The automatic manufacturing processes – the technique of controlling a mobile robot

Christian Olsson

2010-10-12
Abstract

In today's industry it is of mayor concern to keep the manufacturing processes as effective and flexible as possible. The usage of robots and automatic technology is a much known way to achieve the goals of rationalization. The disadvantage lays in the fact that implementation of robots is usually a very resource consuming task. However, in some circumstances a solution to this matter may be to simply implement mobile robots instead of fixed robots.

The task of this project is to successfully control and understand the system of a mobile robot in a automatic manufacturing process.
Preface

For me to take part in this project would never have been possible if it was not for the collaboration between University West and Shanghai University of Engineering Science. My unconditional thanks for giving me this opportunity goes here by to all the staff at both universities International Office and to all teachers and professors involved.

Christian Olsson
Contents

1. Introduction .. 1
 1.1 Background .. 1
 1.2 Purpose .. 1
 1.1 Limitation .. 2

2. Technology .. 3
 2.1 Equipment .. 3
 2.1 System map .. 4
 2.1 Profibus I/O ... 6

3. Control Theory .. 7
 3.1 Hardware ... 7
 3.2 Software ... 8

4. Programming and testing .. 10

5. Results and conclusions .. 12

6. References .. 14

Appendix

A. Sample codes ... 16
B. Mobile robot code .. 18
C. Action diagram .. 19
D. System sketch .. 20
E. Dictionary .. 21
1 Introduction

1.1 Background

Today's necessities in the competition of the manufacturing industry are to be flexible to the always changing market conditions. In the field of automation technology it can at times seem like it is almost impossible to keep up to date with all the latest development, and if a company would allow them self to fall back its application of new technology will be sure to soon find itself incapable of meeting its clients demands. As of result of this many companies will today show great interest in investing in the modern advanced systems, very often together with a flexible solution to produce different types of products all in the same production line. In the flexible systems, often referred as Flexible Manufacturing Systems (FMS), there are a lot of advantages such as faster production rate, lower cost/unit, and greater labor productivity. Another important matter today is the level of automation, the higher level of automation will result in also a higher level of rationalization the production may reach, and even some applications such as the Automatic Manufacturing Process (AMP) are not far from completely automated.

In these systems implementing industrial robots is of great importance, however rather than implementing many robots, in some cases just one mobile robot can successfully do the job of many fixed robots.

An automated manufacturing process located at the laboratory of Shanghai University of Engineering Science (SUES) consists of high-technology systems which are to produce diversified products at an effective rate. One part of this system is a mobile robot located on a rail between two very essential positions in the production. The first position (often referred as the home position) is located within reach for a conveyor and a lathe machine, at this station the mobile robot is suppose to grab items from the conveyor belt and do some various operations and processing in the lathe machine. Further along the rail there is a second position, were a CMM (Coordinate-measuring machine) and a milling machine is reachable for the robot.

1.2 Purpose

The goal of this project is to successfully control and understand the system of a mobile robot in a given manufacturing process. The task includes both studies on software and hardware level. The hardware structure includes a two-layered control system, I/Os, Proﬁbus (Process Field Bus) and Ethernet wiring. The software level consists of computer communication and the comprehensive Proﬁbus system with an integrated script language which are to be used for controlling the processes.
Secondly, the project also includes related theory regarding different control systems and their flaws and faults.

1.3 Limitations

The mobile robot has its main objective in the manufacturing process, for the operations between the lathe and the milling machine, therefore the thesis is limited to this specific task and nothing else.

In fact, the robot has already been controlled successfully before in a number of operations. The process is fairly well documented. However there is another rather big limitation, it’s within the fact that the script language and the documentation are both in Chinese. Therefore, the translation from Chinese to English is a necessary part of the whole project’s research. See Appendix A for some of the translated documentation and sample codes.
2 Technology

2.1 Equipment

The mobile robot is fundamentally contained of a robot arm fixed on a platform which is mounted to a horizontal rail. The robot model is a NX100 by Japanese robot manufacturer Motoman. The platform is controlled by a motion card by Chinese company GOOGOL Technology Limited. The mobile robot in all is controlled by the Profibus to move between the station of the lathe machine, milling machine, CMM and a conveyor belt.

