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DOUBLE CALCULUS

Patrik Lundström

Abstract. We present a streamlined, slightly modified version, in the two-variable situation, of

a beautiful, but not so well known, theory by Bögel [1, 2], already from the 1930s, on an alternative

higher dimensional calculus of real functions, a double calculus, which includes many two-variable

extensions of classical results from single variable calculus, such as Rolle’s theorem, Lagrange’s mean

value theorem, Cauchy’s mean value theorem, Fermat’s extremum theorem, the first derivative test,

and the first and second fundamental theorems of calculus.

1 Introduction

The motivation for this article comes from the trivial observation that the difference
operator ∆ is connected to both the the derivative and the integral. To be more
precise, if f is a single variable real function, then f has derivative

f ′(a) = lim
b→a

∆b
a(f)

b− a

at a, if the limit exists exists, where ∆b
a(f) denotes f(b)−f(a), and if f is continuous,

then, by the fundamental theorem of calculus,∫ b

a
f(x) dx = ∆b

a(F ),

where F is a primitive function of f . A naive interpretation of this connection is
that it should, in theory, be possible to obtain higher-dimensional analogues of the
fundamental theorem of calculus by first defining a suitable difference operator given
by the multiple integral, over suitable domains, and then, by reverse engineering,
use this difference operator to define a derivative so that the fundamental theorem
of calculus holds.

It may come as a surprise to some readers, and it certainly did so for the author
of the present article, that Bögel [1, 2] already in the 1930s showed that it is indeed
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28 Patrik Lundström

possible, in any finite number of variables, to successfully carry out such a program.
Since this theory should be of high interest to students and instructors of calculus
in several variables, we have in this article produced an accessible and streamlined,
slightly modified version, of this program in the case of two variables, that is, a
theory of double calculus. Note that our notation, definitions, results and proofs, at
times, somewhat differs from the approach by Bögel [1, 2]. In the presentation we
therefore carefully point out whenever that happens.

The domains that Bögel considers are the natural two-dimensional analogues
of intervals, namely double intervals [a, b] = [a1, b1] × [a2, b2] where a = (a1, a2)
and b = (b1, b2) are points in R2 with a1 < b1 and a2 < b2. If f : [a, b] → R
is a continuous two-variable function, then, by iterated integration, it follows that∫∫

[a,b] f(x) dx1dx2 = F (b1, b2)− F (b1, a2)− F (a1, b2) + F (a1, a2) where F is a two-
variable function with the property that the iterated partial derivatives F12 and F21

exist and are equal to f on [a, b]. Therefore he defines the double difference operator
by ∆b

a(f) = f(b1, b2) − f(b1, a2) − f(a1, b2) + f(a1, a2) and he defines the double
derivative of f at a by f ′(a) = limx1→a1;x2→a2 ∆

b
a(f)/((b1 − a1)(b2 − a2)) when it

exists.
It turns out that the class of double differentiable functions thus obtained is

much richer than it’s one-dimensional counterpart. In fact, the class of double
differentiable functions contains many examples of functions that are not partially
differentiable and, in some cases, not even continuous. Indeed, if we pick any
functions g, h : R → R and define f : R2 → R by f(x) = g(x1) + h(x2) for x ∈ R2,
then ∆b

a(f) = 0 for all a, b ∈ R2 and hence f is double constant, that is f is
double differentiable with f ′ = 0. This has the unpleasant consequence that double
differentiable functions may be unbounded on compact subsets of R2. Therefore, we
can not expect to find a two-dimensional version of the Weierstrass extreme value
theorem to hold within this framework.

Here is a detailed outline of this article.
In Section 2, we fix the notation concerning double intervals and double functions.

We also show some elementary results that we need in subsequent sections.
In Section 3, we define the class of double continuous functions. We show that a

function which is double continuous on an interval is automatically globally double
continuous on that double interval. We also show a continuity result concerning the
double difference map that we need in the following sections.

In Section 4, we define (signed) double limits and (signed) double derivatives.
In analogue with the single variable situation, we show that double differentiable
functions are double continuous. Then we show double versions of Rolle’s theorem,
the mean value theorem, Fermat’s theorem and the first derivative test. At the end
of this section, we introduce double primitive functions.

In Section 5, we define the double Newton integral. Using the double mean value
theorem, we obtain a mean value theorem for double Newton integrals. After that,
we connect the double Newton integral to the Riemann double integral in the first
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Double Calculus 29

and second double fundamental theorems of calculus. At the end of this section,
we introduce improper double Newton integrals. We also discuss some examples of
double integrals over non-rectangular regions.

In Section 6, we discuss Bögels extensions of the results in this article to higher
dimensions, that is triple calculus, quadruple calculus and beyond. We also discuss
the possibility for a higher-dimensional version of Schwarz’s theorem and Darboux’s
theorem.

2 Double functions

In this section, we fix the notation concerning double intervals and double functions.
We also show some elementary results that we need in subsequent sections (see
Proposition 1 and Proposition 2).

Let N denote the set of positive integers. We let R denote the set of real numbers
and we put R2 := R × R. Let R+ and R− denote the set of positive real numbers
and the set of negative real numbers respectively; we put R2

++ := R+×R+, R2
+− :=

R+ × R−, R2
−+ := R− × R+ and R2

−− := R− × R−.
Suppose that a ∈ R2. We write a = (a1, a2) for a1, a2 ∈ R. More generally, if

A ⊆ R2, then we put A1 = {a1 | a ∈ A} and A2 = {a2 | a ∈ A}. Suppose that
b ∈ R2. Then we write a ∼ b if a1 = b1 or a2 = b2; a ≁ b if a1 ̸= b1 and a2 ̸= b2;
a < b if a1 < b1 and a2 < b2; a ≤ b if a1 ≤ b1 and a2 ≤ b2.

By a double interval we mean a subset I of R2 of the form I1 × I2 where I1 and
I2 are intervals in R. If I1 and I2 are open (closed, compact), then we say that I
is double open (double closed, double compact). If a, b ∈ R2 and a ≤ b, then we put
(a, b) = {x ∈ R2 | a < x < b} and [a, b] = {x ∈ R2 | a ≤ x ≤ b}.

By a double δ-neighbourhood of a we mean a set of the formD(a, δ) := (a−δ, a+δ)
for some δ ∈ R2

++. The signed double δ-neighbourhoods D++(a, δ), D−+(a, δ),
D−−(a, δ) and D+−(a, δ) are respectively defined as [a1, a1 + δ1) × [a2, a2 + δ2),
(a1− δ1, a1]× [a2, a2+ δ2), (a1− δ1, a1]× (a2− δ2, a2] and [a1, a1+ δ1)× (a2− δ2, a2].
By a double punctured δ-neighbourhood of a we mean a set of the form P (a, δ) := {x ∈
D(a, δ) | x ≁ a} for some δ ∈ R2

++. The signed double punctured δ-neighbourhoods
P++(a, δ), P−+(a, δ), P−−(a, δ) and P+−(a, δ) are defined as the intersection of
P (a, δ) with, respectively, D++(a, δ), D−+(a, δ), D−−(a, δ) and D+−(a, δ).

Let f denote a real-valued function with a domain D(f) which is a subset of
R2. In that case, we say that f is a double function. If a, b ∈ R2 are chosen so that
(b1, b2), (b1, a2), (a1, b2), (a1, a2) ∈ D(f), then we define the double difference of f
from a to b as the real number ∆b

a(f) := f(b1, b2)− f(b1, a2)− f(a1, b2) + f(a1, a2).
If I is a double interval contained in D(f), then we say that f is double constant on
I if ∆b

a(f) = 0 for all a, b ∈ I.

