Alternativa nätlösningar vid reinvestering

Petter Strandberg
Sammanfattning

Fortum äger en 12 kV-linje i ett område lokaliserat nordöst om Charlottenberg som är drabbad av avbrott och har hög genomsnittlig ålder. Ett mer tillförlitligt elnät måste upprättas.

I den här rapporten ges ett nätförslag som skulle leda till en förbättrad leveranssäkerhet och ökad tillförlitlighet.

Datum: 2015-05-25
Författare: Petter Strandberg
Examinator: Evert Agneholm, Tekn. Dr., Högskolan Väst
Handledare: Torbjörn Berg, Karlstad universitet
Program: Högskoletekniker, elkraft, 120 hp
Huvudområde: Elektroteknik
Utbildningsnivå: Grundnivå
Poäng: 15 hp
Nyckelord: Nätplanering, lokalnät, reinvesteringsprojekt, leveranssäkerhet.
Utgivare: Högskolan Väst, Institutionen för ingenjörsvetenskap, 461 86 Trollhättan
Tel: 0520-22 30 00 Fax: 0520-22 32 99 Web: www.hv.se
Network planning proposal actual to a reinvestment project

Summary

Swedish legislation regarding network reliability has changed after the historic storm named Gudrun. It is now a violation to have interruptions in the distribution of electricity lasting longer than 24 hours. To reach needed reliability in the network, companies that distribute electricity need to invest in their existing grids. The general investment performed is exchanging overhead-lines to underground cables.

Fortum is the owner of a 12 kV rural power-line, located northeast of Charlottenberg, Sweden. This power-line has interruptions and an overall high age. A more reliable network has to be planned.

In this report, an alternative network is proposed, that would lead to improved reliability in the network.
Förord

Innehåll

Sammanfattning .. i
Summary ... ii

Förord ... iii

1 Inledning ... 1
 1.1 Bakgrund .. 1
 1.1.1 Leveranssäkerhet .. 1
 1.1.2 Avbrottsstatistik .. 2
 1.2 Problembeskrivning ... 3
 1.3 Områdesöversikt ... 3
 1.4 Syfte/mål .. 3
 1.5 Avgränsningar ... 3

2 Metod/tillvägagångssätt ... 4
 2.1 PowerGrid ... 4
 2.2 AutoCAD ... 4
 2.3 EBR - Elbyggnadsrationalisering ... 4
 2.4 Nätuppbryggnad .. 5

3 Teori ... 6
 3.1 Val av ledningsväg ... 6
 3.1.1 Markförhållanden .. 6
 3.1.2 Förläggningssätt .. 6
 3.1.3 Samförläggning ... 7
 3.2 Beräkningar ... 8
 3.2.1 Impedans ... 8
 3.2.2 Utlösningsvillkor ... 9
 3.2.3 Felströmsberäkningar .. 9
 3.2.4 Spänningsnivåer ... 11

4 Nätberäkning .. 12
 4.1.1 Nätstation innenhavande leveranspunkt med störst försämring 12
 4.1.2 Nätstation innenhavande leveranspunkt med störst förbättring 13

5 Nätuppbryggnad ... 16
 5.1.1 Ledning ... 16
 5.1.2 Nätstationer ... 17
 5.1.3 Transformatorer ... 17
 5.2 Nybyggnation ... 17
 5.2.1 Ledning ... 17
 5.2.2 Nätstationer ... 18
 5.2.3 Transformatorer ... 18

6 Resultat .. 19

7 Analyser/diskussion ... 19

8 Slutsatser och framtida arbete ... 20

Källförteckning ... 21
Alternativa nätlösningar vid reinvestering

Bilagor

A. Orienteringskarta
B. Södra, före ombyggnad
C. Södra, efter ombyggnad
D. Norra, före ombyggnad
E. Norra, efter ombyggnad
F. Kostnadskalkyl enligt EBR
G. Driftschema före ombyggnad
H. Driftschema före ombyggnad
I. Beräkningsresultat i samtliga leveranspunkter före - efter
1 Inledning

Denna rapport är resultatet av ett examensarbete utfört på nätplanering lokalnät hos Fortum Distribution AB.

1.1 Bakgrund

1.1.1 Leveranssäkerhet

I 3 kap. 1 a § Ellagen (SFS 1997:584) anges att:

"Ett företag som bedriver nätverksamhet ansvarar för drift och underhåll och, vid behov, utbyggnad av sitt ledningsnät och, i tillämpliga fall, dess anslutning till andra ledningsnät. Företaget svarar också för att dess ledningsnät är säkert, tillförlitligt och effektivt och för att det på lång sikt kan uppfylla rimliga krav på överföring av el."

Från och med slutet på 90-talet och framåt har gemensamma investeringar av ett värde på ungefär 50 miljarder kronor gjorts. Det är Sveriges olika nätföretag, i frivillig överenskommelse med regeringen, som har genomfört dessa. Dessa investeringar har till största delen bestått i att byta ut befintliga luftledningar till jordkabel [4].

Historiskt sett har stormar och oväder orsakat stora driftstörningar på elnätet i Sverige. Detta har då medfört att konsekvenserna blivit stora, många och dyra. För att undvika dessa driftstörningar behöver nätföretagen investera i vädersäkra nät.
Nämnvärda stormar som har drivit investeringsbehovet i att vädersäkra elnäten sammanfattas nedan:

<table>
<thead>
<tr>
<th>Namn</th>
<th>År</th>
<th>Strömlösa hushåll</th>
<th>Fälld skog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gudrun</td>
<td>2005</td>
<td>415 000</td>
<td>75 000 000 m³</td>
</tr>
<tr>
<td>Per</td>
<td>2007</td>
<td>280 000</td>
<td>12 000 000 m³</td>
</tr>
<tr>
<td>Dagmar</td>
<td>2011</td>
<td>170 000</td>
<td>4 500 000 m³</td>
</tr>
<tr>
<td>Simone</td>
<td>2013</td>
<td>100 000</td>
<td>1,5-2 000 000 m³</td>
</tr>
<tr>
<td>Hilde</td>
<td>2013</td>
<td>40 000</td>
<td>3,5 000 000 m³</td>
</tr>
<tr>
<td>Sven</td>
<td>2013</td>
<td>50 000</td>
<td>800 000 m³</td>
</tr>
<tr>
<td>Ivar</td>
<td>2013</td>
<td>50 000</td>
<td>8 000 000 m³</td>
</tr>
</tbody>
</table>

Trots dessa stormar har det svenska elnätets leveranssäkerhet ett medelvärde på 99,98% [3].

1.1.2 Avbrottsstatistik

I 3 kap. 9 § Ellagen (SFS 1997:584) anges att:

"Den som har nätkoncession är skyldig att på skäliga villkor överföra el för annans räkning. Överföringen av el skall vara av god kvalitet. En nätkoncessionshavare är skyldig att avhjälpa brister hos överföringen i den utsträckning kostnaderna för att avhjälpa bristerna är rimliga i förhållande till de o bottledna för elanvändarna som är förknippade med bristerna. Regeringen eller den myndighet som regeringen bestämmer får meddela föreskrifter om vilka krav som skall vara uppfyllda för att överföringen av el skall vara av god kvalitet.”

Det är Energimarknadsinspektionen som är den myndighet utsedd av regering som bestämmer vilka krav som skall vara uppfyllda för att överföringen av el skall vara av god kvalitet [1].

Efter stormen Gudrun kom ”tjugofyra-timmars lagen”. Enligt denna är det ett lagbrott att ha elavbrott längre än tjugofyra timmar [3].

I 3 kap. 9 a § Ellagen (SFS 1997:584) anges att:

"Om inte strängare krav följer av 9 § andra och tredje styckena eller av föreskrifter som meddelats med stöd av 9 § fjärde stycket, skall en nätkoncessionshavare se till att avbrott i överföringen av el till en elanvändare aldrig överstiger tjugofyra timmar.”

I 3 kap. 9 c § Ellagen (SFS 1997:584) anges att:

Den som bedriver nätverksamhet med stöd av nätkoncession för linje med en spänning som understiger 220 kilovolt eller nätkoncession för område ska årligen upprätta

1. en risk- och sårbarhetsanalys avseende leveranssäkerheten i elnätet, och
2. en åtgärdsplan som visar hur leveranssäkerheten i det egna elnätet ska förbättras.

1.2 Problembeskrivning

1.3 Områdesöversikt

1.4 Syfte/mål

Mål och syfte med detta arbete är att ta fram ett förslag vilket kan fungera som underlag för vidare beredning. Förslaget innefattar en alternativ nätlösning för befintligt mellanspännings- samt lågspännings-nät på två närbeliggande områden på samma utgående linje. Förslaget levereras till Fortum i form av en projektpärm.

1.5 Avgränsningar

Avgränsningar för respektive delområde:

Området Södra sträcker sig mellan T730 Norra Ämterud - T734 Gravliden och består av sex stycken nätstationer.