The conveyor is connected to a chain of conveyors, which are all leading to a warehouse for storage. The last conveyor just before the warehouse is equipped with a vision system followed by an engraving laser and a carving laser. The vision system is for material identification, while the engraving laser is used for engraving different designs in the item and the carving laser is used for carving text on the items surface. For a graphical view of all the equipments see the sketch in appendix C and some snapshots see Figure 1.

Figure 1: The first figure is the upper computers, the figure to left from back is the warehouse followed by the conveyors, third one is a view of the client computers and the fourth figure is the original sketch of the system map.
Most of the components and devices such as the conveyors and lasers are connected to the Profibus I/O box and working directly under the Profibus interface. See Figure 1 for a detailed list regarding the Profibus I/O's.

The sub-computers of the system are another important part of the equipment. They are used to program the Profibus scripts. The programming language is completely integrated in the Profibus software, which means the scripts must be programmed locally in the computers in the laboratory.

Another type of computer used in this manufacturing process is the upper computer, were debugged and readymade scripts can be executed and tested on the real system.

The upper computer also holds the important task of monitoring and managing the sub-systems and processes which are working beneath it.

One of the systems that are directly controlled by the upper computers is the warehouse. The system of the warehouse consists of sub-systems, such as the Production Management System (PMS) for production and order management, and Manufacturing Execution System (MES) for managing the production line's work-in-processes. For a map of the computers and the system in whole, see Figure 1.
2.2 System map

The following is the network topology of the system. It goes from the database through the server, the upper computers, clients and at last out to the components. The communication is done with different types of technology; both Profibus own buses and also with the Ethernet technology. Since the protocol Profibus-DP can make use of the IEEE 802.2, the system is also compatible working together with Ethernet networks. [5]

![System map diagram](image)

Figure 2: From the top, the server system and the upper computers, controlling the sub-systems and components through the bus net of Ethernet and Profibus.
2.3 Profibus I/O

Table 1 consists of all the mayor components of the automatic manufacturing process. Number 1-11 is the machines and robots used for processing, 12-16 is all conveyor related technology and 17-18 is the central control part for the mobile robot.

Table 1: The following is the input/output of the Profibus system.

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CNC lathe machine</td>
</tr>
<tr>
<td>2</td>
<td>Automatic welding machine</td>
</tr>
<tr>
<td>3</td>
<td>Arc welding robot</td>
</tr>
<tr>
<td>4</td>
<td>Unloading robot</td>
</tr>
<tr>
<td>5</td>
<td>Mobile robot</td>
</tr>
<tr>
<td>6</td>
<td>CNC drilling and milling center</td>
</tr>
<tr>
<td>7</td>
<td>Laser carving machine</td>
</tr>
<tr>
<td>8</td>
<td>CNC cutting machine</td>
</tr>
<tr>
<td>9</td>
<td>Laser engraving machine</td>
</tr>
<tr>
<td>10</td>
<td>Robot motion mechanism</td>
</tr>
<tr>
<td>11</td>
<td>Coordinate measuring machine (CMM)</td>
</tr>
<tr>
<td>12</td>
<td>Automatic push stacking machine</td>
</tr>
<tr>
<td>13</td>
<td>Conveyor lines</td>
</tr>
<tr>
<td>14</td>
<td>I/O modules for control cabinet</td>
</tr>
<tr>
<td>15</td>
<td>Automatic stacker</td>
</tr>
<tr>
<td>16</td>
<td>Conveyor lines</td>
</tr>
<tr>
<td>17</td>
<td>Robot motion mechanism</td>
</tr>
<tr>
<td>18</td>
<td>Module control cabinet</td>
</tr>
</tbody>
</table>
3 Control Theory

3.1 Hardware

The manufacturing process is controlled by a distributed control system (DCS) which is a system divided into a two-layer system communicated by TCP/IP over Ethernet. It has a monitor computer which is designed to supervise the process while sub-computers simultaneously control the I/O devices by the fieldbus called Profibus.