Proposition 1. Suppose that f is a double function which is defined on a double
interval I. Then f is double constant on I if and only if there are functions g : I1 →
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30 Patrik Lundström

R and h : I2 → R with f(x) = g(x1) + h(x2) for x ∈ I.

Proof. Suppose f is double constant on I. Take a ∈ I. Define g : I1 → R by
g(s) = f(s, a2) for s ∈ I1 and define h : I2 → R by h(t) = f(a1, t) − f(a1, a2) for
t ∈ I2. If x ∈ I, then:

f(x1, x2) = f(x)− 0 = f(x1, x2)−∆x
a(f)

= f(x1, x2)− f(x1, x2)− f(a1, a2) + f(x1, a2) + f(a1, x2)

= g(x1) + h(x2).

Now suppose that there are functions g : I1 → R and h : I2 → R with f(x) =
g(x1) + h(x2) for x ∈ I. If a, b ∈ I, then:

∆b
a(f) = f(b1, b2) + f(a1, a2)− f(b1, a2)− f(a1, b2)

= g(b1) + h(b2) + g(a1) + h(a2)

− (g(b1) + h(a2) + g(a1) + h(b2)) = 0.

Thus, f is double constant on I.

For future reference, we record some properties of the double difference.

Proposition 2. Suppose that f is a double function which is defined on a double
interval containing the points a, b and x. Then:

(a) ∆a
a(f) = 0; ∆b

a(f) = ∆a
b (f); ∆b

a(f) = −∆
(b1,a2)
(a1,b2)

(f);

(b) ∆b
a(f) = ∆

(x1,b2)
a (f) + ∆b

(x1,a2)
(f); (c) ∆b

a(f) = ∆
(b1,x2)
a (f) + ∆b

(a1,x2)
(f);

(d) ∆b
a(f) = ∆x

a(f) + ∆b
x(f) + ∆

(x1,b2)
(a1,x2)

(f) + ∆
(b1,x2)
(x1,a2)

(f).

Proof. These properties follow immediately from the definition of ∆.

3 Double continuity

In this section, we define the class of double continuous functions and the class
of globally double continuous functions. We show that a function which is double
continuous on an interval is automatically globally double continuous on that double
interval (see Proposition 7). We also show a continuity result (see Proposition 8),
concerning the double difference map that we need in the next section.

Let a ∈ R2 and suppose that f is a double function. We say that f is double
continuous at a if there is a double open interval I with a ∈ I ⊆ D(f) such that
∀x1 ∈ I1 limx2→a2 ∆

x
a(f) = 0 and ∀x2 ∈ I2 limx1→a1 ∆

x
a(f) = 0.
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Double Calculus 31

Now we define signed double continuity at a point. We say that f is +−double
continuous at a if there is δ ∈ R2

++ with a ∈ I := D+−(a, δ) ⊆ D(f) such that
∀x1 ∈ I1 limx2→a−2

∆x
a(f) = 0 and ∀x2 ∈ I2 limx1→a+1

∆x
a(f) = 0. Analogously,

++double continuity, −+double continuity and −−double continuity are defined.
Let I be a double interval such that I ⊆ D(f). If f is double continuous at

every a ∈ I, then we say that f is double continuous on I. In this definition it
is understood that if a is a boundary point of I, then by double continuity at a
we mean this in the sense of the signed double continuity defined above. Namely,
suppose, for instance, that I = (a1, b1]× (a2, b2]. By double continuity at the point
b, we mean −−double continuity, and by double continuity at a point (b1, t), where
a2 < t < b2, we mean both −+double continuity and −−double continuity.

Proposition 3. Suppose that f is a double function. Let I be a double interval.

(a) If f is continuous on I, then f is double continuous on I.

(b) If f is double constant on I, then f is double continuous on I.

Proof. This is clear.

Example 4. The class of double continuous functions on R2 contains many examples
of functions which are not continuous. Indeed, suppose that g and h are functions
R → R such that g is continuous but h is not. Put f(x) = g(x1)+h(x2) for x ∈ R2.
Then, clearly, f is not continuous. However, by Proposition 1 and Proposition 3(b),
f is double continuous.

Example 5. Define the double function f by f(x) = xx2
1 · xx1

2 , for x > 0, and
f(x) = 0, if x ≤ 0. Note that f is not double constant since ∆x

0(f) = f(x) ̸= 0 for
all x > 0. Since f(t, t) = tt · tt = t2t = e2t ln(t) → e0 = 1 ̸= 0 = f(0, 0), as t → 0+,
it follows that f is not continuous at 0. However, f is double continuous at 0. In
fact, if x1 > 0, then ∆x

0(f) = f(x) = xx2
1 · xx1

2 → 1 · 0 = 0 = f(0, 0), as x2 → 0+; if
x2 > 0, then ∆x

0(f) = f(x) = xx2
1 · xx1

2 → 0 · 1 = 0 = f(0, 0), as x1 → 0+.

Remark 6. Our definition of double continuity is different from Bögel’s [1] definition
of this concept. Indeed, he defines f to be continuous at a if limx→a∆

x
a(f) = 0.

Example 5 shows that there are double continuous functions in our sense that are
not double continuous in the sense of Bögel. On the other hand, the function
f(x) = x21+x22, for x ≁ 0, and f(x) = 0, for x ∼ 0, is continuous at 0 in the sense of
Bögel but not in our sense. We have chosen to define double continuity as weak as
possible but so that it still is implied by double differentiability (see Proposition 14).

Suppose that f is a double function. Let I be a double interval such that I ⊆
D(f). We say that f is globally double continuous on I if ∀c, d ∈ I1 ∀e ∈ I2

limx2→e;x2∈I2 ∆
(c,x2)
(d,e) (f) = 0, and ∀c, d ∈ I2 ∀e ∈ I1 limx1→e;x1∈I1 ∆

(x1,c)
(e,d) (f) = 0. To

the knowledge of the author of the present article, Bögel [1, 2] does not define any
concept resembling global double continuity.
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Proposition 7. Let I be a double interval and suppose that f is a double function
such that I ⊆ D(f). Then f is double continuous on I if and only if f is globally
double continuous on I.

Proof. The “if” statement is clear. Now we show the “only if” statement. Suppose
that f is double continuous on I. Take a, b ∈ I with a < b. Take e ∈ [a2, b2] and
c, d ∈ [a1, b1] with c < d. Put J = [c, d]. The case when d < c is symmetrical
and is therefore left to the reader. For all z ∈ J choose ϵz > 0 such that for all
y ∈ (z − ϵz, z + ϵz) the map [a2, b2] ∋ x2 ↦→ f(y, x2) − f(c, x2) is continuous at
x2 = e. Since the open intervals (z − ϵz/2, z + ϵz/2), for z ∈ J , is an open cover of
the compact interval J we can choose a finite subcover {(zi − ϵzi/2, zi + ϵzi/2)}ni=0

of J . We may assume that a1 = z0 < z1 < · · · < zn−1 < zn = x1. We may also
assume that for all i, j ∈ {0, . . . , n} if (zi− ϵzi/2, zi+ ϵzi/2) ⊆ (zj − ϵzj/2, zj + ϵzj/2),
then i = j. It follows that f(x1, x2) − f(a1, x2) =

∑n
i=1 f(zi, x2) − f(zi−1, x2) →∑n

i=1 f(zi, a2) − f(zi−1, a2) = f(x1, a2) − f(a1, a2), as x2 → a2, since for all i ∈
{1, . . . , n}, zi−1 ∈ (zi−ϵzi , zi+ϵzi) or zi ∈ (zi−1−ϵzi−1 , zi−1+ϵzi−1). The calculation
involving the second limit is completely analogous to the above calculation and is
left to the reader.