Området Norra sträcker sig mellan T741 Sandmon - T701 Häljeboda och består av fyra stycken nätstationer.
2 Metod/tillvägagångssätt

2.1 PowerGrid

2.2 AutoCAD

AutoCAD är ett CAD-program som hanterar ritningsfiler i formatet DWG. Programmet kan hantera ritningsfiler såväl i 2D som 3D. I rapporten kommer 2D bli det tillämpningsbara sättet för användningen av programmet. Det används för att rita om driftschemat på utgående linje efter ombyggnad. Programmet är utformat för just detta ändamål och används som standard inom Fortum.

2.3 EBR - Elbyggnadsrationalisering

EBR är ett verktyg utvecklat av Svensk energi. Det är framställt gemensamt av Sveriges olika elnätsföretag, entreprenörer och konsulter. Det används som hjälp vid planering, byggnation och underhåll av eldistributionsanläggningar mellan 0,4-145 kV. En del av EBR är en kostnadskatalog vilket innehåller genomsnittliga kostnader för vanligt förekommande åtgärder på lokalnät. Kostnadskatalogerna är uppdelade i olika nivåer. Det finns en planeringskatalog P1, en projekteringskatalog P2 och en produktionskatalog P3 [5, 12]. De används för kalkylberäkningar längre fram i rapporten.
2.4 Nätuppbryggnad

Första steget som tas är att områdesansvarig på Fortum bestämmer vilket område och vilka avgränsningar arbetet har. När detta är klargjort ses området över och tänkta ledningsvägar planeras. All mellanspänning skall byggas om och lågspänning i den utsträckning som anses nödvändig.

Efter fältbesöket informeras områdesansvarig om tillståndet på befintligt lågspänningsnät och beslut tas om lågspänningen skall byggas om eller ej. Lågspänningen skall med fördel samförläggas med mellanspänningen.

En kontinuerlig diskussion förs med Fortum och avvägningar angående det tänkta nätet görs under hela projektets gång.
3 Teori

3.1 Val av ledningsväg

3.1.1 Markförhållanden

Utdrag från EBR’s handbok kabelförläggning - KJ 41.1:08 [11] angående markklasser och marktyper lyder:

"Lätt = markklass 1 och 2.
Markklass 1. Sand, fin och grov mo, mjäla, älvsediment och lera.
Markklass 2. Rullstensgrus och isälvsgrus samt en blandning av dessa med jordarter i markklass 1.

Medel = markklass 3 och 4.
Markklass 3. Morän tillsammans med någon eller några av jordarterna i markklasserna 1 och 2.

Svår = markklass 5 och 6
Markklass 5.
a) Morän och myr eller mosse omväxlingsvis förekommer i lika delar.
b) Morän och moränlera sammansblandade.
c) Moränlera och myr eller mosse förekommer tillsammans med morän.
d) Kalt berg eller blockmark förekommer tillsammans med de flesta jordarterna men där det är de lättare jordarterna (sand, mo, mjäla och grus) som överväger mellan berg och blockmark.
Markklass 6.
a) Mosse eller myr.
b) Mosse eller myr tillsammans med morän men där sankmarkerna utgör övervägande delen.
c) Kalt berg och blockmark förekommer tillsammans med de flesta jordarterna och där morän och mosse eller myr är de övervägande jordarterna mellan berg och blockmark."

3.1.2 Förläggningsätt

Det går att förlägga kabel med hjälp av flera olika metoder. De två metoderna som är mest relevanta i det aktuella området är schaktning och plöjning.

Schaktning av kabel innebär att ett kabeldike grävs med hjälp av en grävmaskin, kabeln dras ut i spåret och sen återfylls graven. Denna metod är att föredra då markförhållanden är svåra, eller när ett flertal kablar skall förläggas i samma grav. Metoden visar hela förläggnningen och kabeln behöver inte vara utförd med extra förstärkning.

3.1.3 Samförläggning

En viktig aspekt att ta hänsyn till vid planering av en ny ledningsväg, är möjligheter till samförläggning. Samförläggning kan exempelvis vara att ett företag som lägger fiber får gå i samma schakt/grav som elföretaget gör.

Det kan också innebära att hänsyn tas till att samförlägga mellanspänning med lågspänning. Detta har genomgående gjorts i detta projekt. Samförläggning innebär minimal schaktning/plöjning då flera kablar delar samma ledningsväg. Det blir det mest ekonomiskt försvarbara alternativet, och bör således eftersträvas.
3.2 Beräkningar

Alla beräkningar som är utförda i projektet är gjorda i PowerGrid. Nedanstående kapitel har syftet att enkelt beskriva bakomliggande teoretiska formler till de uppgifter som presenteras. En komplett lista på beräkningar sammanställda i Excel finns som bilaga [Bilaga I].

3.2.1 Impedans

Impedans är en lednings växelströmsmotstånd Z och består av resistans, kapacitans och induktans. För en kabel beräknas impedans förenklat enligt [6]

\[Z_L = \sqrt{R_L^2 + X_L^2} \ \Omega/km \text{ och fas} \]

där

- \(Z_L \) är impedansen i en fas (\(\Omega/km \) och fas)
- \(R_L \) är lednings resistans i en fas (\(\Omega/km \) och fas)
- \(X_L \) är den induktiva reaktansen i en fas (\(\Omega/km \) och fas)

Transformatorns kortslutningsimpedans på sekundärsidan (11/0,4) kan efter härledning, vilket utelämnats i denna rapport beräknas enligt [7]

\[Z_k = \frac{Z_k}{100} \cdot \frac{U_{2n}^2}{S_n} \ \Omega/fas \]

där

- \(Z_k \) är transformatorns kortslutningsimpedans hänfört till sekundärsidan (\(\Omega/fas \))
- \(S_n \) är transformatorns märkeffekt (VA)
- \(U_{2n} \) är transformatorns sekundära märkspänning (V)
- \(z_k \) är transformatorns procentuella kortslutningsimpedans.

Impedansen i en ledning är nödvändig tillsammans med transformatorns impedans för att kunna fastställa en total förimpedans i en leveranspunkt. Förimpedansen behövs för att kunna dimensionera ledningar så att utlösningsvillkoren uppfylls [7, 10].
3.2.2 Utlösningsvillkor

I 5 kap. 3 § Elsäk FS 2008:1 anges att:
"En högspänningsanläggning i ett icke direktjordat system ska vara utförd så, att en- eller flerpoliga jordslutningar kopplas ifrån snabbt och automatiskt. Undantag gäller för en anläggning för högst 25 kV nominell spänning som inte innehåller någon luftledning. En sådan anläggning får vara utförd så, att en enpolig jordslutning enhart signaleras automatiskt."

3.2.3 Felströmsberäkningar

Varje isolerad ledare ger upphov till en kapacitans kallad driftkapacitans och betecknas med C. Enkelt uttryckt är den beroende på ledarnas inbördes kapacitans och kapacitansen mellan ledarna och jord. Denna driftkapacitans C, ger upphov till kapacitativa strömmande i, i driftsatta ledare med eller utan belastning. I en kabel med tre ledare innebär detta att det totalt kommer utvecklas en kapacitiv tomgångsström som är tre gånger större än iL. Den kapacitativa tomgångsströmmen betecknas Icj[6, 7].

En grov uppskattning kan lätt göras ur tillverkarens tabell för utvecklingen av kapacitativa tomgångsströmmar i ledningar. Det står i tabellerna angivet strömutvecklingen som A/km. För att uppskatta tillkommande kapacitiv ström multipliceras värdet angivet i tabellen med kabel- eller lednings-längden [6].

Tabell 2. Induktans, driftkapacitans och jordslutningsström. 12kV PEX-isolerad 3-ledarkabel, rund
Källa: Tabell 40 ur Kraftkabelhandboken, sida 122 [6]

<table>
<thead>
<tr>
<th>Ledararea mm²</th>
<th>Induktans mH/km</th>
<th>Driftkapacitans µF/km</th>
<th>Jordslutningsström A/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,34</td>
<td>0,23</td>
<td>1,5</td>
</tr>
<tr>
<td>95</td>
<td>0,31</td>
<td>0,30</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Med uppgifter ur tabell 2 och 6 kan en grov uppskattning av tillkommande kapacitiva strömmar fås enligt [6]

\[I_{cj} = L \cdot I_j \]

där

- \(I_{cj} \) är kapacitiv tomgångsström
- \(L \) är kabelns längd i km
- \(I_j \) är jordslutningsström
För de aktuella kabellängderna fås då
\[I_{cj50mm^2} = 0,300 \cdot 1,5 = 0,45 \, A \]
\[I_{cj95mm^2} = 10,444 \cdot 1,9 = 19,84 \, A \]
\[I_{cjtot} = 0,45 + 19,84 = 20,29 \, A \]

Denna kapacitiva strömutveckling är ett av bidragen till en resulterande jordslutningsström \(I_j \), som uppstår vid enfasiga jordfel. Det andra bidraget består av en genererad induktiv ström \(I_{xj} \) från en Petersénspole. Den genererade strömmen av petersénspolen motverkar den kapacitiva strömmen och sänker därmed den resulterande jordslutningsströmmen [7].