DCS is a very wide term used in a variety of manufacturing industries, to monitor and control distributed equipment. It can be designed as open loop or closed or even both. These systems consist of a number of controllers connected to a field bus i.e. in this case the Profibus. It mostly serves to control, large scale system like production lines in factories, airplane, oil terminals, airport earth services and unified power systems. [1], [13]

A distributed communication system works as a peer-to-peer network where the entire system is connected for communication and monitoring. This can cause some difficulties during the designing, debugging and testing since the system is in need of a quite comprehensives global vision at design time. [4]

Although, what’s much more important is the fact that it will give a big advantage over other control systems. For example, if a component or a sub-system is malfunctioning the maintaining system can still operate since the system is only losing a branch of a possible many. Especially, it has advantages over the centralized control system where everything is trusted to be controlled directly by only one layer, (centralized just like a brain) while in a distributed control system the components’ sub-system is all in different layers. What’s more, since the sensors/actuators are shared by all the processing nodes and still controls a part of the control process, it will eliminate the need for any kind of sensor/actuator redundancy. Redundancy may only be needed to improve the reliability of the whole control system. [4], [10]

Using a centralized control system can involve some various problems. First of all the point-to-point connection principle may result in very complex wiring since each and every sensor/actuators need their own cables. Another problem of this great amount of cables is difficulties in maintenance and documentation of the communication system. Secondly, the closed nature of a centralized architecture generally results in difficulties when upgrading the system to meet new requirements. Nowadays, there are actually still industrial plants with centralized configurations out there. For projects with more simple applications contained by limited numbers of sensors/actuators this type of solution can quite work. [4], [10], [12]
Distributed control systems dissent in terms of usage and scale. Smaller scale may consist of only a single programmable logic controller (PLC) connected to an upper computer. Bigger, more advanced DCS setups are also often PLC-based, but usually use computers for subsystems that provides both I/O and computer communication. Also, the control system may work under one or several workstations (usually computers) and can be configured at the workstation or by an external computer connected to a network. [3], [4]

When talking about the hardware aspect of a control system the communication between the devices is a main issue. In a control system with a fieldbus an operator can easily communicate from his own workstation with all the systems other devices, making it possible to keep the workstation detach from the rest of the hardware architecture. In the end it will make a lot simpler topology and also make the development of the various components more independent. When the situation demands it the components can be reprogrammed through the fieldbus to adapt them to new functions by downloading new configuration software. The fieldbus permits the excessively large variety of I/O cards which is required for specialized control systems to be reduced since the information flow within sensors and actuators is now in digital. A standard interface with the fieldbus will successfully replaces the need of various I/O cards. [4], [11]

Fieldbuses like the Profibus fits in well with the trend in the modern industry, increasing the development of intelligent devices for process control and rationalizing the devices already available. The intelligent device allows distributed control systems and there processing function to be performed without using stand-alone controllers, which will therefore be used much less in the future control system. In this way, a sensor and an actuator can be used to perform closed-loop control with reduced expenses. [4], [6], [8], [11]

Another advantage within the fieldbus is the intelligent field devices self-diagnose system, a system where the hardware is continuously controlling its own state of health. This will result that in an event of a fault the device will notify its state through the fieldbus making the whole system aware of it. Since that, the designers can already in the design stage take in account the safety shut down principles which ensure maintenance of a safe condition even on the occurrence of any serious faults. [4], [7]

3.2 Software

The given manufacturing process is using the Profibus software to manage both servers and clients, as well as managing I/O's, verifying protocols and script coding. Distributed control systems usually contain of comprehensive software system to connect and control the hardware like this.