The next result is [1, Satz 12]. To prove this we use our notion of global double
continuity, whereas Bögel loc. cit. resorts to an ad hoc argument (although in a
more general context).

Proposition 8. Let a, b, h ∈ R2 where a < b. Suppose that f : [a, b] → R is a double
continuous function. Then the map x ↦→ ∆x+h

x is continuous at all x ∈ (a, b) for
which x+ h ∈ (a, b).

Proof. It is enough to show that the map x ↦→ ∆x+h
x is continuous separately in the

variables x1 and x2. By Proposition 7 it follows that:

∆x+h
x (f)−∆

(a1+h1,x2+h2)
(a1,x2)

= f(x1 + h1, x2 + h2)− f(x1 + h1, x2)

− (f(a1 + h1, x2 + h2)− f(a1 + h1, x2))

− (f(x1, x2 + h2)− f(x1, x2))

+ f(a1, x2 + h2)− f(a1, x2) → 0,

as x1 → a1, and:

∆x+h
x (f)−∆

(x1+h1,a2+h2)
(x1,a2)

= f(x1 + h1, x2 + h2)− f(x1 + h1, x2)

− (f(x1 + h1, a2 + h2)− f(x1 + h1, a2))

− (f(x1, x2 + h2)− f(x1, x2))

+ f(x1, a2 + h2)− f(x1, a2) → 0,

as x2 → a2.
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Proposition 9. Let a, b ∈ R2 where a < b. Suppose that f is a double function which
is continuous on [a, b]. Let D denote the smallest closed interval in R containing
f(a1, a2), f(b1, b2), f(a1, b2) and f(b1, a2). If d is an interior point in D, then there
exists c ∈ (a, b) with f(c) = d.

Proof. From the assumptions it follows that there are a′, b′ ∈ (a, b) with f(a′1, a
′
2) <

d < f(b′1, b
′
2). Let L denote the line segment from a′ to b′. Since L is connected

and f is continuous, f(L) is an interval. Thus, there is c ∈ L with f(c) = d. Since
c ∈ L ⊊ [a, b] it follows that c ∈ (a, b).

4 Double differentiability

In this section, we define (signed) double limits and (signed) double derivatives.
In analogue with the single variable situation, we show that double differentiable
functions are double continuous (see Proposition 14). Thereafter, we show a double
Rolle’s theorem (see Proposition 17), a double Lagrange’s mean value theorem (see
Proposition 18), a double Cauchy’s mean value theorem (see Proposition 19), a
double Fermat’s theorem (see Proposition 25) and a double first derivative test (see
Proposition 26). At the end of this section, we define double primitive functions.

Suppose that a ∈ R2, L ∈ R and that f is a double function. We say that
f has double limit L as x approaches a if for every ϵ > 0 there is δ ∈ R2

++ with
P (a, δ) ⊆ D(f) and |f(x1, x2)−L| < ϵ whenever x ∈ P (a, δ). In that case, we write
limx⇝a f(x1, x2) = L or f(x1, x2) → L as x⇝ a.

Now we define signed double limits. We say that f has +−double limit L as
x approaches a if for every ϵ > 0 there is δ ∈ R2

++ with P+−(a, δ) ⊆ D(f), and
|f(x1, x2) − L| < ϵ whenever x ∈ P+−(a, δ); then we write limx⇝a+− f(x1, x2) = L
or f(x1, x2) → L as x⇝ a+−. Analogously, ++double limits, −+double limits and
−−double limits are defined.

More generally, one may analogously define (signed) double limits when a and

L belong to R2
= R×R, where R denotes the affinely extended real number system

R ∪ {∞,−∞}. We leave the details of these definitions to the reader.
Suppose that a, b ∈ R2 and that a ≁ b. If f is defined at (a1, a2), (a1, b2), (b1, a2)

and (b1, b2), then we define the double mean slope of f from a to b to be the quotient:

mb
a(f) :=

∆b
a(f)

(b1 − a1)(b2 − a2)
.

We say that f is double differentiable at a if there is a double open interval I with
a ∈ I ⊆ D(f) and the double limit limx⇝am

x
a(f) exists. In that case, we let

f ′(a) denote this limit and we say that f ′(a) is the double derivative of f at a (cf.
[10]). Using signed double limits, we can analogously define the ++double derivative
f ′
++(a), the +−double derivative f ′

+−(a), the −+double derivative f ′
−+(a) and the

−−double derivative f ′
−−(a).
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Let I be a double interval such that I ⊆ D(f). If f is double differentiable at
every a ∈ I, then we say that f is double differentiable on I. In this definition it
is understood that when a is a boundary point of I, then by double differentiable
at a we mean this in the sense of the signed double differentiability defined above.
Namely, suppose, for instance, that I = [a1, b1)× (a2, b2]. By differentiability at the
point (a1, b2), we mean +−double differentiability, and by double differentiability
at a point (a1, t), where a2 < t < b2, we mean both ++double differentiability and
+−double differentiability.

The next result, more commonly known as Schwarz’s theorem, Clairaut’s theorem,
or Young’s theorem, is well-known (see e.g. [8, Theorem 9.40]). We have, nevertheless,
chosen to include a proof of it since it involves, in a natural way, use of the double
derivative. Note that for iterated partial derivatives, we will use the convention that
f12 and f21 denote (f1)2 and (f2)1 respectively.

Proposition 10. Suppose that f is a double function with the property that the
mixed partial derivatives f12 and f21 exist and are continuous at a ∈ R2. Then f is
double differentiable at a and f ′(a) = f12(a) = f21(a).

Proof. The assumptions imply that f and the partial derivatives f12, f21, f1 and f2
are defined in some double open interval I containing a. Take h ∈ R2 with h ≁ 0.
Define functions u and v by u(x1) = f(x1, a2 + h2) − f(x1, a2), for x1 ∈ I1, and
v(x2) = f(a1 + h1, x2) − f(a1, x2), for x2 ∈ I2. Repeated use of the single variable
mean value theorem yield θ1, θ2 ∈ (0, 1) such that:

∆a+h
a (f) = u(a1 + h1)− u(a1) = h1u

′(a1 + θ1h1)

= h1(f1(a1 + θ1h1, a2 + h2)− f1(a1 + θ1h1, a2))

= h1h2f12(a1 + θ1h1, a2 + θ2h2).

Thus, ma+h
a (f) = f12(a1 + θ1h1, a2 + θ2h2) → f12(a1, a2) as h⇝ 0. Similarly, there

exist θ3, θ4 ∈ (0, 1) with:

∆a+h
a (f) = v(a2 + h2)− v(a2) = h3v

′(a2 + θ3h2)

= h3(f2(a1 + h1, a2 + θ3h2)− f2(a1, a2 + θ3h2))

= h1h2f21(a1 + θ4h1, a2 + θ3h2).

Hence, ma+h
a (f) = f21(a1 + θ4h1, a2 + θ3h2) → f21(a1, a2) as h ⇝ 0. Thus, f is

double differentiable at a and f ′(a) = f12(a) = f21(a).

Example 11. By Proposition 10, all sufficiently smooth double functions are double
differentiable. However, the class of double differentiable functions contains examples
of functions which are not even partially differentiable. In fact, it is clear that all
double constant functions are double differentiable with double derivative equal to
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zero everywhere. Therefore, the class of double differentiable functions even contains
many examples of everywhere discontinuous functions (see Example 4).