Dessa spolar finns i bestämda storlekar exempelvis 10A vilket används i 12kV. De kommer färdigmonterade med transformatorn och monteras i nätstationer för att kompensa för den kapacitiva strömutvecklingen under jordfel [7].

Då den grova uppskatningen gav en kapacitiv strömmtyka på ungefär 20,29 A väljs 2 stycken 10A petersénspolar som kompensation. Kompensation ger en induktiv strömgenerering på 20 A.

Formeln för den resulterande jordslutningsströmmen enligt
\[I_j = I_{cj} - I_{xj} \]

Utan kompensation skulle följande värde fås:
\[I_j = 20,29 - 0 = 20,29 \, A \]

Med kompensation fås följande värde:
\[I_j = 20,29 - 20 = 0,29 \, A \]

Alternativa nätlösningar vid reinvestering
3.2.4 Spänningsnivåer

Svensk standard (SS-EN 50160) anger att nominell spänning U_n för lågspänningsnät för allmän distribution är 230 V. I trefassystem utan neutralledare är detta spänningen mellan fasledarna. I trefassystem med neutralledare är detta spänningen mellan fasledare och neutralledare. Då all lågspänning i detta projekt är utfört som trefassystem med neutralledare, avses med spänningen U, spänningen mellan fasledare och neutralledare.

Vidare säger standarden (SS-EN 50160) att under normala driftförhållanden bör inte spänningsvariationerna överstiga ±10% av nominell spänning U_n. Detta innebär att i leveranspunkten bör spänningen ligga inom intervallet 207 V - 253 V [10].

Spänningsfallet kan beräknas enligt [6]

$$\Delta U = \frac{P \cdot L \cdot (R_1 \cdot \cos \phi + X_1 \cdot \sin \phi)}{U^2 \cdot \cos \phi} \cdot 100$$

där

- P är överförd effekt i kW
- L är längd i m
- R_1 är effektiv ledarresistans i Ω/km
- X_1 är reaktans i Ω/km
- U är driftspänning i V
- ΔU är spänningsfall i %
- $\cos \phi$ är effektfaktorn hos belastningsobjektet
4 Nätberäkning

För att hålla nere tabellstorlekar i detta avsnitt redovisas här enbart leveranspunkten med störst förändring positivt respektive negativt. Ett datablad med information om alla leveranspunkter med likadana uträckningar finns som bilaga [Bilaga I].

4.1.1 Nätstation innehavande leveranspunkt med störst försämring

T701 Häljeboda är den station som innehar leveranspunkten med störst försämring.

Tabell 3. Leveranspunkten med störst ökning av förimpedans och spänningsfall

<table>
<thead>
<tr>
<th>Leveranspunkt (33109952)</th>
<th>Förimpedans Zför (ohm)</th>
<th>Spänningsfall %</th>
<th>Avstånd till nätstation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Före</td>
<td>0,194</td>
<td>1,76</td>
<td>42</td>
</tr>
<tr>
<td>Efter</td>
<td>0,502</td>
<td>2,717</td>
<td>313</td>
</tr>
<tr>
<td>Ökning</td>
<td>0,308</td>
<td>0,957</td>
<td>271</td>
</tr>
</tbody>
</table>

Figur 1. Översikt nätstation T701 Häljeboda före ombyggnad. Bildkälla: PowerGrid, redigerad av författaren.

Bilden visar värdena på spänningsfall och förimpedans hos alla leveranspunkter vilket matas från nätstationen T701 med befintlig placering. I denna bild finns fyra stycken leveranspunkter med högre spänningsfall än 5 %.
Resultatet av att T701 Häljeboda strategiskt har flyttats närmare fler kunder har inneburit följande för dessa leveranspunkter: En snittminskning av förimpedansen med 0,31 ohm/leveranspunkt. Längsta avståndet från leveranspunkt till nätstation har minsats från 430m till 325m. Spänningsfallet har minskat i snitt med 3,62 % per leveranspunkt. Även om detta är den nätstation innehavande leveranspunkten som drabbats av störstökning av förimpedans, betyder det inte att värdet är dåligt. Som följd av att nätstationen flyttats har en förbättring hos 5 av 6 leveranspunkter uppnåtts. Den enstaka leveranspunkten som fått en försämring av värdet ligger ändå väl inom riktniterna.

Fortum har som riktlinje att värdet på förimpedans hos kund inte bör översätta 0,6 ohm inom rimliga förhållanden och att spänningsfall inte överstiger 5 % vid nybyggnation av serviser.

4.1.2 Nätstation innehavande leveranspunkt med störst förbättring

T701 Häljeboda är den station som innehar leveranspunkten med störst förbättring.

<table>
<thead>
<tr>
<th>Leveranspunkt (33109995)</th>
<th>Förimpedans Zför (ohm)</th>
<th>Spänningsfall %</th>
<th>Avstånd till nätstation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Före</td>
<td>1,896</td>
<td>9,345</td>
<td>1220</td>
</tr>
<tr>
<td>Efter</td>
<td>0,666</td>
<td>0,363</td>
<td>796</td>
</tr>
<tr>
<td>Minskning</td>
<td>1,23</td>
<td>8,712</td>
<td>424</td>
</tr>
</tbody>
</table>
Alternativa nätlösningar vid reinvestering

Påföljden av att T891 Norra Häljebo har blivit strategiskt placerat närmare fler kunder innebär följande för dessa leveranspunkter: En snittminskning av
Alternativa nätlösningar vid reinvestering

förimpedansen med 0,64 ohm/leveranspunkt. Längsta avståndet från leveranspunkt till nätstation har minskats från 1220m till 796m. Spänningsfallet har minskat i snitt med 8,30 % per leveranspunkt. Den översta leveranspunkten har en förimpedans på 0,67 Ohm efter ombyggnation, detta är över nämnda riktlinjen. Resultatet bör fortfarande ses som rimligt med tanke på det långa avståndet och att den grova kabelarean på 95mm² har använts. Resterande tre leveranspunkters spänningsfall och impedanser är sett till riktlinjerna inom rimliga värden efter ombyggnation.

5 Nätuppbyggnad

Med isoleringsgrad menas här den del av ledningssträckan som är isolerad från yttre påverkan. En luftledning utsätts för större risker som t.ex. trädpfäll. En jordkabel är mer skyddad.

5.1.1 Ledning

Huvudsakligen har allt befintligt nät raserats. De få ledningar som har behållits är servisledningar, vilka inte har haft några anmärkningar och i övrigt varit i bra skick. Det skulle resultera i omotiverade utgifter att rasera en befintlig kabel och lägga en liknande, fast ny, som inte skulle medföra någon större förbättring. En visuell överblick av raserat nät fås av bifogade bilder vilket finns som bilagor [B, D]

Tabell 5. Sammanställning av raserat ledningsnät.

<table>
<thead>
<tr>
<th>Luftledning</th>
<th>Längd (m)</th>
<th>Luftledning</th>
<th>Längd (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKKD 16/16</td>
<td>476</td>
<td>FEAL 31/0</td>
<td>1662</td>
</tr>
<tr>
<td>AKKD 25/25</td>
<td>2350</td>
<td>FEAL 62/0</td>
<td>552</td>
</tr>
<tr>
<td>AKKD 50/50</td>
<td>883</td>
<td>FEAL99/0</td>
<td>4596</td>
</tr>
<tr>
<td>ALUS 4x25/0</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUS 4x50</td>
<td>3262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUS 4x95</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordkabel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKKJ 50/16</td>
<td>114</td>
<td>AXAL-TT 3x25/25</td>
<td>37</td>
</tr>
<tr>
<td>EKKJ 10/10</td>
<td>236</td>
<td>AXAL-TT 3x95/25</td>
<td>265</td>
</tr>
<tr>
<td>EKKJ 6/6</td>
<td>10</td>
<td>AXCEL 3x50/16</td>
<td>674</td>
</tr>
<tr>
<td>N1XV/E-AR 4x50</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1XV/E 4x10</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8509</td>
<td>TOTAL</td>
<td>7786</td>
</tr>
<tr>
<td>Isoleringsgrad</td>
<td>10 %</td>
<td>Isoleringsgrad</td>
<td>12 %</td>
</tr>
</tbody>
</table>
5.1.2 Nätstationer

En bedömning har gjorts att samtliga nät- och stolpstationer bör ersättas då deras ålder är hög eller skick varit mindre bra. Det är mindre önskvärt att ha kvar stolpstationer då de är mer besvärliga att utföra arbete på än de markplacerade stationerna-

Tabell 6. Sammanställning av raserade nätstationer

<table>
<thead>
<tr>
<th>Planerat raserade</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stolpstationer</td>
<td>6</td>
</tr>
<tr>
<td>Satellitstationer</td>
<td>3</td>
</tr>
<tr>
<td>Totalt</td>
<td>9</td>
</tr>
</tbody>
</table>

5.1.3 Transformatorer

En bedömning har gjorts att samtliga transformatorer bör bytas ut till nya då deras ålder eller skick varit mindre bra.

