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Populärvetenskaplig Sammanfattning  

Titel:  Ett ramverk för styrning av industriell Plug & Produce 

Nyckelord:  Flexibel tillverkning, Ontologi, Multiagentsystem, Automation, 
Planering 

Kundanpassade produkter och korta produktionsserier blir alltmer populärt.  
Detta har lett till problem för dedikerade tillverkningssystem som är designade 
för massproduktion. Det krävs ofta långa produktionsserier för att det ska bli en 
rimlig investering att ställa om produktionen. Därför används människor för 
tillverkningsuppgifter som ofta ställs om. Denna avhandling fokuserar på 
konceptet Plug & Produce, som gör det enklare att flytta, lägga till och ta bort 
resurser från ett tillverkningssystem. Tanken är att resurser placeras i 
processmoduler som alla har samma fysiska gränssnitt för att kopplas in i 
tillverkningssystemet. Styrningen av tillverkningssystemet görs av ett 
multiagentsystem där varje detalj som ska produceras för produkter får en egen 
agent som representerar detaljen och agerar som styrningsmjukvara. Varje detaljs 
agent tar hand on sina egna tillverkningsmål genom att kommunicera med 
resursagenter i systemet som används för styrning av resurserna. I detta arbete, 
presenteras ett ramverk för Plug & Produce som består av ett konfigurerbart 
multiagentsystem, samt ett konfigurationsverktyg som kan användas för att 
definiera agenterna. Arbetet inkluderar metoder för att identifiera inkopplade 
resurser, kommunikation mellan agenter, schemaläggning som kan undvika 
konflikter mellan agenter, samt metoder för att automatiskt hitta vägar för 
transport genom tillverkningssystemet.
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Customized products and low-volume production are becoming more popular 
resulting in a problem for dedicated manufacturing systems that are designed for 
mass production. Adapting a system to new demands is expensive and requires 
many products to be produced before it becomes a reasonable investment. This 
has forced factories to use human workers for manufacturing tasks that often 
change. This thesis focuses on a concept called Plug & Produce, which makes it 
easier to move, add, and remove resources in manufacturing systems. This is done 
by containing resources in process modules that all have the same physical 
connectors. To handle the control of the manufacturing system a multi-agent 
system is considered where each part to be produced for products has a part agent 
software running that represents that part. Each part agent takes care of their own 
manufacturing goals by communicating with resource agents that control the 
resources in the system. In this thesis, a Plug & Produce framework is described 
that consists of a configurable multi-agent system, together with a configuration 
tool for defining agent behaviours. Methods for identifying the resource that has 
been connected to a Plug & Produce system are investigated. Communication 
between agents in Plug & Produce is investigated.  Scheduling is described for the 
presented systems to avoid conflicts when running multiple agents. Also, a 
pathfinding method for Plug & Produce is presented, which automatically gathers 
the necessary information for finding paths to transport parts through the 
manufacturing system. 
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1 Introduction 

This chapter introduces the thesis by giving the background information followed 
by the research question, methodology, contribution, and scope. 

1.1 Background 

When dedicated manufacturing (DM) was introduced to the industry more than 
one hundred years ago, it replaced manual workshops. To optimize product flows, 
products were standardized. This vastly reduced production costs and increased 
production volume. The drawback was that it became expensive to change the 
product design. This became a problem since new models of various products are 
constantly developed to compete with their competitors. This results in a 
continuously increasing demand for customized production and low-volume 
production. For example, some products are expected to have new models enter 
the market frequently. This puts high requirements on the factories that 
manufacture these products. Today it is difficult and expensive to adapt 
manufacturing systems to new product designs [1], [2]. Both the changeover time 
and the related cost for personnel involved in the change are high. This makes it 
difficult today to automate customized, and low-volume production. Because of 
that, many factories still use human workers since they are flexible. The result is 
that factories move to countries with lower wages. A trend that has emerged in 
research is to develop flexible systems that adapt to new product designs with 
minimal effort [3]. However, most flexible systems use a static customization 
framework, where customers can choose a combination of static options [4]. The 
product is customized and unique, but the options are not unique, only the 
combination. This makes it expensive to adapt the manufacturing to new models 
if they involve new options. The reason is that there is still a lack of flexible and 
reconfigurable manufacturing systems that can easily add new options for a 
customer if it involves significant product modifications [5]. 

Reconfigurability and flexibility have been the focus of research for many years 
to make manufacturing systems better at adapting fast to new product types [6]. 
Flexible Manufacturing Systems (FMS) was first introduced in the 1980s [7]. Later 
in the 1990s, Reconfigurable Manufacturing Systems (RMS) was introduced [8]. 
Both FMS and RMS aim at being able to handle products with short life cycles. 
Today, automation in industries typically includes several resources, such as 
Computer Numerical Control (CNC), industrial robots, sensors, transportation 
devices and Human Machine Interfaces (HMI). These are typically connected via 
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production volume. The drawback was that it became expensive to change the 
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the market frequently. This puts high requirements on the factories that 
manufacture these products. Today it is difficult and expensive to adapt 
manufacturing systems to new product designs [1], [2]. Both the changeover time 
and the related cost for personnel involved in the change are high. This makes it 
difficult today to automate customized, and low-volume production. Because of 
that, many factories still use human workers since they are flexible. The result is 
that factories move to countries with lower wages. A trend that has emerged in 
research is to develop flexible systems that adapt to new product designs with 
minimal effort [3]. However, most flexible systems use a static customization 
framework, where customers can choose a combination of static options [4]. The 
product is customized and unique, but the options are not unique, only the 
combination. This makes it expensive to adapt the manufacturing to new models 
if they involve new options. The reason is that there is still a lack of flexible and 
reconfigurable manufacturing systems that can easily add new options for a 
customer if it involves significant product modifications [5]. 

Reconfigurability and flexibility have been the focus of research for many years 
to make manufacturing systems better at adapting fast to new product types [6]. 
Flexible Manufacturing Systems (FMS) was first introduced in the 1980s [7]. Later 
in the 1990s, Reconfigurable Manufacturing Systems (RMS) was introduced [8]. 
Both FMS and RMS aim at being able to handle products with short life cycles. 
Today, automation in industries typically includes several resources, such as 
Computer Numerical Control (CNC), industrial robots, sensors, transportation 
devices and Human Machine Interfaces (HMI). These are typically connected via 
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a central controller such as a Programmable Logic Controller (PLC). Adjusting 
such systems to manage new product types commonly includes reprogramming 
and physical changes. Thus, each new product or modified product design, 
introduced to the system, generates costs related to reprogramming and physical 
changes. The physical flexibility can be solved by standardizing process modules 
that are connected to the system similarly to Plug & Play on computers. Ribeiro 
da Silva e al. [2] writes about a similar concept with a robot resource contained in 
a module that can be shared by moving it between stations. S. Hjorth et al. [9] 
describe a concept where modules are moved around and placed in locations that 
are marked areas defined on Plug & Produced enabled stations. Making resources 
integrated into the ongoing production requires the system to understand when 
and how to use the new process modules. This typically requires extensive 
reprogramming in PLCs that can take several months. The reason is that when 
making changes to these systems, personnel are forced to understand most of the 
code in the manufacturing system, due to strong dependencies between the logic 
controlling each resource and product part [10]. This makes it almost impossible 
today to automate customized production and low-volume production, even 
when the physical system is standardized and flexible [11]. Thus, it is important 
to develop new control strategies that can handle various products and resources 
with a low amount of reprogramming [12]. One measurement of this is to 
consider the software time needed for adapting a manufacturing system for new 
products and resources. The time for preparing a system for new products and 
resources can be divided into hardware installation time (hardware time) and the 
time spent on programming and configuring the system (software time). The 
hardware time can be solved by using standardly sized process modules and 
connectors, which are described in other work as increasing the mechatronic 
compatibility [13], [14]. Modular approaches for manufacturing systems have 
been implemented in other works such as [15]. To decrease the software time, it 
is important to look at limiting the time consumed on configuring the system and 
time for programming resources [16].  

One approach for managing flexible systems is to divide the controller into agents 
representing parts and agents representing resources. The agents can be placed 
physically on the object it represents, but they can also be placed anywhere 
remotely, such as in a cloud service. Agents that communicate with each other 
form a multi-agent system. Such systems are not new, and an example is the one 
that Krothapalli et al. [17] presented in the year 1999. Using a distributed approach 
removes the need for a central controller such as a PLC used in traditional 
automation. The resource agents present services called skills, that are used to 
reach the manufacturing goals, defined for the parts. In this way, no single agent 
has a central role in the system. Hence, it is possible to design agents without 
knowing the code of other agents, only the interfaces need to be known, for 
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example: what skills and variables another agent has. Manufacturing goals can also 
be defined to run in parallel to make manufacturing more efficient, as described 
by Nilsson et al. [18].   

Today, examples of multi-agent systems running in the industry are not common 
[19], [20]. The main reason seems to be that there are no simple configuration 
tools for the manufacturing industry, which hides the complexity of the agent 
technology [19], [21]. According to Pulikottil et al. [22] there is a lack of scheduling 
methodologies, standard architectures, and frameworks that targets general 
manufacturing environments. A configuration tool for Plug & Produce should 
provide the functionality to prepare a manufacturing system for production by 
defining its behaviour on a high level. This will replace the traditional rewriting of 
programming code for each new situation that arises in the manufacturing system. 
Also, automating functions such as path planning, pathfinding, and conflict 
avoidance can further simplify the adaption of manufacturing systems to new 
product designs. Then the system would be able to act autonomously, taking new 
orders without human intervention. It is also important to design a Plug & 
Produce framework that can be used with already existing resources in the 
industry [23], [24]. This will make the transition to these new systems smoother. 

In this thesis, various methods are presented for designing a framework for Plug 
& Produce that aims at limiting the software time. The overall approach has been 
to work with a concept called Configurable Multi-Agent System (C-MAS) for 
designing the framework. The presented Plug & Produce framework is used to 
design Plug & Produce systems and to adapt them for changes such as new 
product designs and changes in the demanded production volume. Each agent 
can be configured by using a configuration tool, to let it know what it represents. 
This includes specifying what goals, skills, interfaces, and variables it has. In this 
work, skills and process plans for reaching goals can be defined with structured 
text (ST) code, based on the standard IEC 61131-3. The agents also contain 
multiple functions for planning, which makes the coding in each agent and related 
object simpler since planning is completely standardized and reused. Resources' 
internal logic becomes isolated by the nature of multi-agent systems, making them 
loosely coupled and easy to add, remove and move. This clear separation between 
resources simplifies the work of designing them. In C-MAS, agents always interact 
through clearly defined interfaces that must be compatible to connect and 
collaborate. Once the interfaces are defined and local behaviours created the 
communication and collaboration among agents are automatically solved by 
algorithms in the Plug & Produce framework. By using the methods presented in 
this thesis, manufacturing system resources can be installed and removed in terms 
of minutes, rather than days or weeks in traditional approaches. Changes in 
product design will many times require no programming or changes to the 
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manufacturing system. Instead, a new process plan is simply designed and 
deployed to the system. 

1.2 Research Questions 

To create the Plug & Produce framework described earlier in this introduction, 
three research questions have been formulated. The first research questions 
(RQ1) consider how multi-agent systems can be designed to quickly adapt to new 
products and resources introduced to the system. The second research question 
(RQ2) asks how agents can be designed to reduce manual reprogramming. The 
aim is that the system should instead be configured on a high level, where 
descriptions are simplified, thus easier to understand and faster to modify. The 
third research question (RQ3) looks at online dynamic planning and scheduling 
that will increase the systems' online flexibility, adaptable to new situations and 
handling unpredictable events. It also decreases the software development time, 
since these functions can be used for any configuration, thus reducing the need 
for implementing this for each agent. 

The research questions are: 

RQ1. How can a multi-agent system be designed, to decrease the software 
development time in a Plug & Produce system? 

RQ2. When introducing new products and resources, how can functionality for 
agent collaboration and reasoning be reused to decrease reprogramming time? 

RQ3. How can dynamic planning and scheduling in configurable multi-agent 
systems be designed for Plug & Produce, which can handle unpredictable 
events? 
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1.3 Research Methodology 

In this section, the method for each research question is listed with explanations 
about each step needed to reach the contributions of this paper. 

Research question 1 (RQ1) is solved by contribution C1 which was achieved by 
the following steps: 

• Investigate current approaches for Plug & Produce. 

• Explore existing multi-agent systems. 

• Identify what is missing in those approaches. 

• Give design suggestions. 

Research question 2 (RQ2) is solved by contributions C2 and C3 that were 
achieved by the following steps: 

• Design a configurable multi-agent system. 

• Present a conceptual model showing how multi-agent system 
communication for Plug & Produce could be designed. 

• Show how physical devices can be connected to corresponding agents. 

• Build and evaluate the designed system. 

Research question 3 (RQ3) is solved by contribution C4 which was achieved by 
the following steps: 

• Explore existing planning approaches for multi-agent systems. 

• Present methods showing how multi-agent system online dynamic 
planning and scheduling for Plug & Produce could be designed. 
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1.4 Contributions 

The contributions are: 

C1. Give design suggestions for Plug & Produce that can help to decrease the 
adaption time for preparing a system for new products and resources. This is 
presented in the appended Paper A. 

C2. Develop and evaluate a reconfigurable Plug & Produce system based on 
multi-agent technology and show how physical devices are connected to the 
agents and their configuration. This is presented in Paper B and Paper D. 

C3. Formulate a conceptual model that describes how configurable multi-agent 
systems for Plug & Produce can communicate. This is presented in Paper C. 

C4. Design methods that describe online dynamic planning and scheduling in 
configurable multi-agent systems for Plug & Produce. This is presented in Paper 
E and Paper F. 

 

1.5 Scope and Limitation 

Requirements for hard real-time communication between agents are not 
investigated. It is instead assumed that scenarios requiring hard real-time 
communication are considered as a whole agent instead of dividing it into several 
resources. 
 
The Plug & Produce framework presented in this thesis is general and can be used 
for many types of systems. However, the focus of this work is limited to 
manufacturing systems.  
 
This thesis is organized as follows: In Section 2, the preliminaries are presented, 
including an introduction to Plug & Produce, Multi-Agent systems, and 
Automated Planning and Scheduling. Section 3 presents the proposed framework. 
Section 4 goes through the evaluations of the proposed framework. Section 5 
gives the conclusions. Section 6 gives a summary of the appended papers. 
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2 Preliminaries 

An introduction to the knowledge required for understanding the designed Plug 
& Produce framework is given in this chapter. 

2.1  Plug & Produce 

Plug & Produce was first introduced in [25] by Arai et al. It aims at dividing a 
manufacturing system into process modules that can be connected while 
production is continuing. The idea is to be able to reconfigure a manufacturing 
cell in minutes rather than days in traditional approaches. A common approach 
in research is to use standardly-sized process modules and standard connectors. 
This has been done previously in [13], [14], [15]. However, to reach actual Plug & 
Produce the system also needs to detect each connected module and integrate 
them into the ongoing production. This can be compared with a conventional 
computational cluster, where computer nodes are added simply by connecting 
them with power and ethernet. Software and settings are then automatically 
downloaded to each detected node, this includes installing the complete operating 
system on them. Thus, any standard computer connected to the network is 
converted to a computational node that starts to receive tasks and replies with the 
calculated results. A similar approach is required in Plug & Produce systems. To 
design such a flexible manufacturing system there is a huge requirement for 
defining standardized communication interfaces for each process module in the 
system. 

The concept of Plug & Produce can also be compared to the concept of Plug and 
Play, where connected resources are matched with a driver stored in the host 
computer. Similarly, the proposed Plug & Produce framework detects process 
modules using an Agent Handling System (AHS) and selects a correct agent 
configuration from a centrally stored database. The configuration is chosen based 
on the information given by the connected module. This is similar to the approach 
of selecting a driver when connecting a plug and play device such as a USB 
keyboard to a computer. The main difference is that Plug & Play only connects 
the device, making it available to the system. In Plug & Produce, the device instead 
becomes integrated into the ongoing production. The Plug & Produce framework 
is in this thesis used to achieve this integration. 
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In a Plug & Produce system the processes modules and products are assumed to 
be changed over time, making it difficult to use a central static control approach. 
Thus, a multi-agent system approach has been used for the Plug & Produce 
framework presented in this thesis. 

2.1.1 Implementation 

A physical Plug & Produce system was considered when developing the 
framework presented in this thesis, see Figure 1. This system was also used for 
the experiments conducted in some of the appended papers. The system was built 
and located at the research laboratory at University West in Trollhättan, Sweden. 

 

Figure 1. A Plug & Produce system located in the research laboratory at University 
West in Trollhättan, Sweden.  

The manufacturing cell is divided into several process modules, that can be 
connected fast without affecting other resources. These modules are connected 
in a manufacturing cell with 10 different slots for connection, as shown in Figure 
2. An industrial robot is placed in the centre of the cell, to be able to reach all 
process modules and assist with transportation. The colours in Figure 2 identify 
the different types of modules currently connected. Slots 1, 3, and 9 are type 1. 
Slots 2, 8, and 10 are type 2. Slots 4, and 6 are type 3. Slots 5, and 7 are type 4. 
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Figure 2: Plug & Produce system considered in this thesis, where the colours 
represent the different types of modules.  

Each module is connected to the slots by standardized connectors including 
power air and ethernet. To handle safety, laser scanners are installed that can 
detect humans as they get close to the cell. It was designed to make the robot slow 
down when a human is close to the cell and stops if you they are inside. However, 
if the robot is working on the opposite side and cannot harm you, then it 
continues to work. In theory, this makes it possible to change a process module 
while the system is running.  

Process modules can be given a Programmable Logic Controller (PLC), running 
an OPC UA (OPC Unified Architecture) server, that presents all sensor values 
and control signals to the network. This can be used by the cyber components 
(agents) to communicate with the process modules. 

2.2 Multi-Agent Systems 

Agents can be instructed on a high level instead of writing low-level programs for 
defining the behaviours of the system [26]. Sometimes, goals are defined for 
agents, that they want to reach. The agents then communicate with each other to 
reach those goals. Agents can be physical like a robot [27] or logical like services 
for path planning. Agents are commonly thought of as pieces of autonomous 
software [28]. Wooldridge et al. [29] described in 1995 that agency can be 
described with weak or strong notation. According to the weak notation agents 
have the following properties: 

• Autonomy: agents handle their decisions without being directly 
controlled by other external programs or humans. 

• Reactivity: agents react to the environment. 
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• Pro-activeness: agents take the initiatives to reach their goals. 
• Social ability: agents can interact with each other using an agent 

communication language. 

The strong notation of agency also includes cognitive behaviours with beliefs, 
desires, and intentions [30].  

It is common to divide agents into two types: reactive agents and planning agents 
[31]. Reactive agents perceive their environment and take action to change it. This 
can be implemented by defining a finite-state machine [32]. Planning agents take 
more advanced decisions. For planning, it is possible to use the Belief-Desire-
Intention (BDI) model first proposed in [33]. Beliefs are the knowledge that an 
agent has about the world. This knowledge is not necessarily true according to 
other agents; thus it’s called beliefs. Desires are, for example, goals that the agent 
wants to reach. Intentions can, for example, be plans defining sequences of 
actions in the format of recipes rather than complex code. 

A multi-agent system is a collection of multiple agents. Each agent is a program 
that runs independently and perceives its environment using its inputs and reacts 
to it through its outputs. This is shown in Figure 3. Agents commonly have their 
own goals, such as getting soft edges or changing colour to blue, implying that 
some machining and painting must be performed. 