This Profibus system belongs to the protocol standard Profibus DP. (Decentralized Peripherals) The type is usually used in high-speed data communication between automatic
control system and its devices. The Profibus DP protocol consists of three possible types of devices that can be part of the network, Class 1 masters which are ordinary control devices like PLCs, PCs and CNCs. Class 2 masters is used for network configurations and administrations tasks. The last one is the slaves, they are the I/O devices employed to connect the interface with the plant. [2], [5], [6]

Most commonly the software part of the DCS-system will include a central control panel and remote control panel, or as some suppliers refer to it, as a remote transmission unit (RTU) or a digital communication unit (DCU). No matter of the title, remote control panels consists of terminal blocks, I/O modules, a processor and a communications interface. In addition, the software uses a process-control system and an I/O database. The I/O database is to store and manage the I/O data, while the specialized process-control system can read the I/O database's predefined inputs and outputs, for example. [3]

The DCS-system proves to work very effectively in manufacturing processes with large amounts of inputs and outputs. Commonly, the systems have database servers where a large amount of I/O, process and storage data can be stored and later accessed and processed by other clients in the system. [4]

About the I/O, the computer usually receives information first from input modules and then sends information or instructions to output modules. In detail, when the input modules receive information from input components in the process, it will then transmit the instructions to the output components.

Central to the DCS is the usage of control function blocks, which stands as the most dominating method of control for DCS suppliers. A function block is a self contained "block" of codes that emulate analog hardware control components and performs task that are essential to process control, such as PID (proportional–integral–derivative) algorithms. The function blocks are fully supported by important technologies such as the digital two-way communications system Foundation Fieldbus, although it’s function blocks are much more suitable for process control then for example discrete control of manufacturing. [2], [8], [9]
4 Programming and testing

The process of writing codes often requires knowledge in many different subjects such as algorithms, application domain and formal logic. But in this case a completely other aspect appeared, the language. The script code of the Profibus is in matter of a fact all in Chinese. Everything from components and parameters to some of the logical conjunction, are all displayed in Chinese. Not to mention the code editor to write and import functions, see Figure 4. With this in mind all the words and phrases had to be translated completely, not an entirely easy task since tools like software and internet based dictionaries doesn’t always give a very correct translation from Chinese to English. Luckily there was assistance to get so the project work could continue smoothly.

After studying the script language for a while it all started to make sense. It really does work great controlling bigger comprehensive systems and it has a great share of flexibility when it comes to dealing with different tasks.

When finished translating the code editor and a lot of scripts, the actual programming and testing could finally take part. At first there were some execution and configuration problems with the Profibus software and therefore the progress was quite slowly. But after a while of studying, and a while of waiting, the system was running and it was finally possible to try some codes out.

The first codes was basically just some simple commands to find the robots home position, check components statuses, import and export components data packages and also some other simple functions. All the programming code as well as the functions could be found in older already used application, so studying them helped a lot. However studying the documentation and some plain trial and error was still necessary to be able to understand the Chinese programming language of Profibus. See Figure 3 for a view over the Profibus editor.

In the first trial of the code there were a few errors and the robot wouldn’t move at all. The most errors was related to the mobile robots positioning on the rail, in an application it’s necessary to continuously report back from the hardware where the robot currently is to avoid physical collisions and problems. Yet by this way it might cause a lot of problem if the reports from the hardware are misinterpreted or wrong. Actually in the mobile robot application there occurred a few problems like this, in the laboratory the computer clients are all connected with some certain devices and they have their own configuration to work after, but with slightly changes in one clients settings can cause a lot of misunderstanding for others, or even for the whole Profibus system in matter of fact. So when trying a lot of experimental configurations and also programming the application at the same time the results wasn’t always very rational. For example one client occupies the robot with a process and another client (and the user for the matter of fact) isn’t aware of the matter
then the result is just loads of status errors when the two signals collide. This type of problem comes in many forms and usually requires a lot of trouble shooting to solve. The action diagram gives an idea about how often the components have to inform its current status to the system.