Tabell 7. Sammanställning av raserade transformatorer

<table>
<thead>
<tr>
<th>Planerat raserade</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kVA</td>
<td>2</td>
</tr>
<tr>
<td>50 kVA</td>
<td>6</td>
</tr>
<tr>
<td>30 kVA</td>
<td>1</td>
</tr>
<tr>
<td>Totalt</td>
<td>9</td>
</tr>
</tbody>
</table>

5.2 Nybyggnation

5.2.1 Ledning

De föreslagna jordkablarna N1XE-x för lågspänning har valts med plöjning som det primära förläggningsättet i åtanke då kablarna lämpar sig väl för detta. Den föreslagna luftledningen för lågspänning har valts som ALUS-D, då denna är dubbelisolerad, beröringssäker, klarar mindre träpåfall och drift på mark.

Tabell 8. Sammanställning av planerat ledningsnät

<table>
<thead>
<tr>
<th>Planerat nät LV</th>
<th>Planerat nät MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftpåkabel</td>
<td>Universalkabel</td>
</tr>
<tr>
<td>ALUS-D 4x95</td>
<td>AXCES 3x70/16</td>
</tr>
<tr>
<td></td>
<td>Varav 421 m går i luft</td>
</tr>
<tr>
<td>Jordkabel</td>
<td>Jordkabel</td>
</tr>
<tr>
<td>N1XE-U 4x10</td>
<td>AXAL-TT 3x50/25</td>
</tr>
<tr>
<td>N1XE-AR 4x50</td>
<td>AXAL-TT 3x95/25</td>
</tr>
<tr>
<td>N1XE-AS 4x95</td>
<td>AXAL-TT 3x95/25</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Längd (m)</td>
<td>Längd (m)</td>
</tr>
<tr>
<td>10572</td>
<td>11456</td>
</tr>
</tbody>
</table>

Isoleringsgrad 94 % Isoleringsgrad 96 %
5.2.2 Nätstationer

De nya nätstationerna har valts som seriesatellitstationer där inga brytmöjligheter behövts och som kopplingsstationer där nätet grenas ut och brytmöjligheter är lämpliga. Placering av nätstationerna ses i bifogade kartor [efter södra norra]

De nya nätstationernas utförande:

T731 Ladåsen och T701 Häljeboda:
Kopplingsstation, ELIT 3, 4 fack. 12/0,4 kV, 100 kVA transformator med 10A Petersenspole monteras. Säkringslastfrånskiljare för transformatorn. Lastfrånskiljare för de tre utgående facken.

T741 Sandmon:
Kopplingsstation, ELIT 3, 4 fack. 12/0,4 kV, 100 kVA transformator. Även här säkringslastfrånskiljare för transformatorn. Lastfrånskiljare för de utgående två facken.

Resterande nätstationer är seriesatellitstationer med säkringslastfrånskiljare för transformatorn. Den enda nätstationen som bevaras är T710 Emtiden vilket är relativt ny.

Tabell 9. Sammanställning av planerat nya nätstationer

<table>
<thead>
<tr>
<th>Planerat nya</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopplingsstationer, ELIT3</td>
<td>3 st</td>
</tr>
<tr>
<td>Seriesatellitstationer</td>
<td>7 st</td>
</tr>
<tr>
<td>Totalt</td>
<td>10 st</td>
</tr>
</tbody>
</table>

5.2.3 Transformatorer

För att kompensera för de tillkommande 20,2 A kapacitiva strömmarna som kablifiering ger upphov till lämnas förslaget att montera 2 stycken 10 A Petersenspolar i två av de tre kopplingsstationer som byggs. Samtliga transformatorer som monteras har storleken 100 kVA. En 50 kVA transformator har valts att monteras i T741 Sandmon, då behovet av en 100 kVA transformator inte finns.

Tabell 10. Sammanställning av planerat nya transformatorer.

<table>
<thead>
<tr>
<th>Planerat nya</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/0,4 100 kVA</td>
<td>8 st</td>
</tr>
<tr>
<td>12/0,4 100 kVA med 10 A spole</td>
<td>2 st</td>
</tr>
<tr>
<td>12/0,4 50 kVA</td>
<td>1 st</td>
</tr>
<tr>
<td>Totalt</td>
<td>11 st</td>
</tr>
</tbody>
</table>
6 Resultat

Det föreslagna nätalternativet skulle innebära följande:

Av de 10 befintliga nätstationerna raseras 9. En befintlig nätstation behålls. 10 nya nätstationer uppförs.

I 2 av de 10 nya nätstationerna monteras transformatorer med 10A Petersénspol som kompensation av de uppkomna kapacitiva felströmmarna.

Av de 10 nya nätstationerna är 3 kopplingsstationer. Det medför bättre bortkopplingsmöjligheter vid fel.

Det befintliga lågspänningsnätet bestående av 7,62 km luftledning och 0,84 km jordkabel ersätts med 0,62 km luftledning och 9,95 km jordkabel.

Det befintliga mellanspänningsnätet bestående av 6,8 km luftledning och 0,98 km jordkabel ersätts med 0,42 km hängkabel och 11 km jordkabel.

Det befintliga lågspänningsnätet har en isoleringsgrad på 10 %. Det nya lågspänningsnätet har en förbättrad isoleringsgrad på 94 %.

Det befintliga mellanspänningsnätet har en isoleringsgrad på 12 %. Det nya mellanspänningsnätet har en förbättrad isoleringsgrad på 96 %.

10 av 60 leveranspunkter har haft en spänning som varit under det godkända intervallet. Totalt sett har alla leveranspunkter fått en bättre spänningsnivå. Nu ligger alla leveranspunkters spänning inom godkänt intervall.

58 av 60 leveranspunkter har fått ett minskat spänningsfälle.

46 av 60 leveranspunkter har fått en minskad förimpedans.

7 Diskussion

8 Slutsatser och framtida arbete

Ett lämpligt framtida arbete är att leveranssäkra nätet på efterföljande sträckning norrut på linjen.
Källförteckning

A. Orienteringskarta

Översiktlig karta med respektive område där reinvesteringsbehovet har setts över inringat.
B. Södra, före ombyggnad