Example 12. It is easy to construct examples of double functions that are not double
constant but double differentiable at a point where an iterated partial derivative fails
to exist. Namely, suppose that g and h are single variable functions defined on R.
Furthermore, suppose that g(x1) → 0 as x1 → 0; g(x1) ̸= 0 for non-zero x1 ∈ R;
h(x2) is bounded near the origin; in any open interval around the origin, there
exists x2 such that h(x2) ̸= 0; limx2→0 h(x2) does not exist. For instance, we can
choose g(x1) = x1 and h(x2) = sin(1/x2), for x2 ̸= 0, and h(0) = 0. Now put
f(x) = x1g(x1) · x2h(x2) for x ∈ R2. Then, in any double open interval containing
the origin, there exists x such that ∆x

0(f) = f(x) ̸= 0. Also, clearly, the double
derivative f ′(0, 0) exists and is equal to zero. However, for any fixed nonzero x1 ∈
R, f2(x1, 0) = limx2→0 f(x)/x2 = limx2→0 x1g(x1)h(x2) does not exist. Thus, the
iterated partial derivative f21(0, 0) does not exist.

In analogy with the single variable situation, there is a “first order” approximation
to ∆:

Proposition 13. Suppose that f is a double function and that a ∈ R2. Then f
is double differentiable at a if and only if there is d ∈ R, a double neighbourhood
D(a, δ), where f is defined, and a function ρ : P (a, δ) → R such that ∆x

a(f) =
(x1 − a1)(x2 − a2)d+ (x1 − a1)(x2 − a2)ρ(x), for x ∈ P (a, δ), and limx⇝a ρ(x) = 0.
In that case, f ′(a) = d.

Proof. This follows immediately from the definition of ∆.

Proposition 14. Suppose that f is a double function which is defined at a ∈ R2. If
f is double differentiable at a, then f is double continuous at a.

Proof. Suppose that f is double differentiable at a. Take δ and ρ satisfying the
conditions in the formulation of Proposition 13. If x ≁ a, then:

f(x1, x2)− f(a1, x2) = ∆x
a(f) + f(x1, a2)− f(a1, a2)

= (x1 − a1)(x2 − a2)d+ (x1 − a1)(x2 − a2)ρ(x)

+ f(x1, a2)− f(a1, a2) → f(x1, a2)− f(a1, a2),

as x2 → a2, and:

f(x1, x2)− f(x1, a2) = ∆x
a(f) + f(a1, x2)− f(a1, a2)

= (x1 − a1)(x2 − a2)d+ (x1 − a1)(x2 − a2)ρ(x)

+ f(a1, x2)− f(a1, a2) → f(a1, x2)− f(a1, a2),

as x1 → a1.

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 27 – 48

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


36 Patrik Lundström

We now proceed to show double versions of Rolle’s theorem and various versions
of the mean value theorem. To this end, we need two propositions. We adapt, to the
situation at hand, an approach which originally was invented by Cauchy (see [5, p.
169]) for the single variable situation and then corrected and clarified by Plante [7].

Proposition 15. Suppose a, b ∈ R2, a < b and x ∈ (a, b). Let f : [a, b] → R be a
double function. Consider the following four real numbers:

m1 := mx
a(f), m2 := mb

x(f), m3 :=
∆

(x1,b2)
(a1,x2)

(f)

(x1 − a1)(b2 − x2)
, m4 :=

∆
(b1,x2)
(x1,a2)

(f)

(b1 − x1)(x2 − a2)
.

Then either (i) all of them are equal to mb
a(f), or (ii) at least one of them is greater

than mb
a and at least one of them is less than mb

a.

Proof. Suppose that (i) does not hold. Seeking a contradiction, suppose thatmb
a(f) ≤

mi for all i ∈ {1, 2, 3, 4} with strict inequality for at least one index. By Proposition
2(d), we get that:

∆b
a(f) = mb

a(f)(b1 − a1)(b2 − a2)

= mb
a(f)(x1 − a1)(x2 − a2) +mb

a(f)(b1 − x1)(b2 − x2)

+ mb
a(f)(x1 − a1)(b2 − x2) +mb

a(f)(b1 − x1)(x2 − a2)

< m1(x1 − a1)(x2 − a2) +m2(b1 − x1)(b2 − x2)

+ m3(x1 − a1)(b2 − x2) +m4(b1 − x1)(x2 − a2)

= ∆x
a(f) + ∆b

x(f) + ∆
(x1,b2)
(a1,x2)

(f) + ∆
(b1,x2)
(x1,a2)

(f) = ∆b
a(f)

and hence the contradiction ∆b
a(f) < ∆b

a(f). Similarly, if we assume that mb
a(f) ≥

mi, for all i ∈ {1, 2, 3, 4}, with strict inequality for at least one index, then we get
the contradiction ∆b

a(f) > ∆b
a(f). Thus (ii) holds.

Proposition 16. Suppose that a, b ∈ R2 satisfy a < b. Let f : (a, b) → R be a double
function which is double differentiable at c ∈ (a, b). Let a(1) ≤ a(2) ≤ a(3) ≤ · · · and
b(1) ≥ b(2) ≥ b(3) ≥ · · · be sequences in (a, b) with limn→∞ a(n) = limn→∞ b(n) = c
and satisfying one of the following properties:

(i) ∀n ∈ N a(n) < c < b(n);

(ii) ∀n ∈ N a(n) < c and ∃N ∈ N ∀n ≥ N c = b(n);

(iii) ∀n ∈ N c < b(n) and ∃N ∈ N ∀n ≥ N a(n) = c.

Then limn→∞m
b(n)
a(n)(f) = f ′(c).
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Proof. Suppose that (i) holds. For every n ∈ N, put:

m1(n) :=
∆c

a(n)(f)

(c1 − a1(n))(c2 − a2(n))
m2(n) :=

∆
b(n)
c (f)

(b1(n)− c1)(b2(n)− c2)

m3(n) :=
∆

(c1,b2(n))
(a1(n),c2)

(f)

(c1 − a1(n))(b2(n)− c2)
m4(n) :=

∆
(b1(n),c2)
(c1,a2(n))

(f)

(b1(n)− c1)(c2 − a2(n))
.

From the definition of the double derivative we get that limn→∞mi(n) = f ′(c) for all

i ∈ {1, 2, 3, 4}. Thus, from Proposition 15, it follows that limn→∞m
b(n)
a(n)(f) = f ′(c).

If (ii) (or (iii)) holds, then, from the definition of the double derivative, we

get that limn→∞m
b(n)
a(n)(f) = limn→∞mc

a(n)(f) = f ′(c) (or limn→∞m
b(n)
a(n)(f) =

limn→∞m
b(n)
c (f) = f ′(c)).

The next result is [1, Satz 13]. Noteworthily, Bögel proves this result by an
argument which is not identical, but similar in spirit, to our proof. Thus, in
particular, for single variable functions, Bögel’s proof produces the classical Rolle’s
theorem without resorting to the Weierstrass extremum theorem (cf. [7]).

Proposition 17 (Double Rolle’s theorem). Let a, b ∈ R2 satisfy a < b. Suppose
f : [a, b] → R is a double continuous function which is double differentiable on (a, b).
If ∆b

a(f) = 0, then there exists c ∈ (a, b) with f ′(c) = 0.

Proof. We claim that there are p, q ∈ (a, b) with ∆q
p(f) = 0, p < q and q − p ≤

(b−a)/2. Let us assume for a moment that the claim holds. Then we can inductively
define sequences a(1) ≤ a(2) ≤ a(3) ≤ · · · and b(1) ≥ b(2) ≥ b(3) ≥ · · · in (a, b)

satisfying a(n) < b(n), ∆
b(n)
a(n) = 0 and b(n) − a(n) ≤ (b − a)/2n, for every n ∈ N.