 

 

Figure 3: An agent sensing and reacting to its environment. 

When several agents are connected, they form a multi-agent system as shown in 
Figure 4. In such a system, all agents collaborate using an agent communication 
language to reach manufacturing goals. 
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Figure 4: When multiple agents connect in a network, they form a multi-agent system. 

When designing multi-agent systems for manufacturing, one approach is to create 
a part agent for each physical part to be produced in the system [34]. These part 
agents contain product design knowledge based on the customer specifications. 
Also, each resource in the system can have a related resource agent defined to 
control it. Then all these parts and resources communicate and plan the 
production. 

In 1997 the Foundation for Intelligent Physical Agents (FIPA) presented an agent 
specification including the Agent Management Specification [35]. This was later 
updated to the current version in 2002 [36]. These specifications from FIPA 
describe how an agent network should be designed, including communication 
protocols and agent languages. It also includes specifications on how agents 
should be designed. FIPA is today one of the most used agent standards.  It 
defines an Agent Platform (AP), where an Agent Management System (AMS), 
Message Transport Service (MTS) and a Directory Facilitator (DF) can be used 
[36]. The AMS registers agents, making them available for communication in the 
agent network. The MTS takes care of the message transportation between agents 
[37]. The DF is a “yellow pages” service where agents publish their skills. Agents 
can search the DF to find out which agent has the skills needed to reach a goal. 
According to FIPA, the DF is not mandatory, agents are permitted to contact 
each other directly.  

In this thesis, the Plug & Produce framework was developed specifically for 
manufacturing systems. This includes an Agent Handling System (AHS), similar 
to the AMS but with some differences in the design.  

2.2.1 Multi-Agent Frameworks 

Agents can be implemented directly in any programming language. However, 
using an agent framework will drastically reduce the time to develop a new agent 
system. Agent frameworks commonly connect all agents through a 
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communication channel and handle the publishing of agent skills, making them 
visible to other agents.  

There exist many agent frameworks, such as the Smart Python Agent 
Development Environment (SPADE) [38], the Cognitive Agent Architecture 
(Cougaar) [39], the Magentix platform [40], and the Java Agent Development 
Framework (JADE) [41]. 

The most used agent framework that implements the FIPA standards is JADE  
[41]. This framework has built-in support to create containers in separate 
computers, where agents can be instantiated. These containers are connected with 
a communication channel, making it possible for agents on different computers 
to communicate without knowing the addresses of each other. There must exist 
one main container that hosts the AMS and DF. When instantiating a new agent, 
it must know the address of the main container. In JADE, the agents are mainly 
written in Java code by defining behaviours such as cyclic and one-shot 
behaviours. Since JADE is a general framework for agents, it is not adapted for 
manufacturing systems and lacks supporting tools for such scenarios. Thus, 
JADE still requires experienced designers and skilled programmers with high 
knowledge of the agent technology used.  

The Plug & Produce framework presented in this thesis was instead developed 
specifically for manufacturing systems and includes supporting configuration 
tools, communication, and negotiation to decrease the amount of time spent on 
programming.  

2.2.2 Agent Communication 

Agents need to communicate with each other. This can be implemented through 
a standardised communication language. Two existing languages for agent 
communication are the Knowledge Query Manipulation Language (KQML) and 
the Agent Communication Language (ACL). KQML was developed in the early 
1990s as part of the DARPA Knowledge Sharing Effort [42]. ACL was developed 
by the Foundation for Intelligent Physical Agents (FIPA), which is an IEEE 
organization, that develops standards for multi-agent systems [43]. In 1997 a 
collection of specifications was published named FIPA97 which includes the 
FIPA ACL. In 2002 an updated version was published including an updated ACL 
[44].  
 
Both KQML and ACL are speech act based. Speech acts are expressions by 
individual agents that involve an action taking place. For example, if one agent 
asks another agent to perform something, then this is considered a speech act.  
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In Table 1, the ACL message structure for FIPA ACL is shown, consisting of 13 
different parameters. As described in [45], the performative is the speech act 
name, the language is the language to express the content of the message, the 
ontology is the ontology name and gives meaning to the symbols of the 
expression, and the content is the actual message. 

Table 1. FIPA ACL message acts in FIPA 2002. 

Parameter Description 

performative The type of communicative act (speech act) 

sender The sender of the message 

receiver The receiver of the message 

reply-to Receiver of replies 

content Message content 

language Language of the content 

encoding Encoding of the content 

ontology Used to understand the meaning of the message 

protocol Interaction protocol 

conversation-id Id of the conversation. 

reply-with Used for the In-reply-to message 

in-reply-to Replies with a reply-with content 

reply-by Deadline for reply 

 

The FIPA standard from 2002 defines a Contract Net protocol [46], [47] as a 
definition of how two agents communicate. This protocol is also presented by 
Smith et al. [47] in 1980. It describes how an “initiator” can make a call to a 
“participant”, asking it to give a proposal. The participant replies with a refusal or 
proposal. The initiator then rejects or accepts the proposal response. Finally, the 
participant informs the initiator of what has been achieved. 

In FIPA 2002, speech acts are referred to as communicative acts and are 
presented in their Communicative Act Library (CAL). It includes 22 different 
communicative acts shown in Table 2. Note that these describe general 
communication without any specific considerations for manufacturing systems. 
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Table 2. Communicative acts in FIPA 2002. 

Communicative act Description 

Accept proposal Accept a submitted proposal 

Agree Agree to perform some action 

Cancel Cancel an action 

Call For Proposal Request proposals 

Confirm Confirms a proposition 

Disconfirm Disconfirm a proposition 

Failure Inform that action failed 

Inform Inform about a proposition being true 

Inform If Inform if a proposition is true 

Inform Ref Asks for the value of the expression 

Not Understood Did not understand the message 

Propagate Asks agents to forward this message 

Propose Send a proposal 

Proxy Ask the agent to act as a proxy 

Query If Ask the agent if the proposition is true 

Query Ref Ask for an object 

Refuse Refuse to perform the action 

Reject Proposal Rejecting a given proposal 

Request Request agent to perform an action 

Request When Request when the proposition is true 

Request Whenever Always run when the proposition is true 

Subscribe Let the other agent send updated data 

 

Hence, the FIPA standards are general for any kind of agent system, giving no 
help for the specific problems in manufacturing systems.  

2.3 Automated Planning and Scheduling 

In multi-agent systems, planning is important. Three different types of planning 
activities are considered in this thesis: (1) Process planning, including scheduling 
of resources, (2) pathfinding algorithms that can find the shortest path through a 
manufacturing system, and (3) path planning that generates collision-free paths 
for industrial robots. These are all important tools for making a Plug & Produce 
system since they give the possibility to automate additional steps that would 
otherwise be performed manually. Process plans are written on a high level and 
defined manually by humans, but automatically deployed by selecting resources 
to be used and scheduling them. Pathfinding algorithms help to automatically find 
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and optimize product paths through the system. Paths for robots would have to 
be developed and tested manually if not using automated path planning.  

2.3.1 Computation Time 

Something that also can take considerable time is the computations of the 
manufacturing system, especially for optimal solutions. The complexity and 
flexibility are affecting each other and a function can be defined that gives a total 
computational time value  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹). 

This value defines how much computation time is used for the manufacturing 
system due to planning for the agents in the system. In Figure 5, this is illustrated 
with five points that are given where systems of different types are pinpointed. 
Point number five is the type of system proposed throughout this thesis. The 
advantage of point five is that it has less computation time than point four while 
still maintaining high enough online flexibility and optimality for the scenarios 
considered in this thesis. Heuristic planning and scheduling are approaches used 
to achieve this. This thesis focuses on Plug & Produce to implement such a system 
as given by point five.  

 

Figure 5. This figure shows that the computational time, due to planning in a 
manufacturing system is a function of computational complexity and online flexibility. 
The highest computation time is type 4 and the lowest is type 2, noted with Max and 

Min. 
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2.3.2 Path Planning 

The Plug & Produce framework cannot solve everything by itself since it is only 
a platform for developing agent systems. All required data such as geometries, 
positions and process plans must be given to the agents. For example, an 
industrial robot, i.e. 6-axis arm based, need to have a collision-free path for 
moving in robot cells as shown in [48]. If a robot is supposed to be autonomous 
and without the need for manual reprogramming, it must be possible for the robot 
to find paths on demand automatically. Otherwise, these must be pre-
programmed manually for each possible scenario. One approach is to use a path 
planner that can be used online when the manufacturing system is running. 
Example of suitable planers is RRT and RRT-connect [49] due to their ability to 
efficiently find solutions. An improved planner called RRT* has also been 
developed that tends to find shorter paths than RRT. 

A rapidly exploring random tree (RRT) is used for finding a collision-free path 
through a space with obstacles, such as a robot cell [50]. It searches a space by 
building a random tree from the start point until it reaches its target point. RRT-
connect is based on RRT and is instead using a bidirectional search, starting in 
both the start and target positions. It then generates random points until the two 
threes meet. Using these types of path planners, industrial robots in 
manufacturing systems can become completely autonomous. This will enable 
them to handle new types of products instantaneously. However, it puts a 
requirement on having a completely accurate simulation of the robot cell with 
computer-aided design (CAD) objects that are accurate enough. The planner 
algorithms need this simulation to make the paths collision-free. One famous 
library that has implemented RRT-Connect and many other planners is the Open 
Motion Planning Library (OMPL). This library is not containing any collision 
detection since it has no 3D representation of the world. One software that adds 
that layer is the MoveIt software which is a part of the Robot Operating System 
(ROS), that uses OMPL.   

The problem with such simulation software is that their simulations typically are 
updated manually by humans. This includes designing CAD models in external 
software, importing them, and setting their positions in the simulation. It is 
acceptable that CAD models need to be designed by humans, to make sure that 
they are accurate enough. However, the positioning of the CAD models in the 
simulation should be based on the actual state of the online robot cell and that is 
difficult for humans to do in a Plug & Produce system where modules are moving 
around constantly, see Figure 6, where the robot should move between positions 
𝑝𝑝1 and 𝑝𝑝2. This is just too costly for humans to perform in terms of working 
hours. Additionally, some dynamic obstacles such as operators moving inside the 
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robot cell and tools forgotten inside can’t be created manually in CAD software, 
due to the random nature of these objects. Thus, the cell could instead be scanned 
using a vision system to find these obstacles. These can be automatically added to 
the simulation by generating many small cubes to approximate the shape of the 
real obstacles. Hence, two approaches are needed to work concurrently for 
automatically updating the obstacles in the simulation: 1) Automatically placing 
existing CAD objects and 2) generating approximated shapes based on online 
sensor data. 

 

Figure 6: Top view of a Plug & Produce robot cell, containing one industrial robot 
in the centre, surrounded by ten process modules. The robot should move 

between the start position 𝑝𝑝1 and target position 𝑝𝑝2. 

2.3.3 Pathfinding 

Pathfinding refers to finding the shortest path from one node to another in a set 
of nodes. This is relevant when each part agent plans its transfer through the 
manufacturing system. Dijkstra defined an algorithm already in 1959 [51], where 
the shortest path between two nodes can be found. Since that time, extensions 
have been created such as the A* algorithm. In Figure 7, the shortest path is found 
between a start node 𝐴𝐴 and a target node 𝐸𝐸. This shortest path is marked with 
blue colour and a thick line. Each line has an integer cost for travelling. 

When multiple agents should find collision-free paths, conflicts could be 
introduced when running A* [52]. Such planning is often regarded as multi-agent 
pathfinding (MAPF) [53]. There is often also a focus on minimizing a cost 
function such as the length of the path of all agents or the total makespan. Li et 
al. explain that MAPF typically does not include the agents’ physical shape when 
planning, thus collisions could exist between geometrical shapes if they are not 
considered when planning [54]. Sartoretti et al. [55] state that MAPF is relying on 

Robot
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central planning and not scaling well beyond a few hundred agents since the paths 
are recomputed online when things change. Two classes of MAPF are described 
by Sharon et al. [56]: (1) decoupled approaches where paths are found individually 
for each agent relatively fast but with no guarantee for a globally optimal solution. 
and (2) coupled approaches that can reach optimal solutions but takes more time 
for calculations. One example of decoupled planning is the cooperative A*, 
described by Silver et al. [57].  

 

 

Figure 7: Dijkstra's algorithm, where the blue marked line is the shortest path between 
the start and target positions. 

For an agent to use such an algorithm it requires knowledge about its 
environment. It needs to know each node, i.e., resource buffer and what the 
travelling costs are. This can be done by letting the agents ask other agents about 
their location and reachability. For transportation, an industrial robot might need 
to first run a short simulation before answering. In Figure 8, this is illustrated with 
two robots, each having its reachability areas, noted by A and B. However, since 
obstacles exist in the robot cell, zone B is not correct, and C becomes the actual 
zone after collision detection has been performed. This shows us that it is not 
possible to know in a Plug & Produce system if the robots can reach a certain 
point without doing some path planning and collision detection. 
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Figure 8: Industrial robots' reachability example for checking if they can reach the 
point 𝑝𝑝1 and 𝑝𝑝2 marked in the figure. 

This is time-consuming and can take several seconds up to minutes to perform. 
Thus, it is desirable to store these simulations for later use if the same types of 
parts are going to ask the same questions again. Additionally, the agent can store 
the successful paths through the system, trying to use them for the next part that 
enters the system. In this way, the system will be slow at the beginning and speed 
up after some parts have gone through the system. It is also possible to do this in 
simulation first to let the agents find each other before deploying them to the 
online environment in the physical manufacturing system. Then the agents already 
will be trained before entering the online manufacturing system.  

2.3.1 Scheduling 

When multiple part agents share a set of resources in the system, scheduling is 
needed for avoiding conflicts. Things to consider include generating schedules, 
storing schedules, and optimization. Schedules can be generated by considering 
all part agents at the same time for reaching a global optimal schedule, or they can 
be generated locally for each part, with no guarantee of reaching a globally optimal 
solution. The software for generating schedules can be distributed to agents or it 
could be contained in a central software, that performs the calculations. The 
storage of the schedules can either be centrally located or they can be distributed 
among the resources to be scheduled so that each resource knows locally about 
its schedule. Then other agents can ask those resources for their schedules. When 
working with Plug & Produce the environment is dynamic since changes happen 
online. There are multiple approaches for dynamic scheduling and rescheduling 
[58]. One approach is to add new schedules to the end of the set of all already 
scheduled tasks, requiring no rescheduling [59]. If the system runs into a problem, 
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simulation first to let the agents find each other before deploying them to the 
online environment in the physical manufacturing system. Then the agents already 
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2.3.1 Scheduling 

When multiple part agents share a set of resources in the system, scheduling is 
needed for avoiding conflicts. Things to consider include generating schedules, 
storing schedules, and optimization. Schedules can be generated by considering 
all part agents at the same time for reaching a global optimal schedule, or they can 
be generated locally for each part, with no guarantee of reaching a globally optimal 
solution. The software for generating schedules can be distributed to agents or it 
could be contained in a central software, that performs the calculations. The 
storage of the schedules can either be centrally located or they can be distributed 
among the resources to be scheduled so that each resource knows locally about 
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it needs to rerun a sequence of skills. Then that is not necessarily possible if that 
sequence is in the middle of all scheduled tasks. According to Viera et al. solutions 
for job insertion include right shift, partial rescheduling, and regeneration [60].  
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3 Proposed Plug & Produce Framework 

This chapter presents the Plug & Produce framework that has been developed in 
this work to reduce software time. It goes through the agent interfaces, process 
plans, and agent configurations. Then, the translation of locations is described to 
show how to manage local coordinates when moving process modules around in 
the system. Agent communication is described to show how the agents interact. 
Then the agent handling system is described to give a view of the agent life cycle 
management. Next, a configuration tool, that is used for defining the ontology is 
presented. Finally, the planning is described, and divided into scheduling and 
pathfinding. 

3.1 Agent Definition 

Agents can be seen as components of a cyber-physical system. Each agent is a 
cyber component running in cyberspace such as in a cloud service and is 
connected to a related physical or logical component in the real world.  

 
Figure 9. Class diagram showing the ontology used when configuring one agent. 
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In C-MAS, all agents use the same basic classes and are given their behaviours 
through a configuration called the global configuration. In Figure 9, a detailed 
description of this ontology is shown. 

When an agent is instantiated, it becomes an individual object in the cloud and is 
also given a local configuration. The local configuration contains all the unique 
parameters that are not shared with other agents of the same type, i.e., that are 
using the same global configuration. Two types of agents exist, parts and 
resources. The difference is that parts have goals that they want to reach in the 
manufacturing system using available resources. To reach a goal, process plans 
are defined as recipes rather than programs. To run a process plan, several 
variables and skills are required to exist in the agent network. These requirements 
are in this thesis noted as demands. Agents interact by connecting through 
interfaces. An agent can have multiple interfaces that define its compatibility with 
other agents. Skills are always presented to other agents through interfaces. This 
is done to determine if their interfaces are compatible. Agents have variables that 
are accessible from all interfaces within the agent. Variables can also be local on 
individual interfaces. Skills describe functionalities that an agent can perform and 
are executed by running a process plan specifically written for that skill. Process 
plans might generate further demands for additional agents (including required 
skills and variables). This creates a chain of connected collaborating agents. An 
example of a chain is a gripper that transports a part where the gripper is 
connected to an industrial robot. These three physical components can be 
controlled by separate agents, connected in a chain of interfaces when interacting. 
Compatibility is checked by comparing the generated demands with the interfaces 
in the agent network, to find a compatible agent. 

In the multi-agent system, a single agent 𝑎𝑎, belongs to the set of all agents 𝐴𝐴, i.e., 
𝑎𝑎 ∈ 𝐴𝐴. Typical agents in manufacturing systems represent physical components 
such as grippers, parts, buffers, and robots. The set of agents 𝐴𝐴 contains all parts 
𝑃𝑃 and resources 𝑅𝑅, where 𝐴𝐴 = 𝑅𝑅 ∪  𝑃𝑃. A single part is noted as 𝑝𝑝 ∈ 𝑃𝑃 and a single 
resource is noted as 𝑟𝑟 ∈ 𝑅𝑅. The parts and resources can be described as: 

𝑝𝑝 = 〈𝐺𝐺𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝, 𝑉𝑉𝑝𝑝〉 

𝑟𝑟 = 〈𝐼𝐼𝐼𝐼𝑟𝑟 , V𝑟𝑟〉 

Where 𝐺𝐺𝑝𝑝 is the set of goals for part 𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝 is the set of interfaces 𝑖𝑖𝑖𝑖 that the agent 
𝑝𝑝 has, and 𝑉𝑉𝑝𝑝 is the set of all variables that 𝑝𝑝 has. A single variable is noted as 𝑣𝑣 
and belongs to an interface or an agent. A variable can, for instance, be a path for 
grinding or a coordinate for picking up a part. Also, goals can have variables 
related to them for giving parameters for the goal. 
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Parts and resources have different behaviours called strategies. Parts are active 
with goals that they try to reach, while resources are more passive and wait for 
parts to give them requests for running skills. However, once a resource gets a 
job to perform, they will gather information about their surroundings and take 
the initiative to request further assistance from other resources. A goal for parts 
can, for instance, be to get soft edges. Goals can be described with attached 
arguments such as speed or size, making small changes to the consequence of 
reaching the goal. One goal is defined by the following tuple: 

𝑔𝑔 =< 𝑛𝑛𝑔𝑔, 𝑉𝑉𝑔𝑔, 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 > 

where 𝑛𝑛𝑔𝑔 is the name of the goal that should be matched with the name of a 
process plan 𝜋𝜋𝑔𝑔 in Π𝑔𝑔, 𝑉𝑉𝑔𝑔 is the set of all variables for the goal, and 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 is the 
set of goals that must be fulfilled before this goal can be assigned. The set 𝐺𝐺𝑝𝑝 
contains all goals 𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝 for one part 𝑝𝑝. A part can have several goals, and each 
of them describes some manufacturing result that the part desires to reach. 
Variables can also be stored on an agent by storing them in 𝑉𝑉𝑝𝑝 or 𝑉𝑉𝑟𝑟 depending 
on the agent type. A single skill is noted as 𝑠𝑠 ∈ 𝑆𝑆, where 𝑆𝑆 contains all skills in the 
global configuration. A skill is defined as: 

𝑠𝑠 =  〈𝑛𝑛𝑠𝑠 , 𝜋𝜋𝑠𝑠〉 

where the 𝑛𝑛𝑠𝑠 is the variable name and 𝜋𝜋𝑠𝑠 is a specific process plan written for 
executing that specific skill. 