Karta över nätet i området södra före ombyggnad.
C. Södra, efter ombyggnad

Karta över nätet i området södra efter ombyggnad.
D. Norra, före ombyggnad

Karta över nätet i området norra före ombyggnad.
E. Norra, efter ombyggnad

Karta över nätet i området norra efter ombyggnad.
F. Kostnadskalkyl enligt EBR

<table>
<thead>
<tr>
<th>Namn från arbetskoder</th>
<th>Antal</th>
<th>Enhet</th>
<th>Beredning</th>
<th>Montering</th>
<th>Maskin</th>
<th>EA</th>
<th>Arbete</th>
<th>Material</th>
<th>Maskin</th>
<th>Övrigt</th>
<th>Summa/km</th>
<th>Total kostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsp-hängkabel 50-70 NB</td>
<td>0,47</td>
<td>Km</td>
<td>52,29</td>
<td>98,83</td>
<td>49,15</td>
<td>192,22</td>
<td>107775</td>
<td>183895</td>
<td>35680</td>
<td>37161</td>
<td>364511</td>
<td>171320</td>
</tr>
<tr>
<td>ALUS(D) 4 x 95 NB</td>
<td>0,65</td>
<td>Km</td>
<td>38,26</td>
<td>89,08</td>
<td>29,06</td>
<td>144,29</td>
<td>90819</td>
<td>109548</td>
<td>21093</td>
<td>2312</td>
<td>223772</td>
<td>145452</td>
</tr>
<tr>
<td>Förplöjning, normal mark</td>
<td>4,866</td>
<td>Km</td>
<td>0,10</td>
<td>2,45</td>
<td>4,13</td>
<td>10,18</td>
<td>1817</td>
<td>-</td>
<td>2954</td>
<td>-</td>
<td>4771</td>
<td>23216</td>
</tr>
<tr>
<td>Plöjning 10-95mm2, normal mark</td>
<td>4,866</td>
<td>Km</td>
<td>8,00</td>
<td>3,63</td>
<td>4,44</td>
<td>12,19</td>
<td>8296</td>
<td>1080</td>
<td>3176</td>
<td>93</td>
<td>12645</td>
<td>61531</td>
</tr>
<tr>
<td>N025 0,3-0,7 Schakt, återfyllning</td>
<td>9,037</td>
<td>Km</td>
<td>4,00</td>
<td>53,68</td>
<td>69,37</td>
<td>183,51</td>
<td>41137</td>
<td>4189</td>
<td>49599</td>
<td>-</td>
<td>94924</td>
<td>857828</td>
</tr>
<tr>
<td>PEX 3x50 12 kV</td>
<td>0,3</td>
<td>Km</td>
<td>26,43</td>
<td>87,24</td>
<td>66,74</td>
<td>239,07</td>
<td>81067</td>
<td>128239</td>
<td>48419</td>
<td>61667</td>
<td>319392</td>
<td>95818</td>
</tr>
<tr>
<td>PEX 3x95 12 kV</td>
<td>10,444</td>
<td>Km</td>
<td>27,28</td>
<td>88,04</td>
<td>70,43</td>
<td>247,07</td>
<td>82243</td>
<td>149057</td>
<td>51169</td>
<td>61667</td>
<td>344137</td>
<td>3594167</td>
</tr>
<tr>
<td>N1XV(E) 4x10 0,4 kV</td>
<td>0,751</td>
<td>Km</td>
<td>33,00</td>
<td>91,83</td>
<td>56,97</td>
<td>216,37</td>
<td>89028</td>
<td>51982</td>
<td>41238</td>
<td>26595</td>
<td>208844</td>
<td>156842</td>
</tr>
<tr>
<td>N1XV(E) 4x50 0,4 kV</td>
<td>6,906</td>
<td>Km</td>
<td>29,43</td>
<td>72,13</td>
<td>67,14</td>
<td>223,63</td>
<td>72428</td>
<td>62719</td>
<td>48796</td>
<td>53650</td>
<td>237592</td>
<td>1640810</td>
</tr>
<tr>
<td>N1XV(E) 4x95 0,4 kV</td>
<td>2,294</td>
<td>Km</td>
<td>27,58</td>
<td>73,72</td>
<td>64,36</td>
<td>220,31</td>
<td>72246</td>
<td>82594</td>
<td>46716</td>
<td>56131</td>
<td>257687</td>
<td>591134</td>
</tr>
<tr>
<td>Nätstation 315 kVA</td>
<td>3</td>
<td>ST</td>
<td>0,28</td>
<td>17,16</td>
<td>4,28</td>
<td>28,51</td>
<td>19568</td>
<td>117619</td>
<td>3060</td>
<td>14941</td>
<td>155188</td>
<td>465564</td>
</tr>
<tr>
<td>Satellitstation 200 kVA</td>
<td>7</td>
<td>ST</td>
<td>10,01</td>
<td>14,62</td>
<td>4,28</td>
<td>25,97</td>
<td>17565</td>
<td>51684</td>
<td>3060</td>
<td>14941</td>
<td>87250</td>
<td>610750</td>
</tr>
<tr>
<td>Kabelskäp, storlek 1 Plåt</td>
<td>2</td>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11258</td>
</tr>
<tr>
<td>Kabelskäp, storlek 2 Plåt</td>
<td>15</td>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>123375</td>
</tr>
<tr>
<td>12/0,4 kV Trafo 100kVA</td>
<td>8</td>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>243336</td>
</tr>
<tr>
<td>12/0,4 kV Trafo 50kVA</td>
<td>1</td>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24203</td>
</tr>
<tr>
<td>12/0,4 kV 100 kVA med spole</td>
<td>2</td>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>191774</td>
</tr>
<tr>
<td>Rasering 12-24 kV Fl. vid ombyggnad till JK</td>
<td>6,81</td>
<td>Km</td>
<td>7,82</td>
<td>22,23</td>
<td>12,45</td>
<td>45,88</td>
<td>21428</td>
<td>5122</td>
<td>9037</td>
<td>-</td>
<td>35587</td>
<td>242347</td>
</tr>
<tr>
<td>Rasering Lsp LL vid ombyggnad till JK</td>
<td>7,32</td>
<td>Km</td>
<td>7,74</td>
<td>25,04</td>
<td>11,40</td>
<td>46,68</td>
<td>23376</td>
<td>13864</td>
<td>8270</td>
<td>-</td>
<td>45509</td>
<td>333126</td>
</tr>
<tr>
<td>Summa</td>
<td></td>
<td></td>
<td>272,22</td>
<td>739,68</td>
<td>514,20</td>
<td>1835,88</td>
<td>728793</td>
<td>1125953</td>
<td>372267</td>
<td>329158</td>
<td>2556170</td>
<td>9583850</td>
</tr>
</tbody>
</table>

Kostnad (SEK): 9 583 850 kr

Kostnadskalkyl utförd enligt EBR.
G. Driftschema före ombyggnad

Bilden visar driftschematic inom områdena innan ombyggnad.
H. Driftschema efter ombyggnad

Bilden visar driftschematic i områdena efter ombyggnad.

Bilaga H:1
I. Beräkningsresultat i samtliga leveranspunkter före - efter

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%)</th>
<th>Totalt spänningsfall</th>
<th>Förimpedans D**</th>
<th>Jordruhetsström (A)</th>
<th>Utf.ltd (s)**</th>
<th>Matande säkring (A)</th>
<th>Överlastsskydd (A)</th>
<th>I (A)</th>
<th>Ib/Lmax (%)</th>
<th>Belastningsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>T767 JÄNKEN FÖRE</td>
<td></td>
</tr>
<tr>
<td>33110346</td>
<td>398,9</td>
<td>219,0</td>
<td>6,7</td>
<td>1,013</td>
<td>203,5</td>
<td>2,0</td>
<td>35</td>
<td>35</td>
<td>25,944</td>
<td>20,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110347</td>
<td>175,4</td>
<td>224,0</td>
<td>5,5</td>
<td>0,541</td>
<td>403,2</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>32,69</td>
<td>38,459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110348</td>
<td>171,6</td>
<td>226,5</td>
<td>3,5</td>
<td>0,525</td>
<td>415,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>12,142</td>
<td>11,258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110349</td>
<td>335,1</td>
<td>224,0</td>
<td>3,5</td>
<td>0,525</td>
<td>415,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>12,142</td>
<td>11,258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110350</td>
<td>424,2</td>
<td>222,9</td>
<td>5,0</td>
<td>1,228</td>
<td>167,8</td>
<td>0,1</td>
<td>16</td>
<td>16</td>
<td>6,802</td>
<td>10,295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T767 JÄNKEN EFTER</td>
<td></td>
</tr>
<tr>
<td>33110351</td>
<td>3,01</td>
<td>0,26</td>
<td>485,5</td>
<td>224,4</td>
<td>3,7</td>
<td>0,753</td>
<td>260,8</td>
<td>0,5</td>
<td>35</td>
<td>35</td>
<td>25,939</td>
<td>20,269</td>
</tr>
<tr>
<td>33110352</td>
<td>2,92</td>
<td>-0,026</td>
<td>307,8</td>
<td>225,1</td>
<td>2,5</td>
<td>0,567</td>
<td>346,3</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>11,03</td>
<td>16,586</td>
</tr>
<tr>
<td>33110353</td>
<td>1,69</td>
<td>-0,75</td>
<td>380,2</td>
<td>226,7</td>
<td>1,8</td>
<td>0,6</td>
<td>327,0</td>
<td>0,2</td>
<td>35</td>
<td>35</td>
<td>12,177</td>
<td>9,625</td>
</tr>
<tr>
<td>33110354</td>
<td>2,73</td>
<td>0,195</td>
<td>345,1</td>
<td>226,7</td>
<td>1,8</td>
<td>0,9</td>
<td>218,2</td>
<td>1,5</td>
<td>35</td>
<td>35</td>
<td>4,831</td>
<td>12,108</td>
</tr>
<tr>
<td>33110355</td>
<td>3,13</td>
<td>0,551</td>
<td>416,9</td>
<td>226,5</td>
<td>1,9</td>
<td>0,677</td>
<td>289,8</td>
<td>0,4</td>
<td>35</td>
<td>35</td>
<td>10,115</td>
<td>25,352</td>
</tr>
<tr>
<td>T731 LADÅSEN FÖRE</td>
<td></td>
</tr>
<tr>
<td>33110351</td>
<td>114,2</td>
<td>231,1</td>
<td>0,9</td>
<td>0,491</td>
<td>419,7</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>6,802</td>
<td>10,229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110352</td>
<td>91,0</td>
<td>231,0</td>
<td>1,0</td>
<td>0,399</td>
<td>516,0</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>9,481</td>
<td>14,258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33110353</td>
<td>201,2</td>
<td>220,2</td>
<td>1,8</td>
<td>0,853</td>
<td>241,5</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>14,287</td>
<td>25,287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T731 LADÅSEN EFTER</td>
<td></td>
</tr>
<tr>
<td>33110351</td>
<td>0,35</td>
<td>-0,017</td>
<td>113,7</td>
<td>226,6</td>
<td>0,6</td>
<td>0,508</td>
<td>386,5</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>6,846</td>
<td>10,295</td>
</tr>
<tr>
<td>33110352</td>
<td>0,35</td>
<td>-0,018</td>
<td>92,0</td>
<td>229,5</td>
<td>0,6</td>
<td>0,417</td>
<td>470,8</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>9,542</td>
<td>14,35</td>
</tr>
<tr>
<td>33110353</td>
<td>0,28</td>
<td>-0,015</td>
<td>201,7</td>
<td>227,6</td>
<td>1,5</td>
<td>0,868</td>
<td>226,1</td>
<td>1,2</td>
<td>35</td>
<td>35</td>
<td>9,775</td>
<td>14,699</td>
</tr>
</tbody>
</table>