Then {a(n)}∞n=1 and {b(n)}∞n=1 have a common limit c ∈ (a, b) satisfying one of the
properties (i)-(iii) in Proposition 16. Thus, from the same proposition, it follows
that f ′(c) = 0.

Now we show the claim. Seeking a contradiction, suppose that ∆q
p(f) ̸= 0 for all

p, q ∈ (a, b) such that p < q and q − p ≤ (b− a)/2. Put h = (b− a)/2.

Case 1: ∆a+h
a (f) ̸= 0. Consider the map g(x) = ∆x+h

x (f) for x ∈ [a, a+h]. From
Proposition 2 it follows that g(a)+g(a1, (b2+a2)/2)+g((b1+a1)/2, a2)+g((a+b)/2) =
∆b

a(f) = 0. Therefore, since g(a) = ∆a+h
a (f) ̸= 0, at least one the real numbers g(a),

g(a1, h2/2), g((b1+a1)/2, a2) and g((a+b)/2) is positive and at least one is negative.
By Proposition 8 and Proposition 9 it follows that there is p ∈ (a, (a + b)/2) with
g(p) = 0. Put q = p+ h = p+ (b− a)/2. Then ∆q

p(f) = g(p) = 0, p, q ∈ (a, b), p < q
and q − p ≤ (b− a)/2. This is a contradiction.

Case 2: ∆a+h
a (f) = 0. Put b′ = a + h and h′ = h/2. Then ∆b′

a (f) = 0 and, by
the assumptions, we get that ∆b′

a+h′(f) ̸= 0. Consider the map g(x) = ∆x+h′
x (f) for

x ∈ [a, a+ h′]. From Proposition 2 it follows that g(a) + g(a1, (b2 + a2)/4)+ g((b1 +
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a1)/4, a2) + g((a + b)/4) = ∆b′
a (f) = 0. Therefore, since g(a) = ∆b′

a+h′(f) ̸= 0, at
least one the real numbers g(a), g(a1, (b2+a2)/4), g((b1+a1)/4, a2) and g((a+b)/4)
is positive and at least one is negative. By Proposition 8 and Proposition 9 it follows
that there is p′ ∈ (a, (a + b)/4) with g(p′) = 0. Put q′ = p′ + h′ = p′ + (b − a)/4.

Then ∆q′

p′(f) = g(p′) = 0, p′, q′ ∈ (a, b), p′ < q′ and q′ − p′ ≤ (b − a)/4. This is a
contradiction.

Proposition 18 (Double Lagrange’s mean value theorem). Let a, b ∈ R2 satisfy
a < b. Suppose that f : [a, b] → R is a double continuous function which is double
differentiable on (a, b). Then there exists c ∈ (a, b) with f ′(c) = mb

a(f).

Proof. Consider the map g(x) = f(x) − mb
a(f)(x1 − a1)(x2 − a2) for x ∈ [a, b].

Then it is clear that ∆b
a(g) = ∆b

a(f) − ∆b
a(f) = 0. Proposition 17 implies the

existence of an element c ∈ (a, b) with g′(c) = 0. From Proposition 10 it follows that
0 = g′(c) = f ′(c)−mb

a(f) · 1. Therefore f ′(c) = mb
a(f).

Proposition 19 (Double Cauchy’s mean value theorem [1, Satz 14]). Let a, b ∈ R2

satisfy a < b. Suppose f, g : [a, b] → R are double continuous functions which are
double differentiable on (a, b). Then there is c ∈ (a, b) with f ′(c)∆b

a(g) = g′(c)∆b
a(f).

Proof. We consider two cases.
Case 1: ∆b

a(g) = 0. By Proposition 17 there is c ∈ (a, b) with g′(c) = 0. For this
c we get that f ′(c)∆b

a(g) = f ′(c) · 0 = 0 ·∆b
a(f) = g′(c)∆b

a(f).
Case 2: ∆b

a(g) ̸= 0. Consider the map h(x) = f(x) − ∆b
a(f)g(x)/∆

b
a(g) for

x ∈ [a, b]. Then, clearly, ∆b
a(h) = 0. By Proposition 17 there is c ∈ (a, b) with

h′(c) = 0 form which the claim follows.

Remark 20. (a) If we specialize g(x) = x1x2 in Proposition 19, then we get
Proposition 18.

(b) In [4] the concept of double derivative (there named bidimensional derivative)
as well as Propositions 17-19 were rediscovered (independently from Bögel it seems)
by Dobrescu and Siclovan.

Suppose that f is a double function defined on a double interval I. We say that
f is double increasing (double decreasing) on I if ∆b

a(f) > 0 (∆b
a(f) < 0) for all

a, b ∈ I with a < b.

Example 21. Let a, b, c ∈ R2 and D ∈ R. Define a double function f on R2 by
f(x) = D(x1 − c1)(x2 − c2) for x ∈ R2. Then:

∆b
a(f) = D(b1 − c1)(b2 − c2)−D(b1 − c1)(a2 − c2)

− D(a1 − c1)(b2 − c2) +D(a1 − c1)(a2 − c2)

= D(b1 − a1)(b2 − a2).

Thus, f is double increasing on R2 ⇔ D > 0; f is double decreasing on R2 ⇔ D < 0;
f is double constant on R2 ⇔ D = 0.
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Proposition 22. Suppose that a, b ∈ R2 satisfy a < b. Let f : [a, b] → R be a double
continuous function which is double differentiable on (a, b). Then:

(a) f is double increasing on [a, b] ⇔ f ′(x) > 0 for every x ∈ (a, b);

(b) f is double decreasing on [a, b] ⇔ f ′(x) < 0 for every x ∈ (a, b);

(c) f is double constant on [a, b] ⇔ f ′(x) = 0 for every x ∈ (a, b).

Proof. This follows immediately from Proposition 18.

Remark 23. Consider the function f defined in Example 21. Then, by Proposition
10, it follows that f is double differentiable with f ′(x) = D for x ∈ R2. Thus, the
conclusions in this example follow from Proposition 22.

Suppose that f is a double function defined on a double open interval I. Let
a ∈ I. We say that a is a double maximum point (double minumum point) for f on I
if ∆b

a(f) < 0 (∆b
a(f) > 0) for all b ∈ I with b ≁ a. We say that a is a double extreme

point for f on I if a is a double minumum point or a double maximum point for f
on I

Example 24. Let a, b, c ∈ R2 and D ∈ R. Define a double function f on R2 by
f(x) = D(x1 − c1)

2(x2 − c2)
2 for x ∈ R2 where D is a non-zero real number. Then:

∆b
a(f) = D(b1 − c1)

2(b2 − c2)
2 −D(b1 − c1)

2(a2 − c2)
2

− D(a1 − c1)
2(b2 − c2)

2 +D(a1 − c1)
2(a2 − c2)

2

= D(b1 − a1)(b2 − a2)(b1 + a1 − 2c2)(b2 + a2 − 2c2).

Suppose now that a is a double extreme point for f on R2. The above calculation
shows that ∆2c−a

a = 0. Therefore a = 2c − a and thus a = c. Hence ∆b
a(f) =

D(b1 − a1)
2(b2 − a2)

2. Thus, a is a double maximum (minimum) point for f on R2

if and only if a = c and D < 0 (D > 0).

Suppose that f is a double function which is defined on a double open interval
I and let a ∈ I. If f is double differentiable at a and f ′(a) = 0, then f we say that
a is a double stationary point for f . We say that a is a double a critical point for f
if either f is not double differentiable at a or a is a stationary point for f .