3.2 Agent Types 

Each agent type in the framework has its strategy that defines its behaviour. The 
defined types in this work are the part agents and the resource agents. However, 
other types can exist such as material agents that are similar to part agents but 
with no goals. 

3.2.1 Part Agent Strategy 

Part agents have goals and reach them by executing process plans for those goals. 
To make a process plans executable, multiple communications have to be done 
with other agents and skills scheduled before the plans can be executed. In Figure 
10, a simplified overview of the part agent strategy is shown. The part agent first 
loads its configuration telling it that it is a part agent and loading the set of goals 
together with any other configured values. Next, all goals are scheduled, followed 
by going into a loop of starting skills on resources until all goals are reached. 
Finally, the part agent is shut down if no goals remain unfulfilled. 
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with no goals. 
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24 
 

 

Figure 10. Flowchart showing a simplified part agent strategy where the detailed steps 
are hidden. 

 

3.2.2 Resource Agent Strategy 

Resources have skills that can be triggered to execute based on events. One event 
is that another agent requests the skill to execute. This requires that the skill has 
been correctly booked before the request. Another event is timers, which can be 
used to run a skill as a cyclic behaviour, meaning that it will execute at a certain 
frequency. Further, events based on variables are useful and can be based on user 
input. For example, when a button is pressed, a skill could be executed. In Figure 
11, a flowchart is shown that describes the detailed behaviour of the resource 
strategy. The resource starts and loads its agent configuration, then it starts to 
receive messages and manages them based on the communicative acts used for 
each message. The function setData(), sets some data on the resource agent, 
requestData() returns some data from the resource agent, runSkillNow() executes a 
specific skill on the resource agent, checkDemand() checks if the resource agent 
fulfils a specified demand for the resource to have certain skills and variables, 
bookInterface() books an interface on the resource agent unBookInterface() unbooks 
an interface on the resource agent. 
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Figure 11. Flowchart showing the strategy of a resource agent, that receives 
messages and manages them based on communicative acts. 

3.3 Agent Interfaces 

Interfaces must match to connect. Agents have multiple interfaces, and interfaces 
have multiple skills. Each interface has defined inputs that describe needed 
variables to execute any of the presented skills on that interface. Some interfaces 
have variables that can be accessed by other agents by requesting their current 
value. One interface is noted as 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, i.e., 𝐼𝐼𝐼𝐼 is the set of all interfaces in the 
global configuration. An interface is defined by the tuple: 

𝑖𝑖𝑖𝑖 = 〈𝑆𝑆𝑖𝑖𝑖𝑖, 𝑉𝑉𝑖𝑖𝑖𝑖〉 

where all skills 𝑠𝑠 on that interface are placed in 𝑆𝑆𝑖𝑖𝑖𝑖, and all variables on the 
interface are placed in 𝑉𝑉𝑖𝑖𝑖𝑖

Available resources are not known at the planning stage when process plans are 
created. Instead, the needed resources are defined by declaring an abstract 
interface, noted as: 

𝑢𝑢 ∈ 𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛𝑢𝑢} 

Each abstract interface 𝑢𝑢 declared in a process plan is mapped to a real resource 
interface 𝑖𝑖𝑖𝑖 at runtime before a process plan can be executed. This is done by an 
interface mapping algorithm, presented in Paper A. This algorithm generates 
demands 𝑑𝑑𝑢𝑢 = {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛𝑑𝑑}, where 𝑑𝑑𝑢𝑢 is defined as: 

𝑑𝑑𝑢𝑢  =< 𝑆𝑆𝑢𝑢, 𝑉𝑉𝑢𝑢 > 
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Hence, the demand 𝑑𝑑𝑢𝑢 defines the requirements that one agent has for another 
agent’s interface. Each 𝑢𝑢 represents an abstract interface. Note that both 𝑑𝑑𝑢𝑢 and 
𝑖𝑖𝑖𝑖 defines skills and variables. Thus, 𝑖𝑖𝑖𝑖 must have all skills and variables that are 
defined in 𝑑𝑑𝑢𝑢 to be compatible. The agent that uses the process plan will look in 
the agent network to find one interface that can be used.  

3.4 Process Plans 

To reach a goal, a process plan is needed. A process plan defines at a high level 
how to reach a specific goal. This description is written like a recipe, rather than 
low-level code. A process plan translates one goal into a sequence of skills that 
can be executed on resources in the agent network. When a part agent is given a 
goal, it must find a suitable process plan that is available. Hence, it will go through 
all process plans in the global configuration until one is found where all demands 
are fulfilled, i.e., all needed resources are available with compatible interfaces. It 
is also possible to compare all process plans and select the one with the lowest 
cost, based on the currently installed resources as described in Paper A. Process 
plans can either be automatically generated or manually designed by a human. It 
is difficult, if not impossible today, for computer software to know how to design 
a successful process. This knowledge is today based on human experience [61], 
[62]. If a system would have to try repeatedly it might find a solution by using 
tools such as machine learning. However, this is today difficult to achieve on a 
high-level process plan and is more suitable for specific problems. A single 
process plan for reaching a goal is noted as:  

𝜋𝜋𝑔𝑔 ∈ 𝛱𝛱𝑔𝑔 

and a process plan for executing a skill is noted as 𝜋𝜋𝑠𝑠. A process plan must be 
turned into an executable process plan 𝜋𝜋𝑔𝑔

𝑒𝑒 ∈ Π𝑔𝑔
𝑒𝑒, or 𝜋𝜋𝑠𝑠

𝑒𝑒 ∈ Π𝑠𝑠
𝑒𝑒. The set 

Π𝐺𝐺 contains all process plans for reaching all goals for all parts that are stored in 
𝐺𝐺. A single process plan 𝜋𝜋𝑔𝑔 solves the goal 𝑔𝑔 that can exist on any part 𝑝𝑝. On the 
other hand, the process plan 𝜋𝜋𝑠𝑠 is only written for a specific skill 𝑠𝑠 existing on a 
specific resource type that has that skill. A process plan defines a sequence of 
skills (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝜋𝜋). Figure 12 shows the states for a process plan with five skills 
1-5, where the initial state is 𝑞𝑞0 and the final state is 𝑞𝑞𝑓𝑓. 
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3.4.1 Example 1 

An example of a process plan 𝜋𝜋𝑔𝑔  to reach goal 𝑔𝑔 is: 𝑢𝑢1. 𝑠𝑠1(), 𝑢𝑢2. 𝑠𝑠2(). In 𝜋𝜋𝑔𝑔  two 
skills are used: 𝑠𝑠1 and 𝑠𝑠2. The letters 𝑢𝑢1 and 𝑢𝑢2 in front of these skills are the 
abstract interfaces, used to show that these skills need to run on different 
resources. The letters are called abstract interfaces since they represent undefined 
interfaces needed on some resources in the manufacturing system. If the letter 𝑎𝑎 
would be used for both skills, that would mean that we are looking for an agent 
having an interface with both 𝑠𝑠1 and 𝑠𝑠2. Process plans exist for both reaching 
goals, and for executing skills. Thus, the connections between process plans create 
a tree of connected interfaces. An example of a tree of connected interfaces is 
shown in Figure 13. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process 
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑢𝑢1 for an interface 𝑢𝑢1 in the agent network 
and finds the matching interface 𝑖𝑖𝑓𝑓𝑏𝑏 on 𝑟𝑟1. Additionally, interface 𝑢𝑢2 described in 
𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑢𝑢2. Thus, the part finds the resource 𝑟𝑟2 with interface 
𝑖𝑖𝑓𝑓𝑒𝑒. Resource 𝑟𝑟1 has a process plan 𝜋𝜋𝑠𝑠1 with further demands 𝑑𝑑𝑢𝑢3 and finds 𝑟𝑟3 
on 𝑖𝑖𝑓𝑓𝑑𝑑. 

 

Figure 13: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.  

The detailed interactions are shown in Figure 14, where each step is shown. The 
demand 𝑑𝑑𝑢𝑢1 is broadcasted to each resource in the current system, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3. 
Then 𝑟𝑟2 and 𝑟𝑟3 rejects the request since they do not fulfil the demand. The 
resource 𝑟𝑟1 has the demanded skill but demands further skills from other 
resources and broadcasts that to the agent network in this example sent to 𝑟𝑟2 
and 𝑟𝑟3. Resource 𝑟𝑟3 accept the request and returns information about the interface 
𝑖𝑖𝑓𝑓𝑑𝑑 that was compatible. Then, 𝑟𝑟1 can accept the demand from 𝑝𝑝 by returning 
information about its compatible interface 𝑖𝑖𝑖𝑖𝑏𝑏. After that the second demand 𝑑𝑑𝑢𝑢2 
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information about the compatible interface 𝑖𝑖𝑓𝑓𝑒𝑒. 



 

26 
 

Hence, the demand 𝑑𝑑𝑢𝑢 defines the requirements that one agent has for another 
agent’s interface. Each 𝑢𝑢 represents an abstract interface. Note that both 𝑑𝑑𝑢𝑢 and 
𝑖𝑖𝑖𝑖 defines skills and variables. Thus, 𝑖𝑖𝑖𝑖 must have all skills and variables that are 
defined in 𝑑𝑑𝑢𝑢 to be compatible. The agent that uses the process plan will look in 
the agent network to find one interface that can be used.  

3.4 Process Plans 

To reach a goal, a process plan is needed. A process plan defines at a high level 
how to reach a specific goal. This description is written like a recipe, rather than 
low-level code. A process plan translates one goal into a sequence of skills that 
can be executed on resources in the agent network. When a part agent is given a 
goal, it must find a suitable process plan that is available. Hence, it will go through 
all process plans in the global configuration until one is found where all demands 
are fulfilled, i.e., all needed resources are available with compatible interfaces. It 
is also possible to compare all process plans and select the one with the lowest 
cost, based on the currently installed resources as described in Paper A. Process 
plans can either be automatically generated or manually designed by a human. It 
is difficult, if not impossible today, for computer software to know how to design 
a successful process. This knowledge is today based on human experience [61], 
[62]. If a system would have to try repeatedly it might find a solution by using 
tools such as machine learning. However, this is today difficult to achieve on a 
high-level process plan and is more suitable for specific problems. A single 
process plan for reaching a goal is noted as:  

𝜋𝜋𝑔𝑔 ∈ 𝛱𝛱𝑔𝑔 

and a process plan for executing a skill is noted as 𝜋𝜋𝑠𝑠. A process plan must be 
turned into an executable process plan 𝜋𝜋𝑔𝑔

𝑒𝑒 ∈ Π𝑔𝑔
𝑒𝑒, or 𝜋𝜋𝑠𝑠

𝑒𝑒 ∈ Π𝑠𝑠
𝑒𝑒. The set 

Π𝐺𝐺 contains all process plans for reaching all goals for all parts that are stored in 
𝐺𝐺. A single process plan 𝜋𝜋𝑔𝑔 solves the goal 𝑔𝑔 that can exist on any part 𝑝𝑝. On the 
other hand, the process plan 𝜋𝜋𝑠𝑠 is only written for a specific skill 𝑠𝑠 existing on a 
specific resource type that has that skill. A process plan defines a sequence of 
skills (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝜋𝜋). Figure 12 shows the states for a process plan with five skills 
1-5, where the initial state is 𝑞𝑞0 and the final state is 𝑞𝑞𝑓𝑓. 

 

Figure 12: Process plan with five skills, where the initial state is 𝑞𝑞0 and final state is 
𝑞𝑞𝑓𝑓. 

 

27 
 

3.4.1 Example 1 

An example of a process plan 𝜋𝜋𝑔𝑔  to reach goal 𝑔𝑔 is: 𝑢𝑢1. 𝑠𝑠1(), 𝑢𝑢2. 𝑠𝑠2(). In 𝜋𝜋𝑔𝑔  two 
skills are used: 𝑠𝑠1 and 𝑠𝑠2. The letters 𝑢𝑢1 and 𝑢𝑢2 in front of these skills are the 
abstract interfaces, used to show that these skills need to run on different 
resources. The letters are called abstract interfaces since they represent undefined 
interfaces needed on some resources in the manufacturing system. If the letter 𝑎𝑎 
would be used for both skills, that would mean that we are looking for an agent 
having an interface with both 𝑠𝑠1 and 𝑠𝑠2. Process plans exist for both reaching 
goals, and for executing skills. Thus, the connections between process plans create 
a tree of connected interfaces. An example of a tree of connected interfaces is 
shown in Figure 13. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process 
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑢𝑢1 for an interface 𝑢𝑢1 in the agent network 
and finds the matching interface 𝑖𝑖𝑓𝑓𝑏𝑏 on 𝑟𝑟1. Additionally, interface 𝑢𝑢2 described in 
𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑢𝑢2. Thus, the part finds the resource 𝑟𝑟2 with interface 
𝑖𝑖𝑓𝑓𝑒𝑒. Resource 𝑟𝑟1 has a process plan 𝜋𝜋𝑠𝑠1 with further demands 𝑑𝑑𝑢𝑢3 and finds 𝑟𝑟3 
on 𝑖𝑖𝑓𝑓𝑑𝑑. 

 

Figure 13: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.  

The detailed interactions are shown in Figure 14, where each step is shown. The 
demand 𝑑𝑑𝑢𝑢1 is broadcasted to each resource in the current system, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3. 
Then 𝑟𝑟2 and 𝑟𝑟3 rejects the request since they do not fulfil the demand. The 
resource 𝑟𝑟1 has the demanded skill but demands further skills from other 
resources and broadcasts that to the agent network in this example sent to 𝑟𝑟2 
and 𝑟𝑟3. Resource 𝑟𝑟3 accept the request and returns information about the interface 
𝑖𝑖𝑓𝑓𝑑𝑑 that was compatible. Then, 𝑟𝑟1 can accept the demand from 𝑝𝑝 by returning 
information about its compatible interface 𝑖𝑖𝑖𝑖𝑏𝑏. After that the second demand 𝑑𝑑𝑢𝑢2 
is broadcasted and rejected by 𝑟𝑟1 and 𝑟𝑟3, but accepted by 𝑟𝑟2 that returns 
information about the compatible interface 𝑖𝑖𝑓𝑓𝑒𝑒. 



 

28 
 

 

Figure 14. Example of one part interacting with three resources. 

3.5 Configuring the System 

As described earlier, all agents use the same basic code and are given their 
behaviours through a configuration called global configuration. When instantiated 
the agent is also given a local configuration that is based on the actual values of 
input data to the agent, such as sensor data from its physical component or 
information from other agents. All configurations for one agent (local and global) 
are arranged according to the configuration classes presented in Figure 15.  
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Figure 15: Entity-Relationship model (ER model), showing a simplified view of the 
ontology used for configuring the agents. For further simplicity, the attributes are not 

included. 

The idea is to create a standardized agent code where only two types of agents 
exist, the part and the resource. This code never changes and is general for most 
manufacturing scenarios. Specific hardware codes will still exist, such as the 
controller for an industrial robot or a PLC for reading a sensor. The agents handle 
all communication among resources and parts of the system. It represents the 
hardware or in some cases software. To do this, the agent needs to know what 
services, i.e., skills it offers and what goals it has. Together with this, all variable 
data and interfaces must be defined. The configuration should contain enough 
information for the agent to know how it should behave. Global configurations 
are written offline in a user-friendly configuration tool. They are later uploaded 
to a configuration database, where all agents’ global configurations are stored. 
Many users can log in and work simultaneously with the configurations. Further, 
configurations can automatically be deployed to an online manufacturing system. 
This is done by copying the developed configurations to another configuration 
database existing in the manufacturing system, used online. Next time a resource 
or part gets an agent instantiated, they will use the updated global configuration. 
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By separating the offline and online configuration databases, it is possible to test 
the new configurations together with a simulated manufacturing cell before 
deploying them to the online manufacturing system.  

3.5.1 Example 2 

In Figure 16, an example is shown of how one part agent 𝑝𝑝 tries to reach a goal 
𝑔𝑔. The goal is solved by process plan 𝜋𝜋𝑔𝑔 that demands an interface with a specific 
skill, and finds 𝑠𝑠1 on 𝑖𝑖𝑓𝑓1. The skill 𝑠𝑠1 executes its plan 𝜋𝜋𝑠𝑠1, that demands a further 
skill and finds 𝑠𝑠2 on 𝑖𝑖𝑓𝑓2. Finally, skill 𝑠𝑠2 executes its plan 𝜋𝜋𝑠𝑠2. After this the chain 
is disconnected and the goal 𝑔𝑔 reached. 

 

Figure 16: A combined model, showing a partial view of the internal ontology of three 
agents 𝑝𝑝, 𝑟𝑟1, and 𝑟𝑟2. In this example, the part agent 𝑝𝑝 is requesting a resource 𝑟𝑟1 to run 
a skill, and that resource is requesting a second resource 𝑟𝑟2 to run an additional skill. 
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3.6 Translation of Locations 

When variables are communicated between agents, they are first translated into 
world coordinates. If an agent wants to give its variable to another agent, it needs 
to find out where it is located in the world. Agents know that interfaces are 
connected while interacting with each other. They also need to have locations 
defined for those interfaces, specified in a local coordinate system for each agent. 
By connecting two interfaces, it is assumed that they always are at identical 
locations. However, it is not yet necessarily known where that is without further 
calculations. Agents can ask the other agent that they are attached to, to give their 
coordinates in world coordinates. If they are not having the world coordinate 
system, then this will continue as a chain of requests down to the agent that is in 
world coordinates, most commonly the items placed on the floor, such as a 
docking slot in the manufacturing cell. Each agent has this functionality to 
translate coordinates. The idea is that everything needs to be attached to some 
common physical component, like the manufacturing cell. This information can 
then be used by resources such as an industrial robot for transporting items 
around in the system. 

3.6.1 Example 3 

See Figure 17 for an example of a part asking the buffer that it is placed on for its 
world coordinate. This is then used to inform a transporter agent where to pick 
up the part. 

 

Figure 17. A part agent, placed on a buffer, requests a transporter to move the part 
from the buffer. This requires the part to first ask the buffer for the world coordinate 

that the part is placed on. 

3.7 Agent Communication 

Agents need to share a common language for communication, such as the FIPA 
ACL introduced earlier. FIPA describes a set of communicative acts (co-acts), 
such as Inform, Request and Agree. However, as described earlier, these are 
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designed generally for all types of systems and lack specific support for 
manufacturing systems, such as booking resources and starting a process. Thus, 
it was found in Paper C that it is possible to define another layer with specialized 
co-acts designed for the specific type of scenario considered. 