*T767 JÄNKEN FÖRE och EFTER
*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall
**Grön/Röd avser godkänt resp. icke godkänt värde
Alternativa nätlösningar vid reinvestering

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td>33110354</td>
<td>714,7</td>
<td>220,4</td>
</tr>
<tr>
<td>33110355</td>
<td>699,4</td>
<td>220,8</td>
</tr>
<tr>
<td>33110356</td>
<td>315,7</td>
<td>225,3</td>
</tr>
<tr>
<td>33110357</td>
<td>265,3</td>
<td>227,2</td>
</tr>
<tr>
<td>33207853</td>
<td>789,7</td>
<td>219,2</td>
</tr>
</tbody>
</table>

Grön/Röd avser godkänt resp. icke godkänt värde

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>FORBERÄNNING*</th>
<th>Förämring*</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%) Totalt spänningsfall</th>
<th>Förimpedans (Ω)</th>
<th>Jordslutningsström (A)</th>
<th>Utf.td</th>
<th>Matande säkring (A)</th>
<th>Överlastsky dd (A)</th>
<th>I (A)</th>
<th>Ibel/Imax(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110354</td>
<td>3,31</td>
<td>0,293</td>
<td>748,7</td>
<td>225,8</td>
<td>2,2</td>
<td>0,678</td>
<td>289,4</td>
<td>0,4</td>
<td>35</td>
<td>35</td>
<td>11,161</td>
<td>8,858</td>
</tr>
<tr>
<td>33110355</td>
<td>3,34</td>
<td>0,349</td>
<td>692,7</td>
<td>226,2</td>
<td>2,0</td>
<td>0,599</td>
<td>327,9</td>
<td>0,2</td>
<td>35</td>
<td>35</td>
<td>7,64</td>
<td>6,064</td>
</tr>
<tr>
<td>33110356</td>
<td>2,39</td>
<td>-0,167</td>
<td>456,7</td>
<td>228,5</td>
<td>1,1</td>
<td>0,718</td>
<td>273,4</td>
<td>0,4</td>
<td>35</td>
<td>35</td>
<td>9,013</td>
<td>7,154</td>
</tr>
<tr>
<td>33110357</td>
<td>2,07</td>
<td>0,026</td>
<td>322,6</td>
<td>229,6</td>
<td>0,6</td>
<td>0,537</td>
<td>365,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>6,701</td>
<td>7,658</td>
</tr>
<tr>
<td>33207853</td>
<td>2,72</td>
<td>0,505</td>
<td>816,0</td>
<td>225,5</td>
<td>2,4</td>
<td>0,774</td>
<td>253,5</td>
<td>0,6</td>
<td>35</td>
<td>35</td>
<td>8,829</td>
<td>7,007</td>
</tr>
</tbody>
</table>

*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall. Neutral = Gulmarkerat - ingen förändring av spänningsfall

Grön/Röd avser godkänt resp. icke godkänt värde
Alternativa nätlösningar vid reinvestering

Bilaga I:3

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%) Toalt spänningsfall</th>
<th>Förimpedans (Ω)**</th>
<th>Jordslutningsström (A)</th>
<th>Utf.tid (s)**</th>
<th>Matande säkring (A)</th>
<th>Överlastsskydd (A)</th>
<th>I (A)</th>
<th>Ibel/Imax (%) Belastningsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110358</td>
<td>147,5</td>
<td>218,8</td>
<td>6,2</td>
<td>0,76</td>
<td>287,0</td>
<td>0,4</td>
<td>35</td>
<td>35</td>
<td>17,24</td>
<td>26,523</td>
</tr>
<tr>
<td>33110359</td>
<td>418,4</td>
<td>217,1</td>
<td>6,9</td>
<td>0,808</td>
<td>270,1</td>
<td>0,1</td>
<td>16</td>
<td>16</td>
<td>5,552</td>
<td>6,531</td>
</tr>
<tr>
<td>33110360</td>
<td>534,5</td>
<td>213,8</td>
<td>8,4</td>
<td>1,119</td>
<td>195,0</td>
<td>2,3</td>
<td>35</td>
<td>35</td>
<td>22,14</td>
<td>26,055</td>
</tr>
<tr>
<td>33110361</td>
<td>708,2</td>
<td>210,9</td>
<td>9,6</td>
<td>1,64</td>
<td>125,7</td>
<td>27,6</td>
<td>35</td>
<td>35</td>
<td>13,212</td>
<td>19,988</td>
</tr>
<tr>
<td>33110362</td>
<td>200,8</td>
<td>219,6</td>
<td>5,9</td>
<td>0,656</td>
<td>314,4</td>
<td>0,3</td>
<td>35</td>
<td>35</td>
<td>8,46</td>
<td>12,722</td>
</tr>
<tr>
<td>33110363</td>
<td>203,6</td>
<td>219,6</td>
<td>5,9</td>
<td>0,483</td>
<td>451,6</td>
<td>0,5</td>
<td>50</td>
<td>50</td>
<td>21,899</td>
<td>17,52</td>
</tr>
<tr>
<td>33110364</td>
<td>542,5</td>
<td>217,3</td>
<td>8,8</td>
<td>1,002</td>
<td>217,9</td>
<td>1,5</td>
<td>35</td>
<td>35</td>
<td>9,642</td>
<td>14,833</td>
</tr>
<tr>
<td>33110365</td>
<td>492,0</td>
<td>217,0</td>
<td>7,0</td>
<td>1,271</td>
<td>171,7</td>
<td>56,6</td>
<td>50</td>
<td>50</td>
<td>7,495</td>
<td>11,531</td>
</tr>
<tr>
<td>33110366</td>
<td>409,4</td>
<td>218,5</td>
<td>8,4</td>
<td>0,807</td>
<td>270,5</td>
<td>2,8</td>
<td>50</td>
<td>50</td>
<td>0,914</td>
<td>1,075</td>
</tr>
<tr>
<td>FD3044</td>
<td>270,3</td>
<td>220,1</td>
<td>5,6</td>
<td>0,564</td>
<td>365,7</td>
<td>1,1</td>
<td>50</td>
<td>16</td>
<td>11,864</td>
<td>6,591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Förbättring*</th>
<th>Försämring*</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%) Toalt spänningsfall</th>
<th>Förimpedans (Ω)**</th>
<th>Jordslutningsström (A)</th>
<th>Utf.tid (s)**</th>
<th>Matande säkring (A)</th>
<th>Överlastsskydd (A)</th>
<th>I (A)</th>
<th>Ibel/Imax (%) Belastningsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110358</td>
<td>5,58</td>
<td>0,488</td>
<td>147,6</td>
<td>229,5</td>
<td>0,6</td>
<td>0,272</td>
<td>721,7</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>16,436</td>
<td>13,045</td>
</tr>
<tr>
<td>33110359</td>
<td>5,57</td>
<td>0,291</td>
<td>501,8</td>
<td>227,8</td>
<td>1,4</td>
<td>0,517</td>
<td>379,8</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>5,291</td>
<td>4,2</td>
</tr>
<tr>
<td>33110360</td>
<td>6,48</td>
<td>0,58</td>
<td>604,0</td>
<td>226,6</td>
<td>1,9</td>
<td>0,539</td>
<td>364,2</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>12,975</td>
<td>19,511</td>
</tr>
<tr>
<td>33110361</td>
<td>7,26</td>
<td>0,909</td>
<td>757,1</td>
<td>225,6</td>
<td>2,3</td>
<td>0,731</td>
<td>288,4</td>
<td>0,5</td>
<td>35</td>
<td>35</td>
<td>12,354</td>
<td>9,805</td>
</tr>
<tr>
<td>33110362</td>
<td>5,04</td>
<td>0,196</td>
<td>179,9</td>
<td>229,0</td>
<td>0,8</td>
<td>0,46</td>
<td>426,7</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>8,112</td>
<td>12,199</td>
</tr>
<tr>
<td>33110363</td>
<td>5,12</td>
<td>0,098</td>
<td>231,6</td>
<td>229,2</td>
<td>0,8</td>
<td>0,385</td>
<td>509,3</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>10,006</td>
<td>7,941</td>
</tr>
<tr>
<td>33110364</td>
<td>5,15</td>
<td>0,384</td>
<td>569,2</td>
<td>227,0</td>
<td>1,7</td>
<td>0,618</td>
<td>317,4</td>
<td>0,2</td>
<td>35</td>
<td>35</td>
<td>9,229</td>
<td>7,325</td>
</tr>
<tr>
<td>33110365</td>
<td>5,33</td>
<td>0,6</td>
<td>605,2</td>
<td>227,1</td>
<td>1,6</td>
<td>0,671</td>
<td>292,4</td>
<td>0,3</td>
<td>35</td>
<td>35</td>
<td>7,161</td>
<td>5,683</td>
</tr>
<tr>
<td>33110366</td>
<td>5,15</td>
<td>0,366</td>
<td>399,4</td>
<td>226,2</td>
<td>1,2</td>
<td>0,441</td>
<td>445,1</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>0,875</td>
<td>1,315</td>
</tr>
<tr>
<td>FD3044</td>
<td>3,99</td>
<td>0,02</td>
<td>516,2</td>
<td>227,1</td>
<td>1,6</td>
<td>0,544</td>
<td>361,1</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>11,498</td>
<td>9,126</td>
</tr>
<tr>
<td>FD3044</td>
<td>-1,64</td>
<td>-0,544</td>
<td>516,2</td>
<td>227,1</td>
<td>1,6</td>
<td>0,544</td>
<td>361,1</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>11,498</td>
<td>9,126</td>
</tr>
</tbody>
</table>