Proposition 25 (Double Fermat’s theorem). Suppose that f is a double function
which is defined on a double open interval I and let a ∈ I. If a is a double extreme
point for f on I, then a is a double critical point for f .

Proof. Suppose that f is double differentiable at a and that a is a double minimum
point for f on I. Then ∆b

a(f) > 0 for all b with b ≁ a. Hence:

f ′(a) = lim
b⇝a++

mb
a(f) = lim

b⇝a++

∆b
a(f)

(b1 − a1)(b2 − a2)
≥ 0
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and:

f ′(a) = lim
b⇝a+−

mb
a(f) = lim

b⇝a+−

∆b
a(f)

(b1 − a1)(b2 − a2)
≤ 0.

Thus f ′(a) = 0. The proof is analogous in the case when f is double differentiable
at a and a is a double maximum point for f on I.

Proposition 26 (Double first derivative test). Suppose that f is a double function
which is double differentiable on a double open interval (a, b). Let c ∈ (a, b) be a
double stationary point for f .

(a) Suppose that f ′(x) < 0, when a < x < c or c < x < b, and f ′(x) > 0 when
(a1, c2) < x < (c1, b2) or (c1, a2) < x < (b1, c2). Then c is a double maximum
point for f on (a, b).

(b) Suppose that f ′(x) > 0, when a < x < c or c < x < b, and f ′(x) < 0 when
(a1, c2) < x < (c1, b2) or (c1, a2) < x < (b1, c2). Then c is a double minimum
point for f on (a, b).

(c) If f ′ has the same sign throughout the formulation of the statement in (a) (or
in (b)), then c is neither a double maximum point nor a double minimum point
for f on (a, b).

Proof. (a) Take x ∈ (a, b) with x ≁ c. By Proposition 22(b) it follows that f is
double decreasing on the intervals (a, c) and (c, b). Thus ∆c

x(f) < 0 for all x in those
intervals. By Proposition 22(a) it follows that f is double increasing on the intervals
((a1, c2), (c1, b2)) and ((c1, a2), (b1, c2)). By Lemma 2(c) it follows that ∆c

x(f) > 0 for
all x in those intervals. The proofs of (b) and (c) are similar to the proof of (a).

Remark 27. One can reach the conclusion in Example 24, using the double derivative.
Namely, let a b, c, D and f be defined as in that example. By Proposition 10, it
follows that f is double differentiable with f ′(x) = 4D(x1 − c1)(x2 − c2) for x ∈ R2.

Suppose that a is a double maximum point for f on R2. By Proposition 25 we get
that f ′(a) = 0, that is 4D(a1 − c1)(a1 − c1) = 0. Therefore a1 = c1 or a2 = c2. We
consider the case when a1 = c1 (the case when a2 = c2 reaches the same conclusion)
so that f ′(x) = 4D(x1 − a1)(x2 − c2). By Proposition 26 f ′(x) < 0 for large enough
x. Thus D < 0. Also, by the same proposition, if x1 ̸= a1, then f ′(x) should change
sign as x2 goes from a value less than a2 to a value larger than a2. Hence c2 = a2
so that f ′(x) = 4D(x1 − a1)(x2 − a2). Using this and Proposition 26, it is easy to
see that a now is a double maximum point for f on R2.

A similar analysis reveals that a is double minimum point for f on R2 if and
only if a = c and D > 0.

Remark 28. To the best of our knowledge, Bögel neither treats double critical points
nor a double Fermat’s theorem. However, in [2, §6] Bögel studies monotone double
functions in the context of functions of bounded variation.

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 27 – 48

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


Double Calculus 41

Suppose that f is a double function defined on a double interval I. We say that
a double function F defined on I is a double primitive function of f on I if F is
double differentiable on I and F ′(x) = f(x) for x ∈ I.

Proposition 29. Suppose that f is a double function defined on a double interval I.
If F and G are double primitive functions of f on I, then there is a double constant
function H, defined on I, such that G = F +H.

Proof. Put H = G− F . Then H ′ = G′ − F ′ = f − f = 0. Proposition 22(c) implies
that H is a double constant function. Clearly G = F +H.

5 Double integrability

In this section, we define the double Newton integral. Using the double mean
value theorem, we obtain a mean value theorem for double Newton integrals (see
Proposition 34). After that, we connect the double Newton integral to the Riemann
double integral in the first and second double fundamental theorems of calculus
(see Proposition 36 and Proposition 37). At the end of this section, we introduce
improper double Newton integrals. We also discuss examples of double integrals over
non-rectangular regions. Most of the material in this section (except the discussion
on improper integrals) can be extracted and specialized from [2]. However, since
we only restrict ourselves to the double calculus, our presentation can be more
streamlined.

Let f be a double function defined on a double interval I. Suppose that there
exists a double primitive function F of f on I. Let a, b ∈ I. We say that the double
Newton integral of f from a to b is the real number:∫ b

a
f := ∆b

a(F ). (5.1)

Proposition 30 (The double Newton integral is well defined). The value of (5.1)
does not depend on the choice of the double primitive function.

Proof. Let f, F,G be double functions defined on I where F and G are double
primitive functions of f on I. By Proposition 29, G = F + H for some double
constant function H defined on I. Take a, b ∈ I. Then it follows that ∆b

a(G) =
∆b

a(F ) + ∆b
a(H) = ∆b

a(F ) + 0 = ∆b
a(F ).

Example 31. Suppose that F and f are the double functions defined on I := [0, 2]×
[1, 3] by F (x) = x21x

3
2/2 and f(x) = 3x1x

2
2 for x ∈ I. By Proposition 10, F is double

differentiable on I with F ′ = f . Therefore:∫ (2,3)

(0,1)
f = ∆

(2,3)
(0,1)(F ) = F (2, 3)− F (2, 1)− F (0, 3) + F (0, 1) = 52.
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Proposition 32 (Properties of the double Newton integral). Let f be a double
function defined on a double interval I. Suppose that there exists a double primitive
function F of f on I. If a, b, c ∈ I, then:

(a)

∫ a

a
f = 0;

∫ b

a
f =

∫ a

b
f ;

∫ b

a
f = −

∫ (b1,a2)

(a1,b2)
f ;

(b)

∫ b

a
f =

∫ (c1,b2)

a
f +

∫ b

(c1,a2)
f ; (c)

∫ b

a
f =

∫ (b1,c2)

a
f +

∫ b

(a1,c2)
f ;

(d)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f +

∫ (c1,b2)

(a1,c2)
f +

∫ (b1,c2)

(c1,a2)
f .

Proof. This follows immediately from Proposition 2.

Proposition 33 (The double Newton integral is a primitive function). Let f be a
double function defined on a double interval I. Suppose that there exists a double
primitive function F of f on I. Take a ∈ I and define the map G : I → R by
G(x) ↦→

∫ x
a f for x ∈ I.

(a) The identity ∆x
b (G) = ∆x

b (F ) holds for all b, x ∈ I.

(b) The function G is double differentiable on I and G′(b) = f(b) for b ∈ I.

Proof. Take a, b, x ∈ I. First we show (a). By Proposition 32 we get that:

∆x
b (G) =

∫ x

a
f +

∫ b

a
f −

∫ (x1,b2)

a
f −

∫ (b1,x2)

a
f

=

∫ x

a
f +

∫ a

b
f +

∫ (x1,a2)

(a1,b2)
f +

∫ (b1,a2)

(a1,x2)
f =

∫ x

b
f = ∆x

b (F ).

Next we show (b). By (a) we get that:

G′(b) = lim
x⇝b

mx
b (G) = lim

x⇝b

∆x
b (G)

(x1 − b1)(x2 − b2)

= lim
x⇝b

∆x
b (F )

(x1 − b1)(x2 − b2)
= lim

x⇝b
mx

b (F ) = F ′(b) = f(b).