The naming of configuration values such as skills, variables, and interfaces must 
be standardized in the global configuration among the several agents. Two agents 
must share a common understanding of what these values are used for. For 
example, two variables Pick and Place both have the same data type, but different 
meanings. This must be understood by all agents using these variables. To manage 
this, it is desirable to have a configuration tool that guides the user and gives 
warnings in case of problems. If resources share common semantics for global 
configuration values, then it is possible to move a resource to another 
manufacturing cell or even to another company, assuming they are using the same 
semantic standard. 

In Paper C a conceptual model was defined with four layers 1-4, see Figure 18. It 
describes different layers of communication that can exist in a multi-agent system. 
Layers one and two already exist in agent frameworks such as JADE, where layer 
two could be FIPA ACL. However, other agent communication languages could 
fit into this layer. 

 

Figure 18: Conceptual model for agent communication. 

The first layer (1) describes the basic communication protocol and the setup of 
the agent network. Layer two (2) describes the general communication 
functionalities between agents. Layer three (3) describes the special 
communication. In this thesis scenario, it is specialized for manufacturing 
systems. Layer four (4) is the reconfigurable layer where the global configurations 
are created. The idea is that most manual work is done in layer four where no 
programming is needed. 
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3.8 Agent Handling System 

Agents are considered to be cyber-components while the physical resources or 
parts are the physical components. Some agents can also represent software, and 
other agents can exist without representing anything, acting only as a cyber 
component. Many times, agents need to be connected to the object it is 
controlling by a communication channel. This can be done using many protocols, 
but the implementation in this work was done using the OPC UA protocol over 
Ethernet. OPC UA is a platform-independent communication protocol that was 
developed by the OPC Foundation to be used in industrial automation  [63]. In 
Figure 19, a data hub is shown, that communicates with the agents in the system 
on the left, and connects them with the object they represent on the right, using 
for example OPC UA. This means that industrial communication protocols can 
be added without changing the agent design. Agent 1 in Figure 19, is completely 
connected with object 1 and communication can be done in both directions. 
Agent 2, is connected to the data hub, but not to the object 2 that it represents. 
This can be the case when having objects that do not have any electronics on 
them, such as a part to be produced. In that case, the agent knows that the objects 
exist but only affects them indirectly by calling other agents on the left side to let 
them manipulate object 2. Agent 3 is a completely in the cyber-space, not having 
any object in the world or software to control. The use of this can be to add 
functionality that is only used for control of other agents. 

 

Figure 19: The data hub for synchronizing data between agents and their related 
objects in the world. 

The data hub is part of the Agent Handling System (AHS), developed and 
presented in Paper B. The AHS is illustrated in Figure 20 and includes four parts: 
the Agent Creator, the DHCP server (Dynamic Host Configuration Protocol), 
the Agent Detector, and the Data HUB. DHCP stands for Dynamic Host 
Configuration Protocol. It is used to automatically detect devices in networks and 
to give them an Internet Protocol address (IP address). 
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designed generally for all types of systems and lack specific support for 
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but the implementation in this work was done using the OPC UA protocol over 
Ethernet. OPC UA is a platform-independent communication protocol that was 
developed by the OPC Foundation to be used in industrial automation  [63]. In 
Figure 19, a data hub is shown, that communicates with the agents in the system 
on the left, and connects them with the object they represent on the right, using 
for example OPC UA. This means that industrial communication protocols can 
be added without changing the agent design. Agent 1 in Figure 19, is completely 
connected with object 1 and communication can be done in both directions. 
Agent 2, is connected to the data hub, but not to the object 2 that it represents. 
This can be the case when having objects that do not have any electronics on 
them, such as a part to be produced. In that case, the agent knows that the objects 
exist but only affects them indirectly by calling other agents on the left side to let 
them manipulate object 2. Agent 3 is a completely in the cyber-space, not having 
any object in the world or software to control. The use of this can be to add 
functionality that is only used for control of other agents. 

 

Figure 19: The data hub for synchronizing data between agents and their related 
objects in the world. 

The data hub is part of the Agent Handling System (AHS), developed and 
presented in Paper B. The AHS is illustrated in Figure 20 and includes four parts: 
the Agent Creator, the DHCP server (Dynamic Host Configuration Protocol), 
the Agent Detector, and the Data HUB. DHCP stands for Dynamic Host 
Configuration Protocol. It is used to automatically detect devices in networks and 
to give them an Internet Protocol address (IP address). 
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Figure 20: This figure shows the Agent Handling System connected to two devices on 
the right side that are controlled by the two agents on the left side. 

In Figure 21, the behaviour of the AHS is described in more detail. It can be 
divided into six different steps: 

1) Detect new devices in the network:  
A unique IP address is assigned to each new device detected in the 
network by the DHCP server. Each address is stored in the AHS. 

2) Establish a connection to the new devices: 
Each IP address is used by the AHS to establish an OPC UA 
connection between the Data hub and the detected device 

3) Identify possible agents:  
The Agent Detector searches the OPC UA server on each detected 
device, to gather information about what agent type it has.  

4) Get global configuration:  
Based on the agent types detected in step 3, the AHS fetches the 
corresponding global configurations required for instantiating the 
needed agents. 

5) Get local configuration: 
Each local configuration value is fetched by the AHS from the 
physical device and stored. 

6) Instantiate new agent program:   
The Agent Creator instantiates a new agent using the selected global 
and local configurations for each detected device. 
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After these steps are performed, the data hub sets up the synchronization between 
the cyber and physical components as shown in Figure 21. 

 

Figure 21: Method for registering new devices added to the Plug & Produce system. 

3.9  Configuration Tool 

In Paper D, a configuration tool was presented that is used to manually create 
global configurations. The configuration tool presents several different views to 
the user as defined in the following list: 

Main view:  
In the main view, agents can be added, removed and edited. Changes to the 
agents are done in the agent view. Additionally, the process plans can be 
added, removed and edited, by opening the process plan view.  

 
Agent view:  

In the agent view, we can set the agent name and choose if the agent is a 
resource or part. Variables can be added, removed and edited; this opens the 
variable view. Interfaces can be added, removed and edited; this opens the 
interface view. Goals can be added, removed and edited; this opens the goal 
view. 
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Interface view:  
In the interface view, we can set the interface type. Variables can be added, 
removed and edited; this opens the variable view. Skills can be added, removed 
and edited; this opens the skill view. 

 
Goal view:  

The goal view is used to set the goal name.  
 
Process plan view:  

The process plan view has the functions to set a plan name, define a goal and 
write the actual process plan.  

 
Skill view: 

In the skill view, we can set the skill type and write the process plan for the 
skill.  

 
Variable view: 

 In the variable view, we can set the variable name and its data.  

3.10 Agent Planning 

An agent needs to perform planning to adapt to new situations. This thesis has 
aimed to perform this online and with as few disturbances as possible to the 
manufacturing system. This means that they had to use some heuristic approaches 
to speed up the computations. This chapter presents the scheduling of process 
plans and an approach to pathfinding that coordinates multiple agents to find the 
shortest path with no conflicts with other agents' paths. The two concepts 
support each other since the scheduler presented is used by the pathfinding 
algorithm to solve conflicts, including the deadlock problem. 

3.10.1 Scheduling of Process Plans 

In Paper E, a new planning method is introduced, and an algorithm for scheduling 
is defined for our multi-agent system. The idea is that each part agent plans their 
production by planning all goals directly when added to the system. That means 
that each goal gets a process plan selected and scheduled. There is no central 
system where the schedule is stored, instead, each resource agent holds its 
schedules locally. When a part agent is looking for skills, the compatible agents 
will return their schedule to the part agent so that it can consider any conflicts. 
The part can decide by coordinating among its goals so that it can plan a way to 
go through the system. Then it communicates this plan to each resource so they 
can add it to their schedules. Since all goals are planned for at the beginning, the 
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plan and schedule cannot be changed if something happens later that was not 
considered. Thus, all alternatives must be scheduled. This was solved for 
unpredictable events so that it can rerun a goal if it would fail.  In Figure 22, two 
sets of parallel sequences 𝐺𝐺𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐺𝐺𝑏𝑏

𝑝𝑝𝑝𝑝 are shown. There are a total of four 
sequences of goals 𝐺𝐺𝑎𝑎1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑎𝑎2
𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏2
𝑠𝑠𝑠𝑠. In those sequences there are a total of five 

goals 𝑔𝑔1ℎ, 𝑔𝑔2ℎ, 𝑔𝑔3ℎ, 𝑔𝑔4ℎ, 𝑔𝑔5ℎ, containing the skills 𝑠𝑠1ℎ, 𝑠𝑠2ℎ, 𝑠𝑠3ℎ, 𝑠𝑠4ℎ, 𝑠𝑠5ℎ, 𝑠𝑠6ℎ.  The goal 𝑔𝑔3ℎ 
can rerun if the result from its skills is not acceptable. Each of the sets 𝐺𝐺𝑝𝑝𝑝𝑝 must 
wait for all arrows that are pointing to 𝐺𝐺𝑝𝑝𝑝𝑝 for it to start executing any of its skills. 
Meaning that the skill that the arrow is pointing from must be successfully 
executed with an acceptable result. 

 

Figure 22. This illustrates an example of goal sequences 𝐺𝐺𝑠𝑠𝑠𝑠 running in parallel 𝐺𝐺𝑝𝑝𝑝𝑝, 
with goals 𝑔𝑔ℎ having skills 𝑠𝑠ℎ to be scheduled.  Each 𝐺𝐺𝑝𝑝𝑝𝑝 must wait for each arrow 

pointing to it to be done for 𝐺𝐺𝑝𝑝𝑝𝑝 to start executing any of its skills.   

To make the schedule distributed the resource tuple was defined as the following 

𝑟𝑟 =< 𝑛𝑛𝑟𝑟, 𝐼𝐼𝐼𝐼𝑟𝑟, 𝑉𝑉𝑟𝑟, 𝑆𝑆𝐶𝐶𝑟𝑟, 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 > 

where, 𝑛𝑛𝑟𝑟 is the name of the resource, 𝐼𝐼𝐼𝐼𝑟𝑟 is the set of interfaces, 𝑉𝑉𝑟𝑟 is the set of 
variables, 𝑆𝑆𝐶𝐶𝑟𝑟 is the set of all schedules for each interface in 𝐼𝐼𝐼𝐼𝑟𝑟, and 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 is the 
set of dependencies between interfaces. One dependency is defined as  



 

36 
 

Interface view:  
In the interface view, we can set the interface type. Variables can be added, 
removed and edited; this opens the variable view. Skills can be added, removed 
and edited; this opens the skill view. 

 
Goal view:  

The goal view is used to set the goal name.  
 
Process plan view:  

The process plan view has the functions to set a plan name, define a goal and 
write the actual process plan.  

 
Skill view: 

In the skill view, we can set the skill type and write the process plan for the 
skill.  

 
Variable view: 

 In the variable view, we can set the variable name and its data.  

3.10 Agent Planning 

An agent needs to perform planning to adapt to new situations. This thesis has 
aimed to perform this online and with as few disturbances as possible to the 
manufacturing system. This means that they had to use some heuristic approaches 
to speed up the computations. This chapter presents the scheduling of process 
plans and an approach to pathfinding that coordinates multiple agents to find the 
shortest path with no conflicts with other agents' paths. The two concepts 
support each other since the scheduler presented is used by the pathfinding 
algorithm to solve conflicts, including the deadlock problem. 

3.10.1 Scheduling of Process Plans 

In Paper E, a new planning method is introduced, and an algorithm for scheduling 
is defined for our multi-agent system. The idea is that each part agent plans their 
production by planning all goals directly when added to the system. That means 
that each goal gets a process plan selected and scheduled. There is no central 
system where the schedule is stored, instead, each resource agent holds its 
schedules locally. When a part agent is looking for skills, the compatible agents 
will return their schedule to the part agent so that it can consider any conflicts. 
The part can decide by coordinating among its goals so that it can plan a way to 
go through the system. Then it communicates this plan to each resource so they 
can add it to their schedules. Since all goals are planned for at the beginning, the 

 

37 
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𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 =< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 > 

Where if the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 all interfaces in 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 will also be booked if 𝑖𝑖𝑖𝑖, 

is booked. This is useful when two interfaces are related and booking one might 
make the other unusable. Each interface 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑟𝑟 has a local schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖, stored 
in 𝑆𝑆𝐶𝐶𝑟𝑟. The schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 contains each scheduled skill  

𝑠𝑠ℎ =< 𝑛𝑛𝑠𝑠, 𝑛𝑛𝑢𝑢, 𝑔𝑔, 𝑠𝑠𝑡𝑡𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠
𝑙𝑙𝑜𝑜, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟, 𝑆𝑆𝑠𝑠
ℎ > 

Where 𝑛𝑛𝑠𝑠 is the name of the skill 𝑠𝑠, 𝑛𝑛𝑢𝑢 is the name of the abstract interface 𝑢𝑢 that 
generates the demand for the skill 𝑠𝑠, 𝑠𝑠𝑡𝑡𝑠𝑠 is the state that the interface having skill 
𝑠𝑠 should be in to run, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑙𝑙𝑙𝑙 is the interface used on the agent running the scheduler 
to connect to 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟 that is the interface having the skill that is scheduled, and 𝑆𝑆𝑠𝑠
ℎ 

is the set of other skills needed for executing 𝑠𝑠. For example, if a gripper tool 
should move a part, then that tool might need a robot to execute a skill to move 
the gripper tool. 

3.10.2 Pathfinding for Part Transfer 

In Paper F, pathfinding is defined for our multi-agent system. This is used to 
simplify the manually created process plans so that they do not need to include 
all transfer steps in a manufacturing system. It also increases flexibility, since the 
system can dynamically plan based on changes introduced when resources are 
moved, added or removed. Each part agent first broadcasts to all agents asking 
them for compatible buffers in the system. When it receives proposals for buffers, 
it stores them as nodes locally on a graph 𝛾𝛾. Later a pathfinder is applied to this 
graph to find the shortest path through the system. By using a shared schedule, 
conflicts are avoided among the agents. Thus, each part agent 𝑝𝑝 builds their local 
graphs 𝛾𝛾, defined by:  

𝛾𝛾 =< 𝐼𝐼𝐹𝐹𝛾𝛾, Τ𝛾𝛾 > 

Where 𝐼𝐼𝐹𝐹𝛾𝛾 is the set of interfaces 𝑖𝑖𝑖𝑖 that can be used as nodes in the graph for 
holding the part, and Τ𝛾𝛾 is the set of transfers 𝜏𝜏 between those nodes. A transfer 
is defined by the following tuple: 

𝜏𝜏 =< 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑛𝑛𝑠𝑠, 𝑐𝑐𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠 > 

where 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 is the interface that the part is attached to before transferring it, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
is the interface that the part is attached to after transferring it, 𝑛𝑛𝑠𝑠 is the name of 
the skill 𝑠𝑠 that will transfer the part, 𝑐𝑐𝑠𝑠 is the cost of executing the skill 𝑠𝑠 , 𝑖𝑖𝑓𝑓𝑠𝑠 is 
the address to the interface of the skill where 𝑠𝑠 is defined. 

 

 
39 

 

4 Evaluation 

The evaluation is done by using an industrial scenario and showing how the 
system would handle various aspects of that scenario. 

4.1 Manufacturing Scenario 

This scenario describes how a part 𝑝𝑝 is transported from a buffer 𝑟𝑟1 to a paint 
station 𝑟𝑟2. This is done by using a gripper 𝑟𝑟3 that is attached to a robot 𝑟𝑟4, see 
Figure 23. Similar scenarios have been presented in the appended papers. 
However, note that the scenario presented in this section has slightly different 
configuration parameters. This scenario will be used throughout this chapter to 
make examples. 

 

Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station 𝑟𝑟2, 
using gripper 𝑟𝑟3, and robot 𝑟𝑟4. 

In Table 3, the configuration values for the scenario are shown, where the column: 
Agent refers to the agent that the configuration value belongs, the Interface is the 
interface to which the configuration value belongs, and the data type describes 
what format the data is in and the Name is the name of the configuration value. 
The part has one goal 𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, that can be solved by the process plan 
𝜋𝜋𝑔𝑔. The description “Input:” in the table is noting that a variable is not 
configurated with any value on the startup of the system. Instead, this is an input 
signal on an interface, that will get data from another agent. 
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𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 =< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 > 

Where if the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 all interfaces in 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 will also be booked if 𝑖𝑖𝑖𝑖, 

is booked. This is useful when two interfaces are related and booking one might 
make the other unusable. Each interface 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑟𝑟 has a local schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖, stored 
in 𝑆𝑆𝐶𝐶𝑟𝑟. The schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 contains each scheduled skill  
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Where 𝑛𝑛𝑠𝑠 is the name of the skill 𝑠𝑠, 𝑛𝑛𝑢𝑢 is the name of the abstract interface 𝑢𝑢 that 
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ℎ 
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4 Evaluation 

The evaluation is done by using an industrial scenario and showing how the 
system would handle various aspects of that scenario. 

4.1 Manufacturing Scenario 

This scenario describes how a part 𝑝𝑝 is transported from a buffer 𝑟𝑟1 to a paint 
station 𝑟𝑟2. This is done by using a gripper 𝑟𝑟3 that is attached to a robot 𝑟𝑟4, see 
Figure 23. Similar scenarios have been presented in the appended papers. 
However, note that the scenario presented in this section has slightly different 
configuration parameters. This scenario will be used throughout this chapter to 
make examples. 

 

Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station 𝑟𝑟2, 
using gripper 𝑟𝑟3, and robot 𝑟𝑟4. 

In Table 3, the configuration values for the scenario are shown, where the column: 
Agent refers to the agent that the configuration value belongs, the Interface is the 
interface to which the configuration value belongs, and the data type describes 
what format the data is in and the Name is the name of the configuration value. 
The part has one goal 𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, that can be solved by the process plan 
𝜋𝜋𝑔𝑔. The description “Input:” in the table is noting that a variable is not 
configurated with any value on the startup of the system. Instead, this is an input 
signal on an interface, that will get data from another agent. 
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Table 3. Configuration values for the scenario. 