*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall
**Grön/Röd avser godkänt resp. icke godkänt värde
Alternativa nätlösningar vid reinvestering

<table>
<thead>
<tr>
<th>T744 BUNÄSET FÖRE</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td></td>
<td>∆U/U (%)</td>
<td>Förimpedans</td>
</tr>
<tr>
<td>33110482</td>
<td>253,7</td>
<td>227,0</td>
</tr>
<tr>
<td>33198326</td>
<td>303,0</td>
<td>226,9</td>
</tr>
<tr>
<td>33202650</td>
<td>277,5</td>
<td>226,9</td>
</tr>
<tr>
<td>33205784</td>
<td>221,5</td>
<td>227,7</td>
</tr>
</tbody>
</table>

**Grön/Röd avser godkänt resp. icke godkänt värde

<table>
<thead>
<tr>
<th>EFTER</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Förbättring*</td>
<td>Försämring*</td>
</tr>
<tr>
<td></td>
<td>∆U/U (%)</td>
<td>Förimpedans</td>
</tr>
<tr>
<td>33110482</td>
<td>1,07</td>
<td>0,16</td>
</tr>
<tr>
<td>33198326</td>
<td>1,17</td>
<td>0,218</td>
</tr>
<tr>
<td>33202650</td>
<td>1,12</td>
<td>0,169</td>
</tr>
<tr>
<td>33205784</td>
<td>0,81</td>
<td>0,052</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T741 SANDMON FÖRE</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td></td>
<td>∆U/U (%)</td>
<td>Förimpedans</td>
</tr>
<tr>
<td>33110437</td>
<td>220,9</td>
<td>219,4</td>
</tr>
<tr>
<td>33110438</td>
<td>525,9</td>
<td>219,0</td>
</tr>
<tr>
<td>33110439</td>
<td>177,9</td>
<td>221,2</td>
</tr>
<tr>
<td>33110441</td>
<td>280,8</td>
<td>220,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFTER</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Förbättring*</td>
<td>Försämring*</td>
</tr>
<tr>
<td></td>
<td>∆U/U (%)</td>
<td>Förimpedans</td>
</tr>
<tr>
<td>33110438</td>
<td>1,32</td>
<td>0,356</td>
</tr>
<tr>
<td>33110439</td>
<td>0,42</td>
<td>0,179</td>
</tr>
<tr>
<td>33110441</td>
<td>0,98</td>
<td>0,088</td>
</tr>
</tbody>
</table>

*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall
**Grön/Röd avser godkänt resp. icke godkänt värde
Alternativa nätlösningar vid reinvestering

Bilaga I:5

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%)</th>
<th>Totalt spänningsfall</th>
<th>Förrimpedans (Ω)**</th>
<th>Jordslutningsström (A)</th>
<th>Ut. tid (s)**</th>
<th>Matande säkring (A)</th>
<th>Överlastskydd (A)</th>
<th>Ib/l/Imax (%</th>
<th>Belastningsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110007</td>
<td>306,9</td>
<td>216,7</td>
<td>2,6</td>
<td>0,77</td>
<td>283,6</td>
<td>0,4</td>
<td>35</td>
<td>35</td>
<td>10,081</td>
<td>7,201</td>
<td></td>
</tr>
<tr>
<td>33110008</td>
<td>140,1</td>
<td>219,3</td>
<td>1,4</td>
<td>0,397</td>
<td>549,2</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>4,216</td>
<td>4,437</td>
<td></td>
</tr>
<tr>
<td>33110009</td>
<td>152,7</td>
<td>218,3</td>
<td>1,8</td>
<td>0,432</td>
<td>505,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>15,529</td>
<td>16,347</td>
<td></td>
</tr>
<tr>
<td>33110010</td>
<td>238,3</td>
<td>217,1</td>
<td>2,4</td>
<td>0,669</td>
<td>326,2</td>
<td>0,2</td>
<td>35</td>
<td>35</td>
<td>15,165</td>
<td>17,841</td>
<td></td>
</tr>
<tr>
<td>33110011</td>
<td>236,3</td>
<td>214,5</td>
<td>3,6</td>
<td>1,029</td>
<td>212,2</td>
<td>1,7</td>
<td>35</td>
<td>35</td>
<td>16,21</td>
<td>24,938</td>
<td></td>
</tr>
<tr>
<td>33110012</td>
<td>339,0</td>
<td>212,6</td>
<td>4,4</td>
<td>1,467</td>
<td>138,6</td>
<td>16,0</td>
<td>35</td>
<td>35</td>
<td>10,231</td>
<td>25,64</td>
<td></td>
</tr>
<tr>
<td>33195003</td>
<td>423,5</td>
<td>216,6</td>
<td>1,7</td>
<td>0,812</td>
<td>268,6</td>
<td>0,5</td>
<td>35</td>
<td>35</td>
<td>4,133</td>
<td>2,952</td>
<td></td>
</tr>
</tbody>
</table>

EFTER

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Förbättring*</th>
<th>Förslämn*</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%)</th>
<th>Totalt spänningsfall</th>
<th>Förrimpedans (Ω)**</th>
<th>Jordslutningsström (A)</th>
<th>Ut. tid (s)**</th>
<th>Matande säkring (A)</th>
<th>Överlastskydd (A)</th>
<th>Ib/l/Imax (%)</th>
<th>Belastningsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>33110007</td>
<td>1,49</td>
<td>0,243</td>
<td>461,5</td>
<td>228,4</td>
<td>1,1</td>
<td>0,527</td>
<td>372,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>9,639</td>
<td>11,016</td>
<td></td>
</tr>
<tr>
<td>33110008</td>
<td>1,33</td>
<td>0,042</td>
<td>119,9</td>
<td>230,9</td>
<td>0,0</td>
<td>0,355</td>
<td>553,4</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>0,505</td>
<td>0,577</td>
<td></td>
</tr>
<tr>
<td>33110009</td>
<td>1,00</td>
<td>0,073</td>
<td>207,9</td>
<td>229,0</td>
<td>0,8</td>
<td>0,359</td>
<td>547,3</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>14,802</td>
<td>11,748</td>
<td></td>
</tr>
<tr>
<td>33110010</td>
<td>1,42</td>
<td>0,21</td>
<td>434,4</td>
<td>228,7</td>
<td>1,0</td>
<td>0,459</td>
<td>427,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>9,318</td>
<td>10,649</td>
<td></td>
</tr>
<tr>
<td>33110011</td>
<td>2,38</td>
<td>0,492</td>
<td>336,0</td>
<td>228,2</td>
<td>1,2</td>
<td>0,537</td>
<td>365,3</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>8,696</td>
<td>6,902</td>
<td></td>
</tr>
<tr>
<td>33110012</td>
<td>3,05</td>
<td>0,859</td>
<td>399,1</td>
<td>227,8</td>
<td>1,4</td>
<td>0,628</td>
<td>312,4</td>
<td>0,3</td>
<td>35</td>
<td>35</td>
<td>9,547</td>
<td>1,577</td>
<td></td>
</tr>
<tr>
<td>33195003</td>
<td>1,41</td>
<td>0,421</td>
<td>353,2</td>
<td>230,3</td>
<td>0,3</td>
<td>0,391</td>
<td>502,1</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>3,905</td>
<td>5,873</td>
<td></td>
</tr>
<tr>
<td>33110437 [Sandman]</td>
<td>1,68</td>
<td>0,303</td>
<td>740,4</td>
<td>229,9</td>
<td>0,4</td>
<td>0,932</td>
<td>210,5</td>
<td>1,8</td>
<td>35</td>
<td>35</td>
<td>1,969</td>
<td>2,961</td>
<td></td>
</tr>
</tbody>
</table>