Figure 3: A cut-out from Action Diagram, Appendix D.

Then after successfully controlling the mobile robots motion mechanism the next step was implementing the milling and the lathe part, these parts were also included with interaction from the mobile robots manipulator arm, as well as the milling and lathe machines connected through I/O communication. This was followed by some further testing and alteration of the code which then would result in the very final code of the mobile robot.

Figure 4: A close up on the Profibus editor.
5 Results and conclusions

To create a program from scratch to control a system of this magnitude and complexity requires tremendous amount of work and time. Therefore the value of a functioning program like Profibus values high. In the very beginning of the project there was an actual plan to try to do an exception from the Profibus software and create a standalone application to control the mobile robot. The idea was to create an application in C++ and then use Dynamic-link library (DLL) to call commands to the motion card through either Ethernet or Profibus communication. It is a possible way to control the mobile robot in this way of course; if there was time, right preparation and a more familiar setting to do such a project it could have been a good way. Unfortunately there wasn't much time, after arriving to Shanghai and later receiving the project the timetable didn't turn out to be suitable at all for the first plan. No harm done, the second plan took place and the work of learning and programming the Profibus started.

The task to successfully understand the system of the mobile robot ended up to taking a lot more time than the actual process of programming and testing it. There were a lot of recommended manuals to read, both about the motion card and the Motoman robot, manuals considering I/O, electrical wirings and software solutions. Reading the documentation was very enlightening and it helped a lot to understand the foundation of the system. However in the end, Profibus's own material turned out to be the most helpful tool for the actual programming of this project. Fortunately hardware configurations weren't necessary for this study, understanding the hardware was enough work already, the Profibus had already been configured up to handle the hardware aspects such as the data transmission and the network connectivity for example.

It took a fair amount of time getting started with the actual programming and the testing, partly because the need of a teachers assistances to get started and also sometimes simply lack of knowledge. There were some problems with e.g. which computer belonging to which sub-system and how to set up the systems different configurations. Even though I did document and translate a lot of the environment in the manufacturing process, both the hardware and the software aspects, translating everything would have been completely impossible considering the time schedule. With other words language problems were not an uncommon occurrence during the project. Nevertheless, most of the problems were overcome fairly soon after they appeared.

The result of planning and executing the project was overall a very constructive and instructive experience. Studying the different parts of the manufacturing process gave a very wide view of how the system works. But also, the study gave a lot of insight in specific sub-systems and components of the process such as the control system and the motion card.
The most interesting part of this project must be the fact that it is collaboration between two universities from two different countries, both very geographically and cultural far from each other. But not to forget the fact that we all share a lot of interests together, regarding many things, technology and engineering is just one examples of this. With China's longtime fast industrial development and Sweden's innovative solutions and products, there are a lot of reasons for both sides to exchange knowledge and experiences with each other. It is a promising step towards the future industrial science.

Personally, I think staying in the laboratory of SUES gave me a good picture of modern research and development in the fields of robotics and mechatronics. The experimental research of an automatic manufacturing processes, included with robots, a distributed control system and other high-technology components, state as a good example for the fact that the industry is only heading for more and more intelligent systems and solution to improve the processes of manufacturing. This is what many manufacturers all over the world are working on to successfully accomplish, commonly with their main goal to reduce the need for human intervention and simply maximizing the profits. Although it is important to not forget that in many cases the use of humans is just far more cost-effective than implementing automatic technology, even when automation of industrial tasks is possible.