Agent Name Description Data type Interface 

 𝜋𝜋𝑔𝑔 Solves PaintBlue Process Plan  
𝑝𝑝 𝑖𝑖𝑓𝑓3 BufferInterface Interface  
𝑝𝑝 𝑣𝑣3 BaseLocation Variable 𝑖𝑖𝑓𝑓3 
𝑝𝑝 𝑖𝑖𝑓𝑓4 GripInterface Interface  
𝑝𝑝 𝑣𝑣4 GripLocation Variable 𝑖𝑖𝑓𝑓4 
𝑝𝑝 𝑔𝑔 PaintBlue Goal  
𝑟𝑟1 𝑖𝑖𝑓𝑓1 BufferInterface Interface  
𝑟𝑟1 𝑣𝑣1 BufferLocation Variable 𝑖𝑖𝑓𝑓1 
𝑟𝑟1 𝑠𝑠1 Buffer Skill 𝑖𝑖𝑓𝑓1 
𝑟𝑟2 𝑖𝑖𝑓𝑓2 BufferInterface Interface  
𝑟𝑟2 𝑣𝑣2 BufferLocation Variable 𝑖𝑖𝑓𝑓2 
𝑟𝑟2 𝑠𝑠2 Paint Skill 𝑖𝑖𝑓𝑓2 
𝑟𝑟3 𝑖𝑖𝑓𝑓5 GripInterface Interface  
𝑟𝑟3 𝑠𝑠3 Transport Skill 𝑖𝑖𝑓𝑓5 
𝑟𝑟3 𝑣𝑣7 Input: PickAt Variable 𝑖𝑖𝑓𝑓5 
𝑟𝑟3 𝑣𝑣8 Input: PlaceAt Variable 𝑖𝑖𝑓𝑓5 
𝑟𝑟3 𝑣𝑣5 ToolData Variable 𝑖𝑖𝑓𝑓6 
𝑟𝑟3 𝑖𝑖𝑓𝑓6 ToolInterface Interface  
𝑟𝑟3 𝑣𝑣6 BaseLocation Variable 𝑖𝑖𝑓𝑓6 
𝑟𝑟4 𝑖𝑖𝑓𝑓7 ToolInterface Interface  
𝑟𝑟4 𝑠𝑠4 MoveTool Skill 𝑖𝑖𝑓𝑓7 
𝑟𝑟4 𝑠𝑠5 CloseTool Skill 𝑖𝑖𝑓𝑓7 
𝑟𝑟4 𝑠𝑠6 OpenTool Skill 𝑖𝑖𝑓𝑓7 
𝑟𝑟4 𝑣𝑣10 Input: To Variable 𝑖𝑖𝑓𝑓7 
𝑟𝑟4 𝑣𝑣11 Input: Tool Variable 𝑖𝑖𝑓𝑓7 

 

In Figure 24, the variables for locations 1-4 are shown, as defined in Table 3. 
These are needed for the agents to know where the interfaces are located. The 
variables are defined relative to the local agent’s coordinate system and are 
translated into a common reference frame (world coordinates) when 
communicated from one agent to another.  
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Figure 24: Variables for locations 1-4. 

Figure 25 shows interfaces 1-7 defined in Table 3. The lines show how interfaces 
can be connected.  

 

Figure 25: Interface connections are shown with lines for interfaces 1-7. 

4.2 Agent Interfaces 

When variables are communicated between agents they are first translated into 
world coordinates. If 𝑝𝑝 wants to give its variable 𝑣𝑣4 to 𝑟𝑟3 it needs to find out 
where it is located in the world. Since 𝑝𝑝 knows that 𝑖𝑖𝑓𝑓3 and 𝑖𝑖𝑓𝑓1 are connected (see 
Figure 25) it is known that 𝑣𝑣3 and 𝑣𝑣1 are located in the same world coordinate 
(see Figure 24). Thus, 𝑝𝑝 asks 𝑟𝑟1 to give its 𝑣𝑣1 in world coordinates to 𝑝𝑝. Each 
agent has this functionality to translate coordinates. If 𝑟𝑟1 is connected to further 
agents this will continue in a chain of connected agents translating down to a 
common reference frame. The idea is that everything needs to be attached to 
some common physical component, like the manufacturing cell. In this scenario 
𝑟𝑟4 and 𝑟𝑟1 are attached to the same manufacturing cell and their world positions 
are defined as variables of the respective agents. When 𝑝𝑝 gets the world position 
of 𝑣𝑣3 it will have enough data to find the world position of 𝑣𝑣4. This is then 
communicatied to 𝑟𝑟3. Since the robot 𝑟𝑟4 is attached to the same manufacturing 
cell it has a common reference shared with 𝑟𝑟1 and 𝑟𝑟2. To simplify the scenarios 
global configuration, the resource 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟4 are not attached to anything. 
Instead, they have their variables 𝑣𝑣1, 𝑣𝑣2 described in the robots coordinate system. 
However, let's go through how it would look if the modules were removable. In 
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case the module and robot were removable they might be configured with 
interfaces as shown in Figure 26, where each of the ten dots represents an 
interface. 

 

Figure 26: Example of two process modules: one with a part placed on top of it, and 
another with a robot that can interact with its neighbouring modules. 

Here the process modules are connected to a manufacturing cell. The part can tell 
the robot where it is in world coordinates since it is attached to a buffer that is 
connected to the same manufacturing cell that the robot is connected to. The 
robot and the part can figure out where they are in the cells' coordinate system, 
i.e., world positions by asking the agents that they are attached to for a translation 
of coordinates. This works in a chain of attached agents so that they translate until 
they reach a common coordinate system, in this case, the manufacturing cells 
coordinate system. 

Interfaces must match to connect. As described earlier, agents have multiple 
interfaces, and interfaces have multiple skills. Each interface has defined inputs 
that describe needed variables to execute any of the presented skills on that 
interface. The interfaces explained in this section are defined in Table 3. In Figure 
27, the part and the gripper have compatible interfaces, since the outputs from 
the part match the inputs on the gripper, the required skill: Transport exists on 
the gripper interface and there were no required variables. Additionally, we can 
see that they are physically compatible since they both share the same interface 
type. 

Manufacturing cell

Buffer

Robot

Part

Gripper
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Figure 27: Example, with part and gripper having compatible interfaces since signals 
and skills are matching. 

Some interfaces have variables that can be accessed by other agents by requesting 
their current value. In Figure 28, the part checks its compatibility against a paint 
station. There are no required input or output signals, the skill paint is existing on 
the paint station and the BufferLocation that the part needs for transportation is 
publicly available on the paint station. 

 

Figure 28: Example, with a part and paint station having compatible interfaces. 

In Figure 29, the interface connection between the gripper and the robot is 
shown. The gripper presents two output signals: To, which is the destination for 
travel and Tool, which is the tool data for the gripper. Three skills are required 
and found on the robot ToolInterface 𝑖𝑖𝑓𝑓7. 

 

Figure 29: Gripper and robot connecting through an interface. 

In the global configuration, there exist nothing called output signals, required 
skills, or required variables. These are generated automatically from the process 
plans like 𝜋𝜋𝑔𝑔 or 𝜋𝜋𝑠𝑠3. This is done to further decrease the number of manual 
configurations that have to be created. It would, of course, be possible to 
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manually define these on each interface, but there is currently no need. Instead, 
interfaces are only configured in the global configuration as services that other 
interfaces connect to.  

4.3 Process Plans 

Figure 30 shows a process plan 𝜋𝜋𝑔𝑔 that uses a robot gripper and a painting station.  

 

Figure 30: Process plan 𝜋𝜋𝑔𝑔 for solving the goal PaintBlue. 

In 𝜋𝜋𝑔𝑔  two skills are used: Transport and Paint. The letters 𝑎𝑎 and 𝑏𝑏 in front of 
these skills are used to show that these skills need to run on different resources. 
The letters are called abstract interfaces since they represent undefined interfaces 
needed on some resources in the manufacturing system. If the letter 𝑎𝑎 would be 
used for both skills, that would mean that we are looking for an agent having an 
interface with both Transport and Paint skills, which is not the case in this 
scenario.  

In Figure 31 the plan 𝜋𝜋𝑠𝑠3 for the gripper’s skill Transport 𝑠𝑠3 is shown. The gripper 
has further interaction with a robot as described in the skills process plan in Figure 
31. 

 

Figure 31: A process plan 𝜋𝜋𝑠𝑠3that is written specifically to execute the skill Transport 
for the gripper. 
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The skills OpenTool, MoveTool, and CloseTool exist on the industrial robot in 
the same manufacturing cell. Here, the gripper carries its tool data, and forwards 
the input signals PickAt and PlaceAt positions to the robot, by assigning them to 
the variable: To. 

The required skills and variables are declared directly in the process plan, such as 
𝑏𝑏.BufferLocation in Figure 30, implies that resource 𝑏𝑏 needs to have a 
BufferLocation variable presented publicly. This variable is then used to give a 
value to the output signal: PlaceAt. The same concept is used for the output signal 
PickAt, which takes a local variable GripLocation, that must exist on the part 
executing this process plan, otherwise, it is not compatible with this plan. 

The connections between process plans create a tree of connected interfaces as 
shown in Figure 32. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process 
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑎𝑎 for an interface 𝑎𝑎 in the agent network and 
finds the matching interface 𝑖𝑖𝑓𝑓5 on the gripper. Additionally, interface 𝑏𝑏 described 
in 𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑏𝑏. Thus, the part finds the painter resource with 
interface 𝑖𝑖𝑓𝑓2. The gripper has a process plan 𝜋𝜋𝑠𝑠3 with further demands 𝑑𝑑𝑐𝑐 and 
finds the robot on 𝑖𝑖𝑓𝑓7. 

 

Figure 32: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.  
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used for both skills, that would mean that we are looking for an agent having an 
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Figure 31: A process plan 𝜋𝜋𝑠𝑠3that is written specifically to execute the skill Transport 
for the gripper. 
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The skills OpenTool, MoveTool, and CloseTool exist on the industrial robot in 
the same manufacturing cell. Here, the gripper carries its tool data, and forwards 
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Figure 32: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.  
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4.4 Configuration Tool 

By defining the presented scenario in the designed configuration tool the main 
view looks as shown in Figure 33, where five agents are shown together with one 
process plan. In Figure 34 the agent view is shown for the part agent in the 
scenario, where two interfaces are shown together with one goal. Figure 35 shows 
the BufferInterface of the resource 𝑟𝑟2, that has one location variable and one skill 
to paint. 

 

 

Figure 33: Main view, showing five agents and one process plan. 
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Figure 34: Agent view for the part, showing variables, interfaces and goals. 
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Figure 34: Agent view for the part, showing variables, interfaces and goals. 
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Figure 35: Interface view for the BufferInterface on the Paint station. 

 

 

 

 

 

 

 

 

49 
 

4.5 Agent Communication 

In Paper C, the conceptual model was evaluated by using a manufacturing 
scenario that is similar to the scenario presented earlier in this thesis. However, 
there are some small differences. Paper C presents a list of each communicative 
step needed for its scenario. To make it easier to follow, these steps have been 
rewritten to use the configuration values presented in this thesis manufacturing 
scenario. The specialized communicative acts that were identified in Paper C are 
listed in Table 6.  

Table 4. Specialized communicative acts. 

Number Description 

1 Request information 

2 Give information 

3 Book/Unbook skill 

4 Request skill to start 

5 Attach/Detach 

 

The following list describes each communication step, from the parts' 
perspectives. This is the communication needed for the manufacturing scenario 
presented earlier in this thesis, based on the findings in Paper C: 

• (3) 𝑝𝑝 tries to book 𝑟𝑟2 if it has a skill 𝑠𝑠2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 𝑝𝑝 is compatible 
with the interfaces 𝑖𝑖𝑖𝑖2 on 𝑟𝑟2 and is therefore booked by 𝑝𝑝. 

• (3) 𝑝𝑝 tries to book 𝑟𝑟3 if it has a skill 𝑠𝑠3 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The part 𝑝𝑝 is 
compatible with the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3 and is therefore booked by 𝑝𝑝. 

• (1) 𝑝𝑝 is attached to 𝑟𝑟1 with 𝑣𝑣3 attached to 𝑣𝑣1. Thus, 𝑝𝑝 asks 𝑟𝑟1 to give the 
variable 𝑣𝑣1. Resource 𝑟𝑟1 translates 𝑣𝑣1 to world coordinates before sending it 
to 𝑝𝑝. 

• (1) To find the location for placing, 𝑝𝑝 asks 𝑟𝑟2 for the variable 𝑣𝑣2. Resource 
𝑟𝑟2 translates 𝑣𝑣2 to world coordinates before sending it to 𝑝𝑝.  

• (2) 𝑝𝑝 uses its grip location 𝑣𝑣4 to calculate the pick and place location to move 
between 𝑟𝑟1 and 𝑟𝑟2. Then these are sent to the gripper 𝑟𝑟3, where they become 
the input signals 𝑣𝑣7 and 𝑣𝑣8.  

• (4) 𝑝𝑝 requests that 𝑟𝑟3 runs the skill 𝑠𝑠3 
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖1 on 𝑟𝑟1 
• (5) 𝑝𝑝 tells 𝑟𝑟2 that 𝑝𝑝 is attached to 𝑖𝑖𝑓𝑓2 
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3 
• (4) 𝑝𝑝 requests that 𝑟𝑟2 runs the skill 𝑠𝑠2 
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Figure 35: Interface view for the BufferInterface on the Paint station. 
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The evaluation shows that it is possible to limit the number of instructions that a 
system needs to be adapted for new scenarios, by using specialized 
communicative acts. The reason is that the specialized communicative acts hide 
the complexity of lower layers (1 and 2) in the conceptual model. 
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5 Conclusions  

Existing approaches for Plug & Produce and multi-agent systems were 
investigated. It was identified that previous research has successfully created 
multi-agent systems that divide control logic into several resource modules that 
can be added quickly to a manufacturing system when needed. The agents are 
commonly developed by manual programming. However, they are still flexible 
once the code is written. The code is easier to understand than conventional 
resources code, due to the low number of dependencies between agents. This 
reduces the need to understand the complete system complexity when designing 
each resource. On the other hand, it was also identified that those systems were 
not commonly used in the industry. The work presented in this thesis has focused 
on closing that gap, bringing this technology closer to the industry. The main 
focus has been on decreasing the software development time that is consumed 
when manually preparing a system for new product designs (changeover time). 
This thesis shows a proposal for a Plug & Produce framework that addresses the 
software time by simplifying the steps to adapt a manufacturing system for new 
product designs. If new resources are needed to be added, removed or relocated, 
based on new production requirements, the system will handle that so that 
resources can be reused as much as possible. Also, the distributed concept makes 
it possible to develop resources without much knowledge about other resources.  

Research question RQ1. How can a multi-agent system be designed, to 
decrease the software time in a Plug & Produce system?:  

An agent ontology was created, defining the agent configuration classes and their 
relations to each other. These classes are evaluated by an implemented 
configuration tool and an implementation that runs on each agent. Agent 
strategies were designed that define a general agent behaviour, thus requiring only 
one single agent code to be developed. This agent code is reused for all agent 
instances and given its behaviours through configuration data. A Plug & Produce 
framework was designed and implemented as a configurable multi-agent system 
C-MAS. 

Research question RQ2. When introducing new products and resources, 
how can functionality for agent collaboration and reasoning be reused to 
decrease reprogramming time?:  

A configuration tool was developed, that gives the user form-based views for 
defining the complete manufacturing systems behaviour. Also, a method for 
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deploying configurations was designed and tested, which also makes sure that 
devices are identified once connected. Communication between agents was 
standardized using a conceptual model, thus, removing the requirement for 
setting up the communication manually. The communication is instead based on 
configuration data, given through a configuration tool. 

Research question RQ3. How can dynamic planning and scheduling in 
configurable multi-agent systems be designed for Plug & Produce, which 
can handle unpredictable events?: 

To further decrease the changeover time, methods for planning and scheduling 
were designed and evaluated. This was done in two ways: by scheduling process 
plans automatically while avoiding conflicts between agents and by using 
pathfinding that automatically detects all locations where parts can be placed and 
generates a graph with all paths between those locations. 

Future work:   

In future work, the system can be extended with many supporting systems. This 
includes systems for learning that can be applied to the pathfinder, to enable 
learning what paths are the best to take. Zone management is something that 
could be of interest to work with and is strongly related to the scheduling 
algorithm described in this work. A zone needs to be scheduled to avoid conflicts. 
Many supporting tools, such as CAD designs could be used for defining products 
and automatically deploying that to the agent system. A restart of the system at 
failure, by automatically generating instructions for operators is something that 
can be developed. A more advanced and mature configuration tool for developing 
the agents is needed for the industry to accept the proposed system in this thesis. 
The configuration tool would benefit from including advanced debugging 
functionality, and templates for agent types to avoid beginning from an empty 
configuration for each new agent. The method of using views for configurations 
is useful, but throughout the evaluations, in this work, it has been noted that it 
quickly becomes difficult to overview the project. Thus, it would be a great 
improvement if this could be complimented with a way to visualise the interface 
connections between agents. 
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6  Summary of Appended Papers 

 

Paper A. Goal-Oriented Process Plans in a Multiagent System for Plug & 
Produce 

The paper presents a framework for implementing the automation controller for 
Plug & Produce. It is a multi-agent system framework, where resources are 
assigned skills and parts are given goals. The framework solves the negotiation 
among agents to reach the given goals with available resources. This makes it 
possible to work with configurations rather than programming when making 
changes to the manufacturing system. Using the presented framework, it is 
possible to configure a robot gripper and related robot separately as individual 
agents and then to let them find each other by communicating and setting up 
collaboration automatically. 

 

Paper B. Identification of resources and parts in a Plug and Produce 
system using OPC UA 

In this paper, a method is presented and implemented, that solves automated 
detection, identification and configuration of added resources and parts in a Plug 
& Produce system. For each added physical device, a corresponding agent is 
instantiated based on the physical device type. A corresponding agent 
configuration is stored in a database, similar to a device driver in Plug & Play for 
computers. All agents are instantiated in a cloud service running outside the 
manufacturing system. The communication protocol OPC UA is used for 
communication between agents in the cloud and the physical device that they are 
controlling. This enables many industrial devices to be connected to the 
developed system. 

 

Paper C. A conceptual model for multi-agent communication applied on 
a Plug & Produce system 

The paper presents a new conceptual model for multi-agent communication 
applied in Plug & Produce. The conceptual model is an extension of the ideas of 
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standardized communication presented by the organization FIPA. The model 
adds an abstraction layer where communicative acts designed specifically for 
manufacturing systems can be added. These communicative acts are then reused 
at a higher layer where the agent configurations are defined. This makes it possible 
to limit the number of choices an engineer must make. 

 

Paper D. A Method for Configuring Agents in Plug & Produce Systems 

A lack of user-friendly tools that hide the complexity of multi-agent technology 
in the underlying systems has been identified in previous research. Thus, this 
paper presents a theory and implementation of a configuration tool for multi-
agent systems. The tool is developed as a Human Machine Interface (HMI) and 
aims at being user-friendly. A manufacturing scenario is presented and tested 
using the developed tool. This shows that it is possible to simplify the steps to 
adapt a multi-agent system for new manufacturing scenarios. 

 

Paper E. Part Oriented Planning for Unpredictable Events in Plug & 
Produce 

Planning that avoids conflicts among agents is described and tested with a 
manufacturing scenario. Planning is done individually by each part agent by 
scheduling each related process plan for the goals of that part. Resource agents 
have schedules that can be accessed by all other agents. This makes it possible for 
part agents to avoid adding items to the schedules that would introduce conflicts.  

 

Paper F. Online Generation of Graphs used for Pathfinding in Plug & 
Produce Systems 

Automated pathfinding is necessary for planning the agents’ transfer when 
multiple transfer steps are needed. This paper explains how a graph automatically 
can be created by letting each agent find its surrounding agents through 
communication. This online graph creation is what makes the pathfinder suitable 
for Plug & Produce. 
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can be created by letting each agent find its surrounding agents through 
communication. This online graph creation is what makes the pathfinder suitable 
for Plug & Produce. 
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Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf , Fredrik Danielsson , Bo Svensson , and Bengt Lennartson , Fellow, IEEE

Abstract—This article presents a framework for Plug &
Produce that makes it possible to use configurations rather
than programming to adapt a manufacturing system for
new resources and parts. This is solved by defining skills
on resources, and goals for parts. To reach these goals,
process plans are defined with a sequence of skills to be
utilized without specifying specific resources. This makes
it possible to separate the physical world from the process
plans. When a process plan requires a skill, e.g., grip with a
gripper resource, then that skill may require further skills,
e.g., move with a robot resource. This creates a tree of
connected resources that are not defined in the process
plan. Physical and logical compatibility between resources
in this tree is checked by comparing several parameters de-
fined on the resources and the part. This article presents an
algorithm together with a multiagent system framework that
handles the search and matching required for selecting the
correct resources.