Alternatively, the equality G′ = f follows from the fact that G equals F plus the
double constant function I ∋ (x1, x2) ↦→ F (a1, a2)− F (x1, a2)− F (a1, x2) which by
Proposition 1 has zero double derivative.

Proposition 34 (The mean value theorem for double Newton integrals). Let f be
a double function defined on a double interval [a, b] for some a, b ∈ R2 with a < b.
Suppose that there exists a double primitive function F of f on [a, b]. Then there

exists c ∈ (a, b) such that
∫ b
a f = f(c)(b1 − a1)(b2 − a2).
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Proof. This follows from Propositions 14, 18 and 33.

We now recall some classical notions (cf. e.g. [3]). Suppose that f is a double
function defined on a double interval [a, b] for some a, b ∈ R2 with a < b. A partition
P of [a, b] is a choice of points x1,0, x1,1, . . . , x1,m ∈ [a1, b1] and x2,0, x2,1, . . . , x2,n ∈
[a2, b2] such that a1 = x1,0 < x1,1 < · · · < x1,m−1 < x1,m = b1 and a2 = x2,0 < x2,1 <
· · · < x2,n−1 < x2,n = b2. Given P , define the mn rectangles Rij = [x1,i−1, x1,i] ×
[x2,j−1, x2,j ], for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The norm |P | of P is the largest
of the diagonals in these mn rectangles. Pick an arbitrary point (x∗1,i,j , x

∗
2,i,j) in

each of the rectangles Rij . For all i and j put ∆x1,i = x1,i − x1,i−1 and ∆x2,j =
x2,j − x2,j−1. The corresponding double Riemann sum is defined as R(f, P ) :=∑m

i=1

∑n
j=1 f(x

∗
1,i,j , x

∗
2,i,j)∆x1,i∆x2,j . The double function f is said to be Riemann

integrable over [a, b] and have double integral I =
∫∫

[a,b] f(x) dx1dx2, if for every

ϵ ∈ R+ there is δ ∈ R+ such that |R(f, P ) − I| < ϵ holds for every partition P of
[a, b] satisfying |P | < δ and for all choices of (x∗1,i,j , x

∗
2,i,j) in the subrectangles of P .

If f is continuous on [a, b], then f is Riemann integrable there (see e.g. [3, p. 293]).

Proposition 35 (The mean value theorem for double Riemann integrals). Let a, b ∈
R2 and a < b. Suppose that f : [a, b] → R is a double function which is continuous.
Then there exists c ∈ (a, b) such that

∫∫
[a,b] f(x) dx1dx2 = f(c)(b1 − a1)(b2 − a2).

Proof. See e.g. [3, p. 292].

Proposition 36 (The first double fundamental theorem of calculus). Let a, b ∈ R2

and a < b. Suppose that f : [a, b] → R is a double function which is continuous.
Define G : [a, b] → R by G(x) =

∫∫
[a,x] f(x) dx1dx2 for x ∈ [a, b]. Then G is double

differentiable on [a, b] with G′ = f .

Proof. Take x ∈ [a, b]. We consider four cases.
Case 1: x < b. Take h ∈ R2

++ such that x+ h < b. By Proposition 35:

mx+h
x (G) =

∫∫
[x,x+h] f(x) dx1dx2

h1h2
= f(t)

for some t ∈ (x, x+ h). Letting h → 0++ yields that G′
++(x) = f(x).

Case 2: a < x. Take h ∈ R2
−− such that a < x+ h. By Proposition 35:

mx+h
x (G) =

∫∫
[x+h,x] f(x) dx1dx2

(−h1)(−h2)
= f(t)

for some t ∈ (x+ h, x). Letting h → 0++ yields that G′
−−(x) = f(x).

Case 3: (a1, x2) < (x1, b2). Take h ∈ R2
−+ such that x1+h1 > a1 and x2+h2 < b2.

By Proposition 35:

mx+h
x (G) =

∫∫
[x1+h1,x1]×[x2,x2+h2]

f(x) dx1dx2

(−h1)h2
= f(t)

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 27 – 48

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


44 Patrik Lundström

for some t ∈ (x1+h1, x1)×(x2, x2+h2). Letting h → 0−+ yields that G′
−+(x) = f(x).

Case 4: (x1, a2) < (b1, x2). Take h ∈ R2
+− such that x1+h1 < b1 and x2+h2 > a2.

By Proposition 35:

mx+h
x (G) =

∫∫
[x1,x1+h1]×[x2+h2,x2]

f(x) dx1dx2

h1(−h2)
= f(t)

for some t ∈ (x1, x1+h1)×(x2+h2, x2). Letting h → 0+− yields that G′
+−(x) = f(x).

Cases 1-4 show that G is double differentiable on [a, b] with G′ = f .

Proposition 37 (The second double fundamental theorem of calculus). Let f be
a double function defined on a double interval [a, b] for some a, b ∈ R2 with a < b.
Suppose that there exists a double primitive function F of f on [a, b]. If f is Riemann

integrable on [a, b], then
∫∫

[a,b] f(x) dx1dx2 =
∫ b
a f .

Proof. Take ϵ ∈ R+ and put I :=
∫ b
a f . Since [a, b] is a compact interval, f is

uniformly continuous on [a, b] (see e.g. [8, Theorem 4.19]). Therefore, there exists
δ ∈ R+ such that:

|f(c)− f(d)| < ϵ

(b1 − a1)(b2 − a2)

whenever c, d ∈ [a, b] and
√

(c1 − d1)2 + (c2 − d2)2 < δ. Consider a fixed double
Riemann sum:

R :=
m∑
i=1

n∑
j=1

f(x∗1,i,j , x
∗
2,i,j)∆x1,i∆x2,j

defined by a partition P , with |P | < δ, and a choice of points (x∗1,i,j , x
∗
2,i,j) in the

corresponding rectangles. We wish to show that |R − I| < ϵ. By Proposition 34
there exist ci,j ∈ (x1,i−1, x1,i)× (x2,j−1, x2,j) with:

∫ (x1,i,x2,j)

(x1,i−1,x2,j−1)
f = f(ci,j)∆x1,i∆x2,i

for i = 1, . . . ,m and j = 1, . . . , n. By repeated application of Proposition 32(b)(c)
we therefore get that:

I =

m∑
i=1

n∑
j=1

∫ (x1,i,x2,j)

(x1,i−1,x2,j−1)
f =

m∑
i=1

n∑
j=1

f(ci,j)∆x1,i∆x2,i
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which in turn implies that:

|R− I| =

⏐⏐⏐⏐⏐⏐
m∑
i=1

m∑
j=1

(f(x∗1,i,j , x
∗
2,i,j)− f(ci,j))∆x1,i∆x2,i

⏐⏐⏐⏐⏐⏐
≤

m∑
i=1

m∑
j=1

⏐⏐f(x∗1,i,j , x∗2,i,j)− f(ci,j)
⏐⏐∆x1,i∆x2,i

<
ϵ

(b1 − a1)(b2 − a2)

m∑
i=1

m∑
j=1

∆x1,i∆x2,i

=
ϵ

(b1 − a1)(b2 − a2)
· (b1 − a1)(b2 − a2) = ϵ.

We have now shown that
∫∫

[a,b] f(x) dx1dx2 =
∫ b
a f .