Even so, nothing can prevent the fact that automation plays a longtime important and increasing role in the world economy.
6 References

A. Sample codes

1.1 出货台 //Output of the warehouse.
1 //出货台
2 ResRequest 出货台 //Request resource of the warehouse output.
3 WaitIO[出货台,出货台-货物抵达,1] //Awaits the goods arrival to the dock.
4 SetDelay 4000
5 ResRequest 滚筒线 1-工位 1 //Request resource of Roller line 1 station 1.
6 SetIO[出货台,出货台-货物入线,1] //Awaits the goods to enter the Roller line 1.
7 SetIO[出货台,出货台-电机转动,0] //Stop the motor of the warehouse output.

1.2 滚筒线 1-顶升平移机-复位 //Roller line 1 – Resetting the Lifting machine.
1 //滚筒线 1-顶升平移机-复位
2 SetIO[滚筒线-1,滚筒线 1-顶升平移机-动作-上升,0] //Setting the Lifting machine ascending to off.
3 SetIO[滚筒线-1,滚筒线 1-顶升平移机-动作-下降,1] //Setting the Lifting machine descending to on.
4 SetIO[滚筒线-1,滚筒线 1-顶升平移机-电机转动,0] //Starting the motor of the Lifting machine motor.
6 ResRelease 滚筒线 1-工位 1 //Releasing resource of Roller line 1 station 1.

1.3 滚筒线 1-运送-机械加工 //Roller line 1 - A convey operation.
1 //滚筒线 1-运送-机械加工
2 WaitIO[滚筒线-1,滚筒线 1-货物抵达-工位 1,1] //Awaits the goods arrival at Roller line 1 station 1.
3 SetIO[滚筒线-1,滚筒线 1-工位 1-阻挡,1] //Setting Roller line 1 station 1 on hold on.
4 SetDelay 3000
5 ResRequest 滚筒线 4-工位 1 //Request resource of Roller line 4 station 1.
6 SetIO[滚筒线-1,滚筒线 1-顶升平移机-动作-下降,0] //Setting the Lifting machine descending to on.
7 SetIO[滚筒线-1,滚筒线 1-顶升平移机-动作-上升,1] //Setting the Lifting machine ascending to off.
8 SetDelay 3000
9 SetIO[滚筒线-1,滚筒线 1-运送-电机转动,1] //Starting the motor of the Lifting machine.
10 WaitIO[滚筒线-1,滚筒线 1-货物入线,1] //Await the goods to enter Roller line 1.
11 SetIO[滚筒线-1,滚筒线 1-工位 1-阻挡,0] //Hold on Roller line 1.
12 CallChildScript[滚筒线-1-运送] //Call the script of resetting the Lifting machine.

1.4 滚筒线 1-运送-激光加工 //Roller line 1 - Convey - Laser processing.
1 //滚筒线 1-运送-激光加工
2 WaitIO[滚筒线-1,滚筒线 1-货物抵达-工位 1,1] //Await the arrival of goods at the Roller line 1, station 1.
3 SetIO[滚筒线-1,滚筒线 1-工位 1-阻挡,1] //When the arrival of goods occurred hold-up the Roller line 1.
4 ResRequest 滚筒线 1-工位 2 //Request resource of Roller line 1 station 2.
5 SetIO[滚筒线-1,滚筒线 1-工位 1-阻挡,0] //Remove the hold on of Roller line 1 station 1.
6 WaitIO[滚筒线-1,滚筒线 1-货物抵达-工位 1,0] //Await the arrival of goods to finish.
7 WaitIO[滚筒线-1,滚筒线 1-货物抵达-工位 2,1] //Await the arrival of the above mentioned goods to reach
 //station 2.
8 ResRelease 滚筒线 1-工位 1 //Release resource of Roller line 1 station 1.
9 ResRequest 转角机 1 //Request resource of Right-angle Corner Platform 1.
10 SetIO[转角机-1,转角机 1-旋转-顺时针,0] //Set clockwise rotation of Right-angle Corner Platform 1 on.
11 SetIO[转角机-1,转角机 1-旋转-逆时针,1] //Set the counterclockwise rotation of Right-angle Corner Platform 1 off.
12 WaitIO[转角机-1,转角机 1-到位-逆时针,1] //Await Right-angle Corner Platform 1 to reach the counterclockwise rotation.