Index Terms—Multiagent, Plug & Produce, process plan,
robotics.

I. INTRODUCTION

S INCE late 1980s mass customization has become more
common and now aims at reaching production costs close to

dedicated manufacturing systems [1]. The life cycle for products
is becoming shorter, making traditional approaches for automa-
tion ineffective. There is a need to develop new control strategies
that can handle various changes without reprogramming, such
as production fluctuations, the addition of resources, and the
introduction of new products [2].

Conventional centralized approaches are dedicated to specific
tasks, forcing personal to understand much of the code and
logic, manually programmed in robots and programmable logic
controllers (PLCs) when changes are made to manufacturing
systems [3]. Instead, this article aims at spreading out the logic
and parameter data on agents related to each resource and part
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in a manufacturing system. In this article, the parts are metal
pieces to be processed, and the resources are one industrial
robot surrounded by different process modules for machining
and storage. Distributing the controller on multiple agents makes
it possible to change the behaviour of a resource or part, without
considering other resources or parts. For example, if introducing
a completely new type of tool to the robot cell, our approach
requires no downtime. The tool can be calibrated in a separate
environment and data saved in its agent, before adding it to the
manufacturing system. In a traditional approach, the robot cell
commonly needs to be stopped and the robot code changed to
achieve this reconfiguration.

Manufacturing system concepts have varied over time. Ini-
tially, functional workshops were used as a norm [4]. Functional
workshop structures still exist today, due to their ability to handle
low volume products with a very diverse range of products,
but they are characterized by a low level of automation due
to their complexity [5]. The complexity of such a system can
become immense, and it is difficult to get an overview of its
flow. Moreover, if shared by many products, it will generate
complex and unpredictable flows, which are hard to balance.
It is easier to focus on resource efficiency (overall equipment
effectiveness) rather than flow efficiency in such a situation [6].

Reconfiguration and flexibility have been researched for sev-
eral decades in automation [7]. Flexible manufacturing systems
(FMSs) was developed in the 80’s [8] and reconfigurable man-
ufacturing systems (RMSs) in the 90’s [8], [9]. They both aim
at taking care of customization and short product life cycles.
Even if FMS and reconfigurable concepts are examples of exist-
ing solutions for the automation of functional workshops, and
the literature confirms the benefits of flexibility in automated
manufacturing, the industrial experience still points out several
shortcomings. FMS still have too high installation cost, due to
rigid control solutions, and RMS are still not flexible enough
to support fast reconfiguration, where machines are to be added
and removed [7]. Manufacturing systems that handle quick con-
nection and use of new devices are often regarded as Plug & Pro-
duce systems. This concept was first introduced in [10], where
multiple resources could be added, containing a local controller.

This article addresses reconfigurability by defining a new
multiagent system (MAS) framework for Plug & Produce. The
framework is general and can be applied to many manufacturing
systems, but the focus in this article is on local robotized flows
in functional workshops.

The main idea is to be agile and able to create manufacturing
systems when needed on short term notice. For Plug & Produce,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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the time to set it up should be measured in minutes rather than
days or months as for older concepts. The setup time can be
divided into two main parts, the hardware installation time (hard-
ware time) and the time spent on programming and configuring
the system (software time). The hardware time can be handled
by using standardized connectors and standardly sized modules.
This has been described in previous work, such as [11], [12],
where it is defined as mechatronic compatibility. Modular hard-
ware architectures have been implemented and tested in other
works such as [13], [2]. Using standardized physical connectors
and modules, it is easy to move resources around to form local
setups on demand. However, for the software time , there is also
a need for reconfiguration/reprogramming of the logical system
to integrate the added components [12], [14].

The focus of this article is to formulate a solution that avoids
the time it takes to program equipment for new tasks, i.e.,
decreasing time spent on software time. The key components
are intelligent and collaborative resources. An intelligent and
collaborative resource is not programmed in a traditional way,
such as PLC and robot control code, where logic and data are
mixed in one big integrated and dedicated solution. Instead,
each resource is assigned an agent upon activation. An agent
is a standardized software package, able to communicate and
collaborate with other agents [15]. A software agent is unique
in the world by its configuration, which is loaded when it is
instantiated. The configuration mainly describes the physical
properties and skills associated with a specific resource. In this
way, each agent becomes a unique controller for a specific
resource. When several smart resources are grouped together,
they collaborate to form a local manufacturing system. Together
they can offer more aggregated and advanced skills, depending
on the resources involved.

In the same way, every part in the system, that should be pro-
cessed, has a related agent representing its physical properties.
The part agents have goals that they want to reach by using avail-
able skills of the resources. Multiple process plans can be defined
in the system, describing how to reach a goal. These plans are
written like recipes rather than programs. They describe how
skills on resources should be used without specifying specific
resources or routes through the manufacturing plant. Each skill
on a resource has its own process plan for executing the skill.
These plans might require additional skills on other resources,
forming a tree of connected agents, collaborating to solve a part
goal. This further simplifies the process plans for part goals, by
hiding the chain of skills and resources needed for a specific step
in that process plan.

The use of goals and configurations associated with parts
simplifies the process of adding new products. The goals and
configuration values are the only information needed to describe
what to be done for a specific part. The process plan separates the
skills of resources from the part goals. This makes it possible
to have several potential solutions in the system that become
available, depending on what resources currently are connected
to the system.

The main contribution of this article is a new framework for
developing MASs for Plug & Produce, where no programming

Fig. 1. Simplified example of the Plug & Produce concept.

is needed when new parts are introduced. Additionally, the time
spent on programming resources is decreased drastically. This
makes it possible to add new types of products and resources
in terms of minutes rather than days in traditional approaches.
It includes a novel approach for defining process plans that
describe how to reach a specific part goal in a manufacturing
system. A recursive search algorithm is developed that can
form the tree of connected resources needed to run a given
process plan, defined for a goal. Resources are checked for both
physical and logical compatibility before added to the tree. The
framework described in this article has been implemented and
tested in our lab, based on an industrial scenario described in this
article. The framework extends a previously developed MAS in
[16] and [17].

The rest of this article is organized as follows. Section II
introduces related work and compares it to this article. Section III
introduces the Plug & Produce framework together with an
algorithm for mapping goals to resources. Section IV presents
an experiment where the proposed algorithm is tested using
an industrial scenario. Section V gives the evaluation of the
experiments conducted, and finally, Section VI concludes this
article.

II. BACKGROUND

MASs offer a distributed approach to specifying system be-
haviours, instead of writing programs with a list of low-level
sequential instructions. An agent can be instructed what to do in
terms of more high-level goals it must fulfil and communicates
with other agents to find solutions for reaching those goals [18].
In Fig. 1, a simplified example is shown where a part has the goal
to get soft edges. The part is equipped with a strategy to find one
or more process plans for this and starts to communicate with
the other agents to find a feasible solution.

Similarly to our article, Krothapalli and Deshmukh [19]
present a multiagent manufacturing system where parts and
resources are agents with communication capabilities. Parts have
a primary objective to perform specific processing. Parts com-
municate with resources or other parts by broadcasting messages
to all agents. Parts will be processed on any machine that can
perform the required process.

However, the use of MASs in manufacturing systems is still
uncommon today [20], [21]. To change this, there is a need
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for simplification of configuration tools that enable system de-
signers to configure the agents without understanding the com-
plexity of the underlying MAS [20], [22]. Instead, the system
designer should be separated from low-level communication and
negotiation strategies of the agents. It is also clear that MASs
have to be easy to integrate with already existing resources in a
manufacturing system [23], [24].

A description of agents was published in 1995 by Wooldridge
and Jennings [25]. They describe an agent as some hardware
or software, operating without human intervention. Agents per-
ceive the environment and react to it. Several agents can commu-
nicate with each other through agent-communication languages.
They can also have goals that they want to reach in the world.
MASs enable devices to adapt to new situations [26], which is of
importance in a Plug & Produce system. Examples of physical
agents could be autonomous robots [27], and software agents
could be implementations of services in a system. However, the
distinction between these two is not always clear, since robotic
systems are hardware-based, while the robot controller usually is
software-based. In this article, an agent is described as a piece of
software, representing some object. The object can be physical,
e.g., a part or a resource, or it can be a software function, e.g.,
transportation planning.

Standards for multiagent design and communication were
defined already in 1997 [28] by the foundation for intelligent
physical agents (FIPA). This is an IEEE organization that fo-
cuses on developing standards for MASs [29]. FIPA presents a
collection of several specifications. Two important specifications
defined by FIPA are the “agent management specification” [30]
that describes general guidelines on how to design an MAS,
and the “agent communication language” specification [31] that
gives guidelines on how to design agent communication. Java
agent development framework (JADE) is a library for Java used
for agent implementation that follows several standards from
FIPA [32].

However, the FIPA specification and the JADE library de-
scribe nothing about how to develop a framework for manu-
facturing systems where fast reconfiguration for new parts and
resources is needed. This is the topic of which the Plug &
Produce framework presented in this article is focused.

A. Related Work

This section presents several articles with related work and
compares them with this article.

Schou and Madsen [14] describe a Plug & Produce framework
for industrial robots. They divide devices like grippers and robots
into different agents to form an MAS. The article presents a
control framework that is supposed to handle quick and easy
exchange of hardware modules. They aim at solving this by
separating the high-level task control from the hardware.

Instead, the focus of this article is on distributing the controller
on more agents. This means that the combination of agents to
form, for instance, a robot with a gripper is performed in a
completely distributed way, where the agents for the gripper and
the robot agree on how to collaborate. This further simplifies the
adding of new devices.

Järvenpää et al. [33] describe a system where combined
capabilities/skills can be described by defining a list of capa-
bilities required for the combined capability, e.g., by combining
a robot with the capability moving and a gripper with capability
holding, the combined capability transportation could become
available in the system. Similarly, Antzoulatos et al. [34] present
an MAS developed on the JADE platform that can match the
capabilities/skills of resources with product specifications. They
give resources skills like move with a robot and grasp with a
gripper. They may also form complex capabilities combining
these capabilities to create a pick and place capability. This
is done by manually defining the required capabilities to be
performed for the complex capability.

In this article, we use a different approach. For instance, a
skill transport can be defined on the gripper. The gripper cannot
perform the skill transport alone, so it has a requirement for an
additional skill move that could exist on a robot. This connection
by requirements for further skills will form a tree of connected
agents that are working together, where the knowledge of re-
quirements is entirely distributed.

Park et al. [35] present an agent communication framework
for rapid reconfiguration of distributed manufacturing systems.
They separate physical and logical reconfigurability and identify
that both are required for a manufacturing system to be effec-
tively reconfigured. A system has been developed that is able to
perform automatic layout change detection in the manufacturing
system, using infrared sensors between modules.

In addition, our work considers the physical and logical
compatibility of resources when combining skills into complex
skills.

Agents can communicate in order to get information about
each other, or they can use a centrally stored knowledge base
about the resources in the system, to avoid broadcasting. In
[36], such a knowledge base is used for MAS planning of
manufacturing sequences.

In this article, we have avoided a central knowledge base, and
each agent instead builds up their own knowledge base.

Sutton et al. [37] describe hierarchical reinforcement learning
with options. For example, an option that describes how to open
a door consists of three components, a policy, a termination
condition, and an initiation set. The policy describes the actions
defined for reaching a final state, in this case: reaching, grasping
and turning the doorknob. The terminating condition is the
knowledge that the door has been opened and the initial state
defines the requirement that the door should be present.

The options described in [37] have similarities to the process
plans presented in this article since both describe a set of actions
to be taken in order to reach a final state. Both approaches are
used for planning the behaviour of an agent, moving around
in a physical environment. However, it should be noted that our
framework is applied and verified in an industrial manufacturing
system and that the focus in this article is not planning. Instead,
our focus is to decrease the time to add new parts and resources
to a manufacturing system.

Vallèe et al. [38] show a MAS that uses ontologies for
expressing concepts and properties of agents in the system.
This is done to ensure a common understanding between agents
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in the system, describing how to reach a goal. These plans are
written like recipes rather than programs. They describe how
skills on resources should be used without specifying specific
resources or routes through the manufacturing plant. Each skill
on a resource has its own process plan for executing the skill.
These plans might require additional skills on other resources,
forming a tree of connected agents, collaborating to solve a part
goal. This further simplifies the process plans for part goals, by
hiding the chain of skills and resources needed for a specific step
in that process plan.

The use of goals and configurations associated with parts
simplifies the process of adding new products. The goals and
configuration values are the only information needed to describe
what to be done for a specific part. The process plan separates the
skills of resources from the part goals. This makes it possible
to have several potential solutions in the system that become
available, depending on what resources currently are connected
to the system.

The main contribution of this article is a new framework for
developing MASs for Plug & Produce, where no programming

Fig. 1. Simplified example of the Plug & Produce concept.

is needed when new parts are introduced. Additionally, the time
spent on programming resources is decreased drastically. This
makes it possible to add new types of products and resources
in terms of minutes rather than days in traditional approaches.
It includes a novel approach for defining process plans that
describe how to reach a specific part goal in a manufacturing
system. A recursive search algorithm is developed that can
form the tree of connected resources needed to run a given
process plan, defined for a goal. Resources are checked for both
physical and logical compatibility before added to the tree. The
framework described in this article has been implemented and
tested in our lab, based on an industrial scenario described in this
article. The framework extends a previously developed MAS in
[16] and [17].

The rest of this article is organized as follows. Section II
introduces related work and compares it to this article. Section III
introduces the Plug & Produce framework together with an
algorithm for mapping goals to resources. Section IV presents
an experiment where the proposed algorithm is tested using
an industrial scenario. Section V gives the evaluation of the
experiments conducted, and finally, Section VI concludes this
article.

II. BACKGROUND

MASs offer a distributed approach to specifying system be-
haviours, instead of writing programs with a list of low-level
sequential instructions. An agent can be instructed what to do in
terms of more high-level goals it must fulfil and communicates
with other agents to find solutions for reaching those goals [18].
In Fig. 1, a simplified example is shown where a part has the goal
to get soft edges. The part is equipped with a strategy to find one
or more process plans for this and starts to communicate with
the other agents to find a feasible solution.

Similarly to our article, Krothapalli and Deshmukh [19]
present a multiagent manufacturing system where parts and
resources are agents with communication capabilities. Parts have
a primary objective to perform specific processing. Parts com-
municate with resources or other parts by broadcasting messages
to all agents. Parts will be processed on any machine that can
perform the required process.

However, the use of MASs in manufacturing systems is still
uncommon today [20], [21]. To change this, there is a need
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for simplification of configuration tools that enable system de-
signers to configure the agents without understanding the com-
plexity of the underlying MAS [20], [22]. Instead, the system
designer should be separated from low-level communication and
negotiation strategies of the agents. It is also clear that MASs
have to be easy to integrate with already existing resources in a
manufacturing system [23], [24].

A description of agents was published in 1995 by Wooldridge
and Jennings [25]. They describe an agent as some hardware
or software, operating without human intervention. Agents per-
ceive the environment and react to it. Several agents can commu-
nicate with each other through agent-communication languages.
They can also have goals that they want to reach in the world.
MASs enable devices to adapt to new situations [26], which is of
importance in a Plug & Produce system. Examples of physical
agents could be autonomous robots [27], and software agents
could be implementations of services in a system. However, the
distinction between these two is not always clear, since robotic
systems are hardware-based, while the robot controller usually is
software-based. In this article, an agent is described as a piece of
software, representing some object. The object can be physical,
e.g., a part or a resource, or it can be a software function, e.g.,
transportation planning.

Standards for multiagent design and communication were
defined already in 1997 [28] by the foundation for intelligent
physical agents (FIPA). This is an IEEE organization that fo-
cuses on developing standards for MASs [29]. FIPA presents a
collection of several specifications. Two important specifications
defined by FIPA are the “agent management specification” [30]
that describes general guidelines on how to design an MAS,
and the “agent communication language” specification [31] that
gives guidelines on how to design agent communication. Java
agent development framework (JADE) is a library for Java used
for agent implementation that follows several standards from
FIPA [32].

However, the FIPA specification and the JADE library de-
scribe nothing about how to develop a framework for manu-
facturing systems where fast reconfiguration for new parts and
resources is needed. This is the topic of which the Plug &
Produce framework presented in this article is focused.

A. Related Work

This section presents several articles with related work and
compares them with this article.

Schou and Madsen [14] describe a Plug & Produce framework
for industrial robots. They divide devices like grippers and robots
into different agents to form an MAS. The article presents a
control framework that is supposed to handle quick and easy
exchange of hardware modules. They aim at solving this by
separating the high-level task control from the hardware.

Instead, the focus of this article is on distributing the controller
on more agents. This means that the combination of agents to
form, for instance, a robot with a gripper is performed in a
completely distributed way, where the agents for the gripper and
the robot agree on how to collaborate. This further simplifies the
adding of new devices.

Järvenpää et al. [33] describe a system where combined
capabilities/skills can be described by defining a list of capa-
bilities required for the combined capability, e.g., by combining
a robot with the capability moving and a gripper with capability
holding, the combined capability transportation could become
available in the system. Similarly, Antzoulatos et al. [34] present
an MAS developed on the JADE platform that can match the
capabilities/skills of resources with product specifications. They
give resources skills like move with a robot and grasp with a
gripper. They may also form complex capabilities combining
these capabilities to create a pick and place capability. This
is done by manually defining the required capabilities to be
performed for the complex capability.

In this article, we use a different approach. For instance, a
skill transport can be defined on the gripper. The gripper cannot
perform the skill transport alone, so it has a requirement for an
additional skill move that could exist on a robot. This connection
by requirements for further skills will form a tree of connected
agents that are working together, where the knowledge of re-
quirements is entirely distributed.

Park et al. [35] present an agent communication framework
for rapid reconfiguration of distributed manufacturing systems.
They separate physical and logical reconfigurability and identify
that both are required for a manufacturing system to be effec-
tively reconfigured. A system has been developed that is able to
perform automatic layout change detection in the manufacturing
system, using infrared sensors between modules.

In addition, our work considers the physical and logical
compatibility of resources when combining skills into complex
skills.

Agents can communicate in order to get information about
each other, or they can use a centrally stored knowledge base
about the resources in the system, to avoid broadcasting. In
[36], such a knowledge base is used for MAS planning of
manufacturing sequences.

In this article, we have avoided a central knowledge base, and
each agent instead builds up their own knowledge base.

Sutton et al. [37] describe hierarchical reinforcement learning
with options. For example, an option that describes how to open
a door consists of three components, a policy, a termination
condition, and an initiation set. The policy describes the actions
defined for reaching a final state, in this case: reaching, grasping
and turning the doorknob. The terminating condition is the
knowledge that the door has been opened and the initial state
defines the requirement that the door should be present.

The options described in [37] have similarities to the process
plans presented in this article since both describe a set of actions
to be taken in order to reach a final state. Both approaches are
used for planning the behaviour of an agent, moving around
in a physical environment. However, it should be noted that our
framework is applied and verified in an industrial manufacturing
system and that the focus in this article is not planning. Instead,
our focus is to decrease the time to add new parts and resources
to a manufacturing system.

Vallèe et al. [38] show a MAS that uses ontologies for
expressing concepts and properties of agents in the system.
This is done to ensure a common understanding between agents
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when communicating. This was done to avoid traditional agent
approaches where reasoning about concepts is hardcoded into
the agent’s behaviors.

In this article, agents also share a common understanding of
concepts, without any hard coding. This is part of the agent
configuration and can be changed without reprogramming.

