopus ID)
Available from: 2017-09-19 Created: 2017-09-19 Last updated: 2019-05-23Bibliographically approved
Silveira, L. L., Pukasiewicz, A. G., Björklund, S., Nylén, P. & Zara, A. J. (2017). Comparative Study of the Corrosion and Cavitation Resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB Coatings. In: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 2017): . Paper presented at International Thermal Spray Conference and Exposition, ITSC 2017, Dusseldorf, Germany, 7-9 June, 2017 (pp. 675-680). New York: Curran Associates, Inc, 2
Open this publication in new window or tab >>Comparative Study of the Corrosion and Cavitation Resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB Coatings
Show others...
2017 (English)In: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 2017), New York: Curran Associates, Inc , 2017, Vol. 2, p. 675-680Conference paper, Published paper (Refereed)
Abstract [en]

Cavitation and corrosion on hydrodynamic components and systems reduces the operational efficiency. The use of wear resistant coatings have been studied as a solution to the problem of corrosion and cavitation in the industrial environment. Thermal spray processes are recognized as excellent technique to deposit coatings. The high velocity oxy-fuel process (HVOF) can produce high density and bond strength coatings. High velocity air-fuel process (HVAF) is an alternative process, shown to be superior regarding corrosion protection and production costs. HVAF can deposit coating with shorter dwell time and lower temperature, producing coating with lower oxide content This paper presents the use of HVOF and HVAF process to deposit FeCrMnSiNi and FeCrMnSiB coatings, studying the resistance against corrosion and cavitation in comparison to 316L HVOF coating. Microstructure was analyzed by XRD, microscopic means and mechanical testing. Cavitation and corrosion behavior of the coatings were also studied comparatively. HVAF coatings presented lower porosity and oxide levels, as well as higher hardness values, compared with the coatings deposited by HVOF process. The HVAF process presented better cavitation resistance than HVOF coatings. The FeCrMnSiNi HVAF coating had the best corrosion protection performance between the developed alloys. 

Place, publisher, year, edition, pages
New York: Curran Associates, Inc, 2017
Keywords
Air, Boron, Cavitation, Corrosion resistance, Corrosive effects, Deposits, Fuels, HVOF thermal spraying, Iron alloys, Mechanical testing, Protective coatings, Sprayed coatings, Thermal spraying, Corrosion protection performance, Fe-based alloys, High velocity air fuels, High velocity oxy-fuel process (HVOF), Hydrodynamic component, Industrial environments, Operational efficiencies, Wear-resistant coating, Corrosion resistant coatings
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-13055 (URN)2-s2.0-85047484038 (Scopus ID)9781510858220 (ISBN)
Conference
International Thermal Spray Conference and Exposition, ITSC 2017, Dusseldorf, Germany, 7-9 June, 2017
Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2019-01-10Bibliographically approved
Sadeghimeresht, E., Markocsan, N. & Nylen, P. (2017). Corrosion behavior of HVAF-sprayed Bi-layer coatings: Effect of intermediate layer's microstructure and chemical composition. In: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 201): . Paper presented at International Thermal Spray Conference & Exposition, ITSC 2017, Düsseldorf, Germany, June 7-9, 2017 (pp. 941-945). New York: Curran Associates, Inc, 2
Open this publication in new window or tab >>Corrosion behavior of HVAF-sprayed Bi-layer coatings: Effect of intermediate layer's microstructure and chemical composition
2017 (English)In: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 201), New York: Curran Associates, Inc , 2017, Vol. 2, p. 941-945Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
New York: Curran Associates, Inc, 2017
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
urn:nbn:se:hv:diva-11970 (URN)2-s2.0-85047502215 (Scopus ID)9781510858220 (ISBN)
Conference
International Thermal Spray Conference & Exposition, ITSC 2017, Düsseldorf, Germany, June 7-9, 2017
Available from: 2017-12-29 Created: 2017-12-29 Last updated: 2019-01-10Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7787-5444

Search in DiVA

Show all publications