1.9 滚筒线 3-运送 //Roller line 3 – Convey.
 1 //滚筒线 3-运送
 2 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 1,1]//Await the arrival of goods at Roller line 3 station 1-
 3 ResRequest 滚筒线 3-工位 2 //Request resource of Roller line 3 station 2.
 4 SetIO[滚筒线-3,滚筒线 3-工位 1-放行,1] //Give clearance to Roller line 3 station 3.
 5 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 1,0]//Await the arrival of goods to finish at Roller line 3 station 1.
 6 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 2,1]//Await the outlet of goods at Roller line 3 station 2.
 7 SetIO[滚筒线-3,滚筒线 3-工位 1-放行,0] //Remove clearance from Roller line 3 station 3.
 8 SetIO[滚筒线-3,滚筒线 3-工位 2-阻挡,1] //Set Roller line 3 station 2 on hold.
 9 ResRelease 滚筒线 3-工位 1 //Release resource from Roller line 3 station 1.
 10 ResRequest 滚筒线 3-工位 3 //Request resource from Roller line 3 station 3.
 11 SetIO[滚筒线-3,滚筒线 3-工位 2-阻挡,0] //Remove Roller line 3 station 2 from on hold.
 12 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 2,0]//Await the arrival of goods to finish at Roller line 3 station 2.
 13 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 3,1]//Await the outlet of goods at Roller line 3 station 3.
 14 SetIO[滚筒线-3,滚筒线 3-工位 3-阻挡,1] //Set Roller line 3 station 3 on hold.
 16 ResRequest 入货台 //Request resource from warehouse input.
 17 SetIO[滚筒线-3,滚筒线 3-工位 3-阻挡,0] //Remove Roller line 3 station 3 from on hold.
 18 WaitIO[滚筒线-3,滚筒线 3-货物抵达-工位 3,0]//Await the arrival of goods to finish at Roller line 3 station 1.
 19 WaitIO[滚筒线-3,滚筒线 3-货物出线,1] //Await the outlet of goods at Roller line 3 station 3.
B. Mobile robot code

ResRequest 行走机器人
PfbDPSWaitByteEqual[机器人行走机构,状态,空闲]
SetVarValue[$目标位置,B;4]
PfbDPSend[机器人行走机构,移动到目标位置,$目标位置]
PfbDPSWaitByteEqual[机器人行走机构,状态,正在移动到目标位置]
PfbDPSWaitByteEqual[机器人行走机构,状态,空闲]
Plugin(数据处理，读取所有 DWORD, P$脚本入口参数, A: $主脚本线程号).
ResRequest 数控车床
TCPIPWaitByteEqual(数控车床，系统状态，空闲)
TCPIPSend(数控车床，液压卡盘-松开)
TCPIPWaitByteEqual(数控车床，系统状态，工作中)
TCPIPSend(行走机器人，切割件-机器人->车床)
TCPIPWaitByteEqual(行走机器人，系统状态，工作中)
TCPIPWaitByteEqual(行走机器人，系统状态，空闲)
TCPIPSend(数控车床，液压卡盘-紧)
TCPIPWaitByteEqual(数控车床，系统状态，工作中)
TCPIPWaitByteEqual(数控车床，系统状态，空闲)
TCPIPSend(行走机器人，机器人继续完成当前动作)
TCPIPWaitByteEqual(行走机器人，系统状态，工作中)
TCPIPWaitByteEqual(行走机器人，系统状态，空闲)
ResRelease 数控车床
PfbDPSWaitByteEqual[机器人行走机构,状态,空闲]
SetVarValue[$目标位置,B;3]
PfbDPSend[机器人行走机构,移动到目标位置,$目标位置]
PfbDPSWaitByteEqual[机器人行走机构,状态,正在移动到目标位置]
PfbDPSWaitByteEqual[机器人行走机构,状态,空闲]
Plugin(生产插件,工艺完成,P$生产工艺完成信息)
ResRequest 数控钻铣中心
TCPIPWaitByteEqual(数控钻铣中心，系统状态，空闲)
TCPIPSend(行走机器人，切割件-机器人->钻铣中心)
TCPIPWaitByteEqual(行走机器人，状态，工作中)
TCPIPWaitByteEqual(行走机器人，状态，空闲)
ResRelease 数控钻铣中心
PfbDPSWaitByteEqual[机器人行走机构,状态,空闲]
SetVarValue[$目标位置,B;1]
PfbDPSend[机器人行走机构,回零,$目标位置]
PfbDPSWaitByteEqual[机器人行走机构,状态,正在回零]
ResRelease 行走机器人
C. Action diagram