III. PLUG & PRODUCE FRAMEWORK

To achieve physical flexibility, the system described in this
article uses self-aware and independent Plug & Produce process
modules. Several modules can be grouped together to form an
automated local manufacturing setup. To handle such a flexible
system, a controller that adapts to available resources is neces-
sary. To implement the controller, a distributed control strategy
based on a MAS framework is adopted.

A MAS consists of many single agents that can interact with
each other. Two types of agents are considered, part agents and
resource agents. Part agents have goals and use process plans
to reach them. A process plan translates design information
(goals) into a sequence of operations (skills) needed to produce
a part with the desired properties. To run a process plan on a
part agent, several skills and variables are required to exist on
resources in the agent network. In this article, this is noted as
demands. Resources also have plans that define how their skills
are executed. These plans might require additional skills to exist
on other resources in the agent network. A search algorithm
distributed on each agent is used to find this tree of connected
interfaces between agents.

Agents always interact with each other through interfaces,
meaning that a resource used by a part must have an interface that
is compatible with one of the parts interfaces. This ensures that
they are compatible both physically and logically. The demands
introduced earlier should be seen as requirement specifications
for what skills and variables an interface needs to have. The
interface can, for instance, describe that a grinding wheel is
compatible with a motor. If an interface with the keyword
“ifTool” exists on a grinding wheel, then a motor to be connected
to it also needs an interface with that keyword, to ensure physical
compatibility. Interfaces also need to have compatible signals,
i.e., variables. If the wheel requires to set the speed of the motor
on variable RPM = 500, then that variable must exist on the
motors interface and be able to handle that speed. In this way,
physical and logical compatibility is checked to match resources
by searching interfaces.

A. Multiagent System

In the proposed Plug & Produce framework an agentabelongs
to the set of agents A, i.e., a ∈ A. Two types of agents exist,
parts p and resources r, see Fig. 2. A part p is included in the
set of parts P, while a resource r is a member of the set of
resources R. Hence, p ∈ P and r ∈ R. The set of all agents A
consist of all resources R and parts P , i.e., A = R ∪̇P . Parts
and resources have different agent strategies, where parts are
trying to reach goals, while resource agents represent available
physical or virtual resources.

Fig. 2. Diagram with classes for part and resource agents, which have
different strategies for part and resource.

Fig. 3. Diagram, showing the agent configuration classes and their
relations to each other, i.e., the agent ontology.

Goals can be described quantitatively by specifying parame-
ters together with the goal, e.g., SoftEdges(RPM:= 500), where
the soft edges should be produced with a speed of 500, in the case
that it is achieved by grinding. A resource agent has no goals,
but can be used by part agents. In this way, a resource agent will
facilitate the production of parts in the manufacturing setup by
offering services, e.g., grinding, transportation, or path planning.
The core idea is to be able to plug in all kinds of resources, needed
to handle the on-going manufacturing. Resources not needed can
be inactive or unplugged and stored for later use.

Each agent a ∈ A has a configuration. The configuration is
created manually and may apply to several agents, e.g., several
parts of the same type. It is through the configuration that goals,
skills, interfaces, variables, and demands are defined, without
programming. Once the configuration is downloaded to an agent,
it becomes unique for that specific agent instance. In Fig. 3, the
agent configuration classes and their relations to each other are
shown. This ontology is used by all agents in the system to share a
common understanding of how data is constructed. Furthermore,
when these classes are instantiated with configuration data, all
agents must understand the naming of skills and variables. This
requires all agents to follow some naming standards in order to
communicate.

All agents have at least one associated interface, if ∈ I . An
interface represents a point of interaction between two agents
that are compatible both physically and logically. The interface
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defines the compatibility between agents by defining its skills
s ∈ S and configuration variables v ∈ V . Hence, an interface if
is defined by the tuple

if = �Sif , Vif �
where Sif ⊆ S, and Vif ⊆ V . A variable v can, for instance, be
a coordinate for a resource, a path for a robot, or a motor start
signal. A skill on a resource r is defined by a name together with
a process plan πs for executing the skill, forming the tuple

s = �name, πs� .
A single skill s represents a service, presented through an

agent interface that can be utilized by other agents on request.
However, a skill is only available if certain demands are fulfilled.
For instance, the skill grip on a robot gripper has a demand for a
robot to be mounted on. The robot needs to have the skill move
and certain variables available. In some cases, a demand includes
several skills that must exist on the same resource instance. For
example, if a part needs a gripper for transportation, the same
gripper must have the skills pick and place. It would not make
sense if these skills were on two different physical grippers.

Since available resource interfaces are unknown at the plan-
ning stage, they are defined as abstract interfaces u ∈ U =
{u1, u2, . . . , unu

}. When executing a process plan at runtime,
mapping of the abstract interfaces in U to resource interfaces
in I is carried out by an interface mapping algorithm, presented
in Section III-C. The algorithm generates demands du ∈ D =
{d1, d2, . . . , dnd

} and

du = {Su, Vu} .
Thus, a demand du defines skills and variables that an abstract

interface u should be able to satisfy.
In addition to interfaces, parts also have an associated set of

goals, Gp ⊆ G, where one goal g ∈ Gp. A goal represents a
result that a part should achieve with available resources, e.g., to
get soft edges. The part and resource agents can thus be described
as tuples

p = �Gp, Ip, Vp�
r = �Ir ,Vr� .

Note that interfaces contain skills that have process plans.
Hence, resource agents with skills carry their own process plans.
To find a solution that solves a part goal, we need to map goals on
parts with skills on resources. This is typically done by a process
plan. As already has been mentioned, a process plan translates
design information (goals) into a sequence of operations (skills)
needed to produce a part with the desired properties. Process
plans can be generated automatically or designed manually by a
human. For industrial manufacturing, it is difficult for softwares
to create a process plan that meets specific demands. This is
knowledge that today is more suitable to be defined manually
by humans [39], [33].

All process plans in the system are defined and included in
the set Π = ΠG ∪̇ ΠS , where one plan is π ∈ Π. The process
plans for part goals in ΠG are general and shared among all
parts. Process plans for skills πs ∈ ΠS are instead defined for a

Fig. 4. Example of a process plan with five skills
{Load,Transport,Grinding,Transport,UnLoad} and six states,
where the initial state is q0 and the final state is qf .

specific skill s on a resource r, describing how that skill should
be executed.

In this article, a process plan π defines a sequence of
skills (s1, s2, . . . , snπ

), that should be executed in a specific
order. Process plans for goals πg only describe the solution for
a single goal. However, there may be several ways to achieve
that goal. This is managed through the fact that several process
plans in the set Πg may exist for the same goal g. For each goal
g ∈ Gp, there must exist at least one process plan inΠ. A process
plan, πg or πs, can be formulated as a finite state automaton

π = �Q,S, δ, q0, Qf �
where Q is the set of states in the process plan, S is the set of
all skills, δ : Q× S → Q is the transition function, q0 ∈ Q is
the initial state, and Qf ⊆ Q is the set of acceptable final states.
This means that a process plan may include possible alternative
sequences of skills. In Fig. 4 an example is shown of a process
plan πg solving the goal g = SoftEdges, where the single final
state qf is the only element in Qf .

B. Agent Strategies

As soon as a new part or resource is added to the manufactur-
ing system, a corresponding agent a is instantiated representing
that specific object. The idea behind the agent concept is that
each object should be independent, self-aware, and autonomous.

Part agent strategy: A part agent p will start by trying to
fulfill the first goal g in the set of personal goals Gp, by finding
all process plans Πg ⊆ ΠG that describe how to reach that goal.
When a goal is reached the agent continues with the next goal.
When all goals in Gp have been achieved, the part agent p is
deleted, and the corresponding part is considered as completed.

To select the most suitable process plan for a specific goal
g, each plan πg ∈ Πg is checked for availability by asking all
resource agents in the agent network if they have any of the skills
required inπg and has a compatible interface for interaction. The
compatibility between interfaces could for instance deal with the
interaction between a gripper and a robot. A resource might need
to ask other resources to assist in order to fulfil a desired skill.
In Fig. 5, this is illustrated, where a part p has three goals in
Gp = {g1, g2, g3}. The first goal g1 has two alternative process
plans Πg1 = {π1

g1
, π2

g1
} that can solve g1. Both these plans are

checked for availability. However, in the figure, only plan π1
g1

is
described. Plan π1

g1
has two demands, d(s1, v5) for skill s1 and

d(s2, v4, v3) for skill s2. This means that s1 has to execute on an
interface containing a v5 variable and s2 needs to execute on an
interface that has a v4 and a v3 variable. The agent searches the
network and finds the interfaces if3 and if4, respectively.

When each plan in Πg1 is checked for availability (by running
the algorithm described in this article), the one with the lowest
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when communicating. This was done to avoid traditional agent
approaches where reasoning about concepts is hardcoded into
the agent’s behaviors.

In this article, agents also share a common understanding of
concepts, without any hard coding. This is part of the agent
configuration and can be changed without reprogramming.

III. PLUG & PRODUCE FRAMEWORK

To achieve physical flexibility, the system described in this
article uses self-aware and independent Plug & Produce process
modules. Several modules can be grouped together to form an
automated local manufacturing setup. To handle such a flexible
system, a controller that adapts to available resources is neces-
sary. To implement the controller, a distributed control strategy
based on a MAS framework is adopted.

A MAS consists of many single agents that can interact with
each other. Two types of agents are considered, part agents and
resource agents. Part agents have goals and use process plans
to reach them. A process plan translates design information
(goals) into a sequence of operations (skills) needed to produce
a part with the desired properties. To run a process plan on a
part agent, several skills and variables are required to exist on
resources in the agent network. In this article, this is noted as
demands. Resources also have plans that define how their skills
are executed. These plans might require additional skills to exist
on other resources in the agent network. A search algorithm
distributed on each agent is used to find this tree of connected
interfaces between agents.

Agents always interact with each other through interfaces,
meaning that a resource used by a part must have an interface that
is compatible with one of the parts interfaces. This ensures that
they are compatible both physically and logically. The demands
introduced earlier should be seen as requirement specifications
for what skills and variables an interface needs to have. The
interface can, for instance, describe that a grinding wheel is
compatible with a motor. If an interface with the keyword
“ifTool” exists on a grinding wheel, then a motor to be connected
to it also needs an interface with that keyword, to ensure physical
compatibility. Interfaces also need to have compatible signals,
i.e., variables. If the wheel requires to set the speed of the motor
on variable RPM = 500, then that variable must exist on the
motors interface and be able to handle that speed. In this way,
physical and logical compatibility is checked to match resources
by searching interfaces.

A. Multiagent System

In the proposed Plug & Produce framework an agentabelongs
to the set of agents A, i.e., a ∈ A. Two types of agents exist,
parts p and resources r, see Fig. 2. A part p is included in the
set of parts P, while a resource r is a member of the set of
resources R. Hence, p ∈ P and r ∈ R. The set of all agents A
consist of all resources R and parts P , i.e., A = R ∪̇P . Parts
and resources have different agent strategies, where parts are
trying to reach goals, while resource agents represent available
physical or virtual resources.

Fig. 2. Diagram with classes for part and resource agents, which have
different strategies for part and resource.

Fig. 3. Diagram, showing the agent configuration classes and their
relations to each other, i.e., the agent ontology.

Goals can be described quantitatively by specifying parame-
ters together with the goal, e.g., SoftEdges(RPM:= 500), where
the soft edges should be produced with a speed of 500, in the case
that it is achieved by grinding. A resource agent has no goals,
but can be used by part agents. In this way, a resource agent will
facilitate the production of parts in the manufacturing setup by
offering services, e.g., grinding, transportation, or path planning.
The core idea is to be able to plug in all kinds of resources, needed
to handle the on-going manufacturing. Resources not needed can
be inactive or unplugged and stored for later use.

Each agent a ∈ A has a configuration. The configuration is
created manually and may apply to several agents, e.g., several
parts of the same type. It is through the configuration that goals,
skills, interfaces, variables, and demands are defined, without
programming. Once the configuration is downloaded to an agent,
it becomes unique for that specific agent instance. In Fig. 3, the
agent configuration classes and their relations to each other are
shown. This ontology is used by all agents in the system to share a
common understanding of how data is constructed. Furthermore,
when these classes are instantiated with configuration data, all
agents must understand the naming of skills and variables. This
requires all agents to follow some naming standards in order to
communicate.

All agents have at least one associated interface, if ∈ I . An
interface represents a point of interaction between two agents
that are compatible both physically and logically. The interface
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defines the compatibility between agents by defining its skills
s ∈ S and configuration variables v ∈ V . Hence, an interface if
is defined by the tuple

if = �Sif , Vif �
where Sif ⊆ S, and Vif ⊆ V . A variable v can, for instance, be
a coordinate for a resource, a path for a robot, or a motor start
signal. A skill on a resource r is defined by a name together with
a process plan πs for executing the skill, forming the tuple

s = �name, πs� .
A single skill s represents a service, presented through an

agent interface that can be utilized by other agents on request.
However, a skill is only available if certain demands are fulfilled.
For instance, the skill grip on a robot gripper has a demand for a
robot to be mounted on. The robot needs to have the skill move
and certain variables available. In some cases, a demand includes
several skills that must exist on the same resource instance. For
example, if a part needs a gripper for transportation, the same
gripper must have the skills pick and place. It would not make
sense if these skills were on two different physical grippers.

Since available resource interfaces are unknown at the plan-
ning stage, they are defined as abstract interfaces u ∈ U =
{u1, u2, . . . , unu

}. When executing a process plan at runtime,
mapping of the abstract interfaces in U to resource interfaces
in I is carried out by an interface mapping algorithm, presented
in Section III-C. The algorithm generates demands du ∈ D =
{d1, d2, . . . , dnd

} and

du = {Su, Vu} .
Thus, a demand du defines skills and variables that an abstract

interface u should be able to satisfy.
In addition to interfaces, parts also have an associated set of

goals, Gp ⊆ G, where one goal g ∈ Gp. A goal represents a
result that a part should achieve with available resources, e.g., to
get soft edges. The part and resource agents can thus be described
as tuples

p = �Gp, Ip, Vp�
r = �Ir ,Vr� .

Note that interfaces contain skills that have process plans.
Hence, resource agents with skills carry their own process plans.
To find a solution that solves a part goal, we need to map goals on
parts with skills on resources. This is typically done by a process
plan. As already has been mentioned, a process plan translates
design information (goals) into a sequence of operations (skills)
needed to produce a part with the desired properties. Process
plans can be generated automatically or designed manually by a
human. For industrial manufacturing, it is difficult for softwares
to create a process plan that meets specific demands. This is
knowledge that today is more suitable to be defined manually
by humans [39], [33].

All process plans in the system are defined and included in
the set Π = ΠG ∪̇ ΠS , where one plan is π ∈ Π. The process
plans for part goals in ΠG are general and shared among all
parts. Process plans for skills πs ∈ ΠS are instead defined for a

Fig. 4. Example of a process plan with five skills
{Load,Transport,Grinding,Transport,UnLoad} and six states,
where the initial state is q0 and the final state is qf .

specific skill s on a resource r, describing how that skill should
be executed.

In this article, a process plan π defines a sequence of
skills (s1, s2, . . . , snπ

), that should be executed in a specific
order. Process plans for goals πg only describe the solution for
a single goal. However, there may be several ways to achieve
that goal. This is managed through the fact that several process
plans in the set Πg may exist for the same goal g. For each goal
g ∈ Gp, there must exist at least one process plan inΠ. A process
plan, πg or πs, can be formulated as a finite state automaton

π = �Q,S, δ, q0, Qf �
where Q is the set of states in the process plan, S is the set of
all skills, δ : Q× S → Q is the transition function, q0 ∈ Q is
the initial state, and Qf ⊆ Q is the set of acceptable final states.
This means that a process plan may include possible alternative
sequences of skills. In Fig. 4 an example is shown of a process
plan πg solving the goal g = SoftEdges, where the single final
state qf is the only element in Qf .

B. Agent Strategies

As soon as a new part or resource is added to the manufactur-
ing system, a corresponding agent a is instantiated representing
that specific object. The idea behind the agent concept is that
each object should be independent, self-aware, and autonomous.

Part agent strategy: A part agent p will start by trying to
fulfill the first goal g in the set of personal goals Gp, by finding
all process plans Πg ⊆ ΠG that describe how to reach that goal.
When a goal is reached the agent continues with the next goal.
When all goals in Gp have been achieved, the part agent p is
deleted, and the corresponding part is considered as completed.

To select the most suitable process plan for a specific goal
g, each plan πg ∈ Πg is checked for availability by asking all
resource agents in the agent network if they have any of the skills
required inπg and has a compatible interface for interaction. The
compatibility between interfaces could for instance deal with the
interaction between a gripper and a robot. A resource might need
to ask other resources to assist in order to fulfil a desired skill.
In Fig. 5, this is illustrated, where a part p has three goals in
Gp = {g1, g2, g3}. The first goal g1 has two alternative process
plans Πg1 = {π1

g1
, π2

g1
} that can solve g1. Both these plans are

checked for availability. However, in the figure, only plan π1
g1

is
described. Plan π1

g1
has two demands, d(s1, v5) for skill s1 and

d(s2, v4, v3) for skill s2. This means that s1 has to execute on an
interface containing a v5 variable and s2 needs to execute on an
interface that has a v4 and a v3 variable. The agent searches the
network and finds the interfaces if3 and if4, respectively.

When each plan in Πg1 is checked for availability (by running
the algorithm described in this article), the one with the lowest
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Fig. 5. Process plan that achieves the goal g1 is checked for availability. The first plan π1
g1

requires skills that exist on another agent through the
interfaces if3 and if4, where if4 requires additional skills that exist on if1 and if2.

cost is selected, i.e., selected plan πg1 = min(Πg1). In this way,
an agent can minimize the cost (execution time) by selecting the
most effective process plan. After a plan is selected, each skill
in the plan is executed on resource agents in the network. The
following steps summarize the part agent strategy.

Part Agent Strategy:
Step 1: Find next goal g in Gp that is not yet reached.
Step 2: Find available process plans Πg that fulfill g.
Step 3: Select the process plan πg with the lowest cost.
Step 4: For each skill in the selected plan, execute it on a

resource agent.
Resource agent strategy: In the same way as for the parts,

each resource is handled by an agent that is instantiated when
the resource is connected to the system. Each resource agent can
execute associated skills. A skill can be executed on request from
other agents and is only available if the demand du is fulfilled
for that skill. Several agents that cooperate in this way can be
viewed as an aggregated agent capable of more complex actions,
as illustrated in Fig. 5. For each skill s on a resource r a process
plan πs is configured with knowledge about the execution of
that skill. In contrast to the process plans in ΠG for part goals,
a plan πs for skill s only describes the use of a skill belonging
to a specific agent type. For instance, for agents close to the
hardware there might be a need for setting I/O values. In Fig. 5
it is shown that the plan πs2 for executing the skill s2 on interface
if4 requires additional skills s3, s4, s6 and finds if1 and if2 for
the demands d(s3, v2) and d(s4, v1). Skill s6 is a local skill and
is locally executed. Since all skills for process plan πs2 exist, if4

becomes available.

C. Interface Mapping Algorithm

In this article, a process plan needs to be connected to in-
terfaces on resource agents in the network. This results in an
executable process planπe. When running the interface mapping
algorithm, process plans inΠ are connected with resources in the
network through interfaces, forming a set of executable plansΠe.
Hence, Πe contains the executable versions of the plans inΠ. For
part goals, the single executable process plan πe that can reach
that goal with the lowest cost is selected. The cost is specified
on each resource skill and can be of any type as long as it is
expressed as an integer number. In the scenario presented in this
article, the cost is the execution time for a process plan. The

cost for one process plan includes the costs for all process plans
needed to execute in the underlying tree of connected interfaces.