Let f be a double function defined on a double open interval (a, b) for some

a, b ∈ R2
with a < b. Suppose that there exists a double primitive function F of f

on (a, b). If the double signed limit:

lim
y→b−−; x→a++

∆y
x(F ) (5.2)

exists, then we say that
∫ b
a f is a convergent improper double Newton integral with

value equal to the limit (5.2). If the limit in (5.2) does not exist, then we say that the

improper double Newton integral
∫ b
a f is divergent. Note that if all of the following

four signed limits exist:

A := lim
x→b−−

F (x) B := lim
x→a++

F (x)

C := lim
x→(b1,a2)−+

F (x) D := lim
x→(a1,b2)+−

F (x)

then
∫ b
a f is convergent with value equal to A+B − C −D.

Example 38. (a) Suppose that F and f are the double functions defined on I :=
(0, 1)× (0, 1) by F (x) = (x1 + x2) ln(x1 + x2) and f(x) = 1/(x1 + x2) for x ∈ I. By
Proposition 10, F is double differentiable on I with F ′ = f . Since

lim
x→(1,1)−−

F (x1, x2) = 2 ln(2)

and

lim
x→(0,0)++

F (x1, x2) = lim
x→(1,0)−+

F (x1, x2) = lim
x→(0,1)+−

F (x1, x2) = 0
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the improper double Newton integral
∫ (1,1)
(0,0) 1/(x1+x2) is convergent with value 2 ln(2).

(b) Suppose that F and f are the double functions defined on I := (0, 1]×(0, 1] by
F (x) = x1/(x1 + x2) and f(x) = (x1 − x2)/(x1 + x2)

3 for x ∈ I. By Proposition 10,

F is double differentiable on I with F ′ = f . However, since lims→0+ ∆
(1,1)
(s,s)(F ) = 0

and limt→0+ ∆
(1,1)
(t,2t)(F ) = −1/6 the improper double Newton integral∫ (1,1)

(0,0)
(x1 − x2)/(x1 + x2)

3

is divergent.

Many standard calculus textbook problems concerning double integrals over non-
rectangular regions are solved by iterated integration. If, however, the region in
question can be mapped bijectively onto a double interval, then such integrals can
instead be considered as improper double Newton integrals. In fact, by Proposition
37 and the result in [9] we get the following:

Proposition 39. Let a, b ∈ R2
with a < b. Suppose that D is an open subset of R2

and that h : (a, b) → D is a bijection such that h and h−1 are continuous and have
continuous partial derivatives. Let J(x) denote the absolute value of the Jacobian
determinant of h at x ∈ (a, b). If f : D → R is a function which is integrable on
D and g := (f ◦ h) · J has a double primitive function on (a, b), then the improper

double Newton integral of g from a to b is convergent and
∫∫

D f(x) dx1dx2 =
∫ b
a g.

Example 40. (a) We wish to evaluate
∫∫

D f(x) dx1dx2 where f(x) = x1x2 for x ∈
D, and D is the interior of the triangle with vertices (0, 0), (1, 0) and (1, 1). Define
h : (0, 1)×(0, 1) → D by h(u, v) = (u, uv). Then J(u, v) = u and

∫∫
D f(x) dx1dx2 =∫ (1,1)

(0,0) u · uv · u =
∫ (1,1)
(0,0) u

3v = ∆
(1,1)
(0,0)(u

4v2/8) = 1/8.

(b) We wish to evaluate
∫∫

f(x) dx1dx2 where f(x) = 1/(x1 + x2)
2 for x ∈ D,

and D is defined by 0 < x1 < 1 and 0 < x2 < x21. Define h : (0, 1) × (0, 1) → D
by h(u, v) = (u, u2v) for u, v ∈ (0, 1). Then J(u, v) = u2 and

∫∫
D f(x) dx1dx2 =∫ (1,1)

(0,0) u
2/(u+ vu2)2 =

∫ (1,1)
(0,0) 1/(1 + uv)2 = ∆

(1,1)
(0,0)(ln(1 + uv)) = ln(2).

(c) We wish to evaluate
∫∫

f(x) dx1dx2 where f(x) = e−x2
1 for x ∈ D, and

D is defined by x1 > 0 and −x1 < x2 < x1. Define h : (0,∞) × (−1, 1) →
D by h(u, v) = (u, uv) for u ∈ (0,∞) and v ∈ (−1, 1). Then J(u, v) = u and∫∫

D f(x) dx1dx2 =
∫ (∞,1)
(0,−1) e

−u2
u = lims→∞∆

(s,1)
(0,−1)(−e−u2

v/2) = 1.

(d) We wish to evaluate
∫∫

f(x) dx1dx2 where f(x) = 1/(x1 + x2) for x ∈ D,
and D is defined by 1 < x1 and 0 < x2 < 1/x1. Define h : (1,∞) × (0, 1) → D by
h(u, v) = (u, v/u) for u ∈ (1,∞) and v ∈ (0, 1). Then J(u, v) = u−1 and∫∫

D f(x) dx1dx2 =
∫ (∞,1)
(1,0) (u+ v/u)−1 · u−1 =

∫ (∞,1)
(1,0) (u2 + v)−1

= limt→∞; s→0+ ∆
(t,1)
(1,s)

(
u ln(u2 + v) + 2

√
v arctan(u/

√
v)
)
= π/2− ln(2).
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6 Triple calculus, quadruple calculus and beyond

It is easy to work out the corresponding difference operators in higher dimensions.
Namely, if a, b ∈ Rn and f is an n-variable function, then:

∆b
a(f) =

∑
s∈{0,1}n

(−1)sf(s1a1 + (1− s1)b1, . . . , snan + (1− sn)bn)

where (−1)s := (−1)s1+s2+···+sn . So, for instance, if n = 3, then we get that:

∆b
a(f) = f(b1, b2, b3) − f(a1, b2, b3) − f(b1, a2, b3) − f(b1, b2, a3)

+ f(a1, a2, b3) + f(a1, b2, a3) + f(b1, a2, a3) − f(a1, a2, a3).

In [1, 2] higher-dimensional analogues of all the results established in this article
are shown to hold, that is there is also a triple calculus, a quadruple calculus and
beyond, at our disposal.

It seems to the author of the present article that Bögel did not consider higher-
dimensional versions of Schwarz’s theorem. To be more precise, suppose, for instance,
that f is a five-variable function, that f is double differentiable with respect to
the first two variables, with double derivative denoted by f ′

12, and that f is triple
differentiable with respect to the last three variables, with triple derivative denoted
by f ′

345. If we also suppose that the iterated derivatives (f ′
345)

′
12 and (f ′

12)
′
345 exist

and are double respectively triple continuous, does it then follow that f is quintuple
differentiable with f ′

12345 = (f ′
345)

′
12 = (f ′

12)
′
345? Since the proof of Proposition 10

only depends on the mean value theorem in each variable, it seems reasonable to
believe that this proof is generalizable to higher dimensions if we use Bögel’s higher-
dimensional mean value theorem.

Another classical result from calculus that neither we nor Bögel has considered is
Darboux’s theorem. Recall that this result states that if a single variable function is
differentiable on an open interval, then the derivative enjoys the intermediate value
property on this interval. It is not clear to the author of the present article if there
is a double (or higher-dimensional) analogue of this result. Note that the usual text
book proof for Darboux’s theorem uses the Weierstrass extreme value theorem (see
e.g. [6]), which, as we have pointed out earlier, is not at our disposal for double
functions. However, there are proofs of Darboux’s theorem which are based only
on the mean value theorem for differentiable functions and the intermediate value
theorem for continuous functions (see loc. cit.). Therefore, it is plausible that
there indeed is a double (and higher) version(s) of Darboux’s theorem which is (are)
reachable by the methods used in this article.

Acknowledgement. The author wishes to thank the editors for very swift handling
of the article.
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