1. Request robot motion card data package.
2. Checking if robot available.
3. Robot is busy.
5. Sending destination to motion card and requesting lathe data package.
6. Checking if lathe machine is busy and if the system is in work mode.
7. Checking if robot has arrived at the lathe machine.
8. Lathe machine is busy.
9. Starting the lathe operation and the robot program for processing an item in the lathe machine.
10. Checking if the robot has finished and releasing the lathe data package.
11. Robot is busy.
12. Setting destination to B3 and sending it to the motion card.
13. Requesting the data package for the milling machine. Also checking if the milling machine is busy and if the system is in work mode.
14. Checking if the robot arrived at the milling machine.
15. Robot is busy.
16. Not there yet.
17. Starting the milling operation and the robot program for processing an item in the milling machine.
18. Checking if the robot has finished and releasing the milling machine data package.
19. Setting destination to B1 (home) and sending it to the motion card.
21. Not there yet.
22. Realising robot motion card data package.
D. System sketch
E. Dictionary

1. 设备号 - Device ID
2. 激光内雕机 - Inner laser engraving machine
3. 激光外雕机 - Outer laser engraving machine
4. 机器人行走机构 - Robot motion mechanism
5. 回零 - Go back to zero
6. 发送命令 - Send command
7. 工位 - Station
8. 加工 - Process
9. 停止 - Stop/Interuption
10. 启动 - Start/Trigger
11. 暂停 - Suspend/time out
12. 继续 - Continue/go on
13. 从故障中复 - Recovery from failures
14. 移动到原点位置 - Move to the origin location
15. 参数 - Parameter
16. 无 - Not have
17. 命令参数变量 - Command variables
18. 读取反馈至变量 - Read feedback to the variables
19. 等待反馈字节 - Wait for the feedback byte
20. 等待反馈字节值 - Wait for the feedback byte value
21. 空闲 - Leisure
22. 正在移动到目标位置 - Moving to the target location
23. 正在回零 - Moving to zero
24. 未就绪 - Not ready
25. 故障 - Failure
26. 无障碍 - No object/barrier free
27. 随机原点 - Random origin
28. 命令溢出 - Command overflow
29. GT控制器错误 - GT controller error
30. 无效的目标位置 - Invalid Destination
31. 等待字 - Wait for equality
32. 等待不等 - Wait for non equality
33. 等待位0 - Wait for bit values 0/1
34. 脚本入口参数 - Script input parameter
35. 机器人- Robot
36. 故障编码 - Encoder failed
37. 状态 - Status
38. 资源 - Resource
39. 定义资源 - Define resource
40. 资源号 - Resource number
41. 请求资源 - Request resources
42. 释放资源 - Release resources
43. 黄金资源状态到变量 - To obtain the resource status to variable
44. 脚本入口参数 - Script input parameter
45. 逻辑控制 - Logical Control
46. 插入标记 - Insert tag
101. 合式流水 – Conveyor belt
102. 机器人行走机构 – Mobile robot motion mechanism