*Grönmarkerat = Förbättring, Rödmarkerat = Förslämn och av ser ändring av spänningsfall

**Grön/Röd av ser godkänt resp. icke godkänt värde
Alternativa nätlösningar vid reinvestering

<table>
<thead>
<tr>
<th>1704 HÅLJEBODAKLÄTTEN FÖRE</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td>33109994</td>
<td>611,7</td>
<td>193,4</td>
</tr>
<tr>
<td>33109998</td>
<td>96,2</td>
<td>209,2</td>
</tr>
<tr>
<td>33110000</td>
<td>197,9</td>
<td>206,3</td>
</tr>
<tr>
<td>33110001</td>
<td>155,4</td>
<td>209,1</td>
</tr>
<tr>
<td>33110002</td>
<td>148,2</td>
<td>208,1</td>
</tr>
<tr>
<td>33110003</td>
<td>158,9</td>
<td>206,6</td>
</tr>
<tr>
<td>33110005</td>
<td>323,6</td>
<td>206,0</td>
</tr>
<tr>
<td>33110006</td>
<td>411,4</td>
<td>204,9</td>
</tr>
<tr>
<td>33110007</td>
<td>205,9</td>
<td>207,4</td>
</tr>
<tr>
<td>FD25976</td>
<td>218,3</td>
<td>206,9</td>
</tr>
</tbody>
</table>

*Grönmärkat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall

<table>
<thead>
<tr>
<th>After</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Förbättring</td>
<td>Försämring</td>
</tr>
<tr>
<td>33109994</td>
<td>4,63</td>
<td>0,013</td>
</tr>
<tr>
<td>33109998</td>
<td>4,54</td>
<td>-0,004</td>
</tr>
<tr>
<td>33109999</td>
<td>5,64</td>
<td>-0,09</td>
</tr>
<tr>
<td>33110000</td>
<td>5,09</td>
<td>-0,014</td>
</tr>
<tr>
<td>33110001</td>
<td>4,44</td>
<td>-0,058</td>
</tr>
<tr>
<td>33110002</td>
<td>4,66</td>
<td>-0,009</td>
</tr>
<tr>
<td>33110003</td>
<td>4,77</td>
<td>-0,028</td>
</tr>
<tr>
<td>33110005</td>
<td>5,51</td>
<td>-0,047</td>
</tr>
<tr>
<td>33110006</td>
<td>5,57</td>
<td>-0,046</td>
</tr>
<tr>
<td>33110007</td>
<td>5,11</td>
<td>-0,129</td>
</tr>
<tr>
<td>FD25976</td>
<td>4,17</td>
<td>0,015</td>
</tr>
</tbody>
</table>

*Grönmärkat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall

**Grön/Röd avser godkänt resp. icke godkänt värde

Bilaga I:6
Alternativa nätlösningar vid reinvestering

<table>
<thead>
<tr>
<th>T891 NORRA HÄLJEBODA FÖRE</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td>33109995</td>
<td>1220,5</td>
<td>200,8</td>
</tr>
<tr>
<td>33109996</td>
<td>670,9</td>
<td>202,9</td>
</tr>
<tr>
<td>33109997</td>
<td>565,1</td>
<td>201,4</td>
</tr>
<tr>
<td>33211538</td>
<td>541,2</td>
<td>201,1</td>
</tr>
</tbody>
</table>

EFTER

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Förbättring*</th>
<th>Försämring*</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%)</th>
<th>Totalt spänningsfall</th>
<th>Förimpedans (Ω)</th>
<th>Jordslutningsström (A)</th>
<th>Utld (s)</th>
<th>Matande säkring (A)</th>
<th>Öv lastsskydd (A)</th>
<th>Belastningsgrad</th>
<th>Ibel/Imax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33109995</td>
<td>6,71</td>
<td>1,23</td>
<td>796,6</td>
<td>229,5</td>
<td>0,6</td>
<td>0,666</td>
<td>294,5</td>
<td>0,3</td>
<td>35</td>
<td>35</td>
<td>5,506</td>
<td>4,37</td>
<td></td>
</tr>
<tr>
<td>33109996</td>
<td>6,19</td>
<td>0,807</td>
<td>245,8</td>
<td>230,5</td>
<td>0,2</td>
<td>0,265</td>
<td>739,9</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>1,149</td>
<td>2,134</td>
<td></td>
</tr>
<tr>
<td>33109997</td>
<td>6,15</td>
<td>0,676</td>
<td>113,7</td>
<td>229,9</td>
<td>0,9</td>
<td>0,504</td>
<td>399,4</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>10,805</td>
<td>16,248</td>
<td></td>
</tr>
<tr>
<td>33211538</td>
<td>6,14</td>
<td>0,669</td>
<td>91,2</td>
<td>228,5</td>
<td>1,1</td>
<td>0,414</td>
<td>474,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>16,898</td>
<td>25,411</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T791 HÄLJEBODA FÖRE</th>
<th>LEVERANSPUNKT</th>
<th>LEDNINGAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveranspunkt</td>
<td>Avstånd (m)</td>
<td>U (V)</td>
</tr>
<tr>
<td>33109947</td>
<td>430,0</td>
<td>209,6</td>
</tr>
<tr>
<td>33109948</td>
<td>393,7</td>
<td>202,8</td>
</tr>
<tr>
<td>33109949</td>
<td>345,3</td>
<td>202,4</td>
</tr>
<tr>
<td>33109950</td>
<td>148,4</td>
<td>209,9</td>
</tr>
<tr>
<td>33109951</td>
<td>167,2</td>
<td>209,5</td>
</tr>
<tr>
<td>33109952</td>
<td>42,7</td>
<td>216,9</td>
</tr>
</tbody>
</table>

EFTER

<table>
<thead>
<tr>
<th>Leveranspunkt</th>
<th>Förbättring*</th>
<th>Försämring*</th>
<th>Avstånd (m)</th>
<th>U (V)</th>
<th>∆U/U (%)</th>
<th>Totalt spänningsfall</th>
<th>Förimpedans (Ω)</th>
<th>Jordslutningsström (A)</th>
<th>Utld (s)</th>
<th>Matande säkring (A)</th>
<th>Öv lastsskydd (A)</th>
<th>Belastningsgrad</th>
<th>Ibel/Imax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33109947</td>
<td>4,50</td>
<td>1,024</td>
<td>90,4</td>
<td>229,6</td>
<td>0,6</td>
<td>0,271</td>
<td>724,4</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>14,9</td>
<td>27,6</td>
<td></td>
</tr>
<tr>
<td>33109948</td>
<td>7,89</td>
<td>0,929</td>
<td>30,2</td>
<td>230,3</td>
<td>0,3</td>
<td>0,173</td>
<td>1134,1</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>14,1</td>
<td>21,1</td>
<td></td>
</tr>
<tr>
<td>33109949</td>
<td>4,98</td>
<td>0,4</td>
<td>325,6</td>
<td>223,2</td>
<td>3,4</td>
<td>0,596</td>
<td>329,2</td>
<td>0,2</td>
<td>35</td>
<td>35</td>
<td>22,7</td>
<td>34,2</td>
<td></td>
</tr>
<tr>
<td>33109950</td>
<td>2,65</td>
<td>0,007</td>
<td>199,5</td>
<td>225,6</td>
<td>2,3</td>
<td>0,427</td>
<td>459,9</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>10,6</td>
<td>15,9</td>
<td></td>
</tr>
<tr>
<td>33109951</td>
<td>2,64</td>
<td>-0,001</td>
<td>220,8</td>
<td>225,2</td>
<td>2,5</td>
<td>0,512</td>
<td>383,6</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>11,5</td>
<td>21,3</td>
<td></td>
</tr>
<tr>
<td>33109952</td>
<td>-0,957</td>
<td>-0,308</td>
<td>313,3</td>
<td>224,7</td>
<td>2,7</td>
<td>0,502</td>
<td>390,7</td>
<td>0,1</td>
<td>35</td>
<td>35</td>
<td>16,8</td>
<td>13,3</td>
<td></td>
</tr>
</tbody>
</table>

*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall
**Grön/Röd avser godkänt resp. icke godkänt värde

Lev eranspunkt

Över av stånd (m)
U (V)
∆U/U (%) Totalt spänningsfall
Förimpedans (Ω)
Jordslutningsström (A)
Utl.tid (s)
Matande
säkring (A)
Öv erlastsskydd (A)
I (A)
Ibel/Imax (%)
Belastningsgrad

*Grönmarkerat = Förbättring, Rödmarkerat = Försämring och avser ändring av spänningsfall
**Grön/Röd avser godkänt resp. icke godkänt värde