A general algorithm has been developed that is implemented
in all agents (parts and resources), taking a plan π as input and
determine if it is available or not. If the plan π is available,
an executable process plan πe is returned, describing what
resources, interfaces, and variables to use for the skills in the
plan.

The algorithm works by generating demands du for each
abstract interface u in the process plan π. These demands are
then broadcasted to resources in the agent network that reply if
they fulfil the demand du or not. The algorithm can be divided
into three main steps.

Step 1: Find all demands D in π. Individual demands
du consist of required skills Su and variables Vu

D = {d1, d2, . . . , dnd
}

du = {Su, Vu} .
Step 2: Each identified demand du, in step 1, must be

fulfilled by an interface on a resource. Hence,
the algorithm requires abstract interfaces U =
{u1, u2, . . . , unu

}. For each demand du, search in-
terfaces in I to check if they can perform all needed
skills Su with the required variables Vu. The agent
a running this algorithm has a set of local interfaces
Ia, where one local interface is defined as ifa ∈ Ia.
For each interface if ∈ I that meet the demand du,
check if it is compatible with any of the local agent’s
interfaces ifa ∈ Ia. If they are compatible, store
them locally as potential interfaces Ip

for each abstract interface u in U{
du = {Su, Vu}
Ipu = { if ∈ I | if fulfils du Λ if compatible with ifa ∈ Ia}

.

Step 3: From the potential interfaces Ip, choose the ones
with the lowest cost and store as selected interfaces
Is. If π is feasible, then generate an executable
process plan πe containing the selected interfaces
Is together with the original plan π. Return this as
the result of the algorithm

for each element u in U : {Is = min (Ipu)
πe = �π, Is�.
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Fig. 6. Real industrial Plug & Produce demonstrator at University
West and a simulation model. This demonstrator was used for testing
the proposed Plug & Produce framework presented in this article. It
was developed in close collaboration with GKN Aerospace, a company
producing metal parts for the aeronautics industry.

IV. EXPERIMENTS

In this section, the proposed framework for Plug & Pro-
duce is evaluated. An existing Plug & Produce demonstrator
at University West, has been developed in close collaboration
with industry, see Fig. 6. The simulation shown, contains three
process modules. Module 1 is an operator-assisted unload station
for parts, module 2 is an operator-assisted load station for parts,
and module 3 contains a motor that has an attached grinding tool.
The demonstrator has ten slots (1–10) for process modules. To
decrease the hardware time, identical connectors are used for
all modules. Thus, it is possible to quickly connect modules on
available slots, and with one single cable connect power, air and
network. Each slot has a fixture with positioning pins that makes
sure that modules are placed correctly. This avoids recalibration
of positions, in order to reduce the software time.

The framework described above has been implemented and
tested using this demonstrator. Indeed, it is possible to use the
conventional agent framework JADE for implementing the agent
communication needed for our algorithm. However, we have
chosen the agent handling system (AHS) described in [17]. This
AHS has been used in the implementation of our algorithm since
it includes support for the OPC UA protocol, which is compatible
with various industrial devices. OPC UA was developed by
OPC foundation and is a platform-independent protocol for
communication in industrial automation [40].

The goal for the Plug & Produce demonstrator in this work
is to make soft edges on metal engine parts for the aeronautic
sector. With the proposed Plug & Produce framework it should
be easy to set up a local robot cell attached to an existing manu-
facturing flow. A local cell should be easy to set up when needed,

TABLE I
PROCESS PLAN FOR A GOAL g, DESCRIBING HOW TO MAKE SOFT EDGES

BY DEFINING A SEQUENCE OF SKILLS Su USING VARIABLES Vu.

Note that the Abstract Interfaces a, b, c, and d are Unmapped in the Process Plan and
Will be Identified During Runtime by the search Algorithm.

e.g., to handle rush orders or variations in supply/demand. In the
demonstrator, several process modules can be plugged in and out
to quickly change the manufacturing setup.

A. A Scenario for Soft Edges

The robot cell considered contains the following
resources: R = {Robot, Gripper 1, Gripper 2, Motor,
GrindingWheel, Load station, Unload station}, see Fig. 7.
In this scenario, the cost refers to the execution time of a
process plan. One metal part p is introduced to the system
and a corresponding agent is instantiated with the goal
g = SoftEdges. Several process plans Πg may be formulated
for the specific goal g.

The process planπg in Table I solves the goal g = SoftEdges,
using the abstract interfacesU = {a, b, c, d}.The plan describes
the following sequence of skills.

1) The metal part p appears at the load station (in Fig. 7
referred to as Part).

2) The part is transported (using the skill Transport) to a
grinding wheels StartPos using a gripper connected to
the part on GripLocation.

3) The grinding wheel that is pre-mounted manually to a
motor should start to rotate with the speed defined on
RPM.

4) The robot moves the part against the grinding wheel based
on the predesigned path GrindPath that is attached to the
part agent.

5) The grinding wheel is stopped.
6) The part leaves the system by moving to the unload station

position LeavePos.
7) The part is removed from the system and the agent is

deleted.

B. Evaluating the Algorithm

This section describes each step in the algorithm, considering
the process plan in Table I and the resources in Fig. 7. The
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Fig. 5. Process plan that achieves the goal g1 is checked for availability. The first plan π1
g1

requires skills that exist on another agent through the
interfaces if3 and if4, where if4 requires additional skills that exist on if1 and if2.

cost is selected, i.e., selected plan πg1 = min(Πg1). In this way,
an agent can minimize the cost (execution time) by selecting the
most effective process plan. After a plan is selected, each skill
in the plan is executed on resource agents in the network. The
following steps summarize the part agent strategy.

Part Agent Strategy:
Step 1: Find next goal g in Gp that is not yet reached.
Step 2: Find available process plans Πg that fulfill g.
Step 3: Select the process plan πg with the lowest cost.
Step 4: For each skill in the selected plan, execute it on a

resource agent.
Resource agent strategy: In the same way as for the parts,

each resource is handled by an agent that is instantiated when
the resource is connected to the system. Each resource agent can
execute associated skills. A skill can be executed on request from
other agents and is only available if the demand du is fulfilled
for that skill. Several agents that cooperate in this way can be
viewed as an aggregated agent capable of more complex actions,
as illustrated in Fig. 5. For each skill s on a resource r a process
plan πs is configured with knowledge about the execution of
that skill. In contrast to the process plans in ΠG for part goals,
a plan πs for skill s only describes the use of a skill belonging
to a specific agent type. For instance, for agents close to the
hardware there might be a need for setting I/O values. In Fig. 5
it is shown that the plan πs2 for executing the skill s2 on interface
if4 requires additional skills s3, s4, s6 and finds if1 and if2 for
the demands d(s3, v2) and d(s4, v1). Skill s6 is a local skill and
is locally executed. Since all skills for process plan πs2 exist, if4

becomes available.

C. Interface Mapping Algorithm

In this article, a process plan needs to be connected to in-
terfaces on resource agents in the network. This results in an
executable process planπe. When running the interface mapping
algorithm, process plans inΠ are connected with resources in the
network through interfaces, forming a set of executable plansΠe.
Hence, Πe contains the executable versions of the plans inΠ. For
part goals, the single executable process plan πe that can reach
that goal with the lowest cost is selected. The cost is specified
on each resource skill and can be of any type as long as it is
expressed as an integer number. In the scenario presented in this
article, the cost is the execution time for a process plan. The

cost for one process plan includes the costs for all process plans
needed to execute in the underlying tree of connected interfaces.

A general algorithm has been developed that is implemented
in all agents (parts and resources), taking a plan π as input and
determine if it is available or not. If the plan π is available,
an executable process plan πe is returned, describing what
resources, interfaces, and variables to use for the skills in the
plan.

The algorithm works by generating demands du for each
abstract interface u in the process plan π. These demands are
then broadcasted to resources in the agent network that reply if
they fulfil the demand du or not. The algorithm can be divided
into three main steps.

Step 1: Find all demands D in π. Individual demands
du consist of required skills Su and variables Vu

D = {d1, d2, . . . , dnd
}

du = {Su, Vu} .
Step 2: Each identified demand du, in step 1, must be

fulfilled by an interface on a resource. Hence,
the algorithm requires abstract interfaces U =
{u1, u2, . . . , unu

}. For each demand du, search in-
terfaces in I to check if they can perform all needed
skills Su with the required variables Vu. The agent
a running this algorithm has a set of local interfaces
Ia, where one local interface is defined as ifa ∈ Ia.
For each interface if ∈ I that meet the demand du,
check if it is compatible with any of the local agent’s
interfaces ifa ∈ Ia. If they are compatible, store
them locally as potential interfaces Ip

for each abstract interface u in U{
du = {Su, Vu}
Ipu = { if ∈ I | if fulfils du Λ if compatible with ifa ∈ Ia}

.

Step 3: From the potential interfaces Ip, choose the ones
with the lowest cost and store as selected interfaces
Is. If π is feasible, then generate an executable
process plan πe containing the selected interfaces
Is together with the original plan π. Return this as
the result of the algorithm

for each element u in U : {Is = min (Ipu)
πe = �π, Is�.
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Fig. 6. Real industrial Plug & Produce demonstrator at University
West and a simulation model. This demonstrator was used for testing
the proposed Plug & Produce framework presented in this article. It
was developed in close collaboration with GKN Aerospace, a company
producing metal parts for the aeronautics industry.

IV. EXPERIMENTS

In this section, the proposed framework for Plug & Pro-
duce is evaluated. An existing Plug & Produce demonstrator
at University West, has been developed in close collaboration
with industry, see Fig. 6. The simulation shown, contains three
process modules. Module 1 is an operator-assisted unload station
for parts, module 2 is an operator-assisted load station for parts,
and module 3 contains a motor that has an attached grinding tool.
The demonstrator has ten slots (1–10) for process modules. To
decrease the hardware time, identical connectors are used for
all modules. Thus, it is possible to quickly connect modules on
available slots, and with one single cable connect power, air and
network. Each slot has a fixture with positioning pins that makes
sure that modules are placed correctly. This avoids recalibration
of positions, in order to reduce the software time.

The framework described above has been implemented and
tested using this demonstrator. Indeed, it is possible to use the
conventional agent framework JADE for implementing the agent
communication needed for our algorithm. However, we have
chosen the agent handling system (AHS) described in [17]. This
AHS has been used in the implementation of our algorithm since
it includes support for the OPC UA protocol, which is compatible
with various industrial devices. OPC UA was developed by
OPC foundation and is a platform-independent protocol for
communication in industrial automation [40].

The goal for the Plug & Produce demonstrator in this work
is to make soft edges on metal engine parts for the aeronautic
sector. With the proposed Plug & Produce framework it should
be easy to set up a local robot cell attached to an existing manu-
facturing flow. A local cell should be easy to set up when needed,

TABLE I
PROCESS PLAN FOR A GOAL g, DESCRIBING HOW TO MAKE SOFT EDGES

BY DEFINING A SEQUENCE OF SKILLS Su USING VARIABLES Vu.

Note that the Abstract Interfaces a, b, c, and d are Unmapped in the Process Plan and
Will be Identified During Runtime by the search Algorithm.

e.g., to handle rush orders or variations in supply/demand. In the
demonstrator, several process modules can be plugged in and out
to quickly change the manufacturing setup.

A. A Scenario for Soft Edges

The robot cell considered contains the following
resources: R = {Robot, Gripper 1, Gripper 2, Motor,
GrindingWheel, Load station, Unload station}, see Fig. 7.
In this scenario, the cost refers to the execution time of a
process plan. One metal part p is introduced to the system
and a corresponding agent is instantiated with the goal
g = SoftEdges. Several process plans Πg may be formulated
for the specific goal g.

The process planπg in Table I solves the goal g = SoftEdges,
using the abstract interfacesU = {a, b, c, d}.The plan describes
the following sequence of skills.

1) The metal part p appears at the load station (in Fig. 7
referred to as Part).

2) The part is transported (using the skill Transport) to a
grinding wheels StartPos using a gripper connected to
the part on GripLocation.

3) The grinding wheel that is pre-mounted manually to a
motor should start to rotate with the speed defined on
RPM.

4) The robot moves the part against the grinding wheel based
on the predesigned path GrindPath that is attached to the
part agent.

5) The grinding wheel is stopped.
6) The part leaves the system by moving to the unload station

position LeavePos.
7) The part is removed from the system and the agent is

deleted.

B. Evaluating the Algorithm

This section describes each step in the algorithm, considering
the process plan in Table I and the resources in Fig. 7. The
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Fig. 7. Using interfaces to connect a part with resource skills. Available interface connections are illustrated by red lines with a circle marking the
connection point.

algorithm in this example explains how the metal part agent will
run this algorithm, i.e., this example describes the algorithm
from the part perspective.

Step 1: The process plan πg has four demands du ∈
D, based on the abstract interfaces U = {a, b, c, d}
in πg . The demands consist of demanded skills Su

and variables Vu, forming the set D of all demands
for U

Sa = {Load}
Sb = {Transport, MoveAlong}
Sc = {Grinding}
Sd = {Unload}
Va = { }
Vb = {From, To}
Vc = {Speed, StartPos}
Vd = {LeavePos}
da = {Sa, Va}
db = {Sb, Vb}
dc = {Sc, Vc}
dd = {Sd, Vd}
D = {da, db, dc, dd} .

Step 2: For each abstract interface u ∈ U, the related de-
mand du is broadcasted to resource agents in the
network that reply if they have an interface that
meets the demand du. The local agent (in this case
the part p) checks if any of the found interfaces
are compatible with the local agents interfaces. If

they are compatible, they are added to the potential
interfaces Ip, in this case, representing a total of four
interfaces on resources. Hence,

Ipa = {if Buffer}
Ipb = {if GripMetal}
Ipc = {if Grind}
Ipd = {if Buffer}

Ip = {Ipa , Ipb , Ipc , Ipd} .

For this specific case, there is only one element in
each set Ipu, however, more alternatives could be
available if multiple compatible resources would be
available for the same skill.

Step 3: From the potential interfaces Ipu, select the interfaces
with the lowest cost Is, where

Is = {min (Ipa) ,min (Ipb ) ,min (Ipc ) ,min (Ipd )}

and use the selected interfaces Is to map the plan πg

to physical resources in the agent network. Save the
mapped process plan as an executable process plan

πe
g = map (πg, I

s) .

The algorithm that was described turns process plans πg into
executable process plans πe

g . Since several process plans πg ∈
Πg for a goal g can exist, Πe

g is formed, where πe
g ∈ Πe

g .
Since each element inΠg is an alternative process plan that can

reach the goal g = SoftEdges, the executable process plan πe
g ∈

Πe
g with the lowest cost for reaching the goal is now chosen. This

makes the plan ready to run since the abstract interfaces U =
(a, b, c, d) are now mapped to interfaces on physical resources
in the agent network.
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TABLE II
NUMBER OF ACTIVITIES THAT USES SOFTWARE TIME, COMPARED BETWEEN
CASES 1, 2, 3, AND 4, WHEN USING THE PLUG & PRODUCE FRAMEWORK

V. EVALUATION

The main motivation for this article is to minimize software
time spent on programming and configuration of Plug & Produce
systems. From the presented Plug & Produce framework, four
cases can be identified that highly affect the software time,
cases 1–4. Four separate activities are observed that contribute
to software time: (A1) preparing goals, (A2) creation of process
plans, (A3) defining interfaces and (A4) programming, as given
in Table II. The introduction of new parts relates to activity A1
and A2 while the preparation of resources relates to activities
A2, A3, and A4. Activity A4, i.e., programming, regards to
the time spent on adapting a resource to the Plug & Produce
framework. In order to adapt a resource to our framework, some
code must be written to make it compatible with the Plug &
Produce framework.

Case 1—Creating a new robot cell: All new resources not pre-
viously prepared for the Plug & Produce framework have to
be programmed (A4) and configured, i.e., creating interfaces
with skills (A3) and plans for running those skills (A2).
Hence, if all resources are new, there will be a considerable
time spent adapting them to the Plug & Produce framework.
However, this is a one-time effort. If new goals and plans are
introduced, they will require time for creating goals (A1) and
defining process plans (A2). The use of the proposed frame-
work simplifies the programming (compared to traditional
central control) since no dependencies or communication
between resources have to be defined.

Case 2—Changing, modifying or replacing a part: In this case,
the agent configuration must be updated to reflect this. It might
also be necessary to change the physical configuration of the
robot cell. For minor changes like adjusting how soft the soft
edges should be or what paint to use when painting a part,
only the goals (A1), plans (A2) and their related variables are
modified. This case shows the main benefits of the presented
Plug & Produce framework, since no programming or config-
uration has to be performed when changing goals or process
plans. This can be compared with a traditional central control,
where reprogramming commonly has to be performed.

Case 3—Adding a new resource: If a new resource is introduced,
then it has to be adapted to the Plug & Produce framework
by plans (A2), interfaces (A3) and programming (A4). The
benefit of using the Plug & Produce framework is that the
resource can be developed and tested offline without inter-
rupting ongoing manufacturing. In the same way as case 1,

TABLE III
TIME COMPARED BETWEEN CASES 1, 2, 3, AND 4. THESE NUMBERS WERE

FOUND DURING A CLOSE COLLABORATION WITH GKN AEROSPACE.

∗Note that Each Value in Cases 2, 3, and 4 are Percentages Out of the Total Time of
Case 1.

the programming is simplified by letting the agent system
manage all communication.

Case 4—Recycling of manufacturing systems: In an industry
with needs for flexibility, a robot cell will not last forever.
When rebuilding, moving, or recycling a robot cell, it is
desirable to reuse the resources, corresponding programming
and agent configurations. Reused resources can drastically
decrease the deployment time. The Plug & Produce frame-
work use a distributed approach for the controller of each
agent. This makes it possible to configure one resource or part
without considering any other objects in the system. Hence, an
agent configuration can effortlessly be moved together with
the resource to another robot cell. The agent configuration
can be compared to a software driver for a USB device with
plug and play functionality. Additionally, the code written
inside the resources, like robot code and PLC code in the
process modules, can be reused, since it has no dependencies
with any other device in the system. Device code and agent
configuration will only be modified if the resource should
receive new functionalities, e.g., adding a new sensor or
button.

Case comparison: In Table II, each activity that adds to the
software time has been counted and sorted into the cases 1, 2,
3, and 4. These cases are taken from the presented scenario in
Fig. 7 and assumes that the Plug & Produce framework is used.
The scenario requires one goal, one plan, 11 interfaces and four
resources. In the first case, all 11 Interfaces and four resources
must be configured and programmed together with one goal and
process plan defined. In the second case, a part is modified,
needing a new goal and process plan to be defined. None of the
interfaces needs to be changed, and no programming is required.
In the third case, one new process module is configured and
programmed, resulting in one interface and one program needed
to be created, together with one process plan to be defined for
solving its skills. In the fourth case, recycling is performed of one
process module without using any software time. The number
of activities needed for each case is given in Table II.

The time consumed on the various activities has been mea-
sured and confirmed during collaboration with GKN Aerospace.
From this data, it was found that out of the total time consumed
in case 1 (100%), a goal (A1) took less than 1%, a plan (A2)
1%, one interface (A3) ∼5%, and programming of one device
(A4) ∼10%. This is shown in Table III.
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Fig. 7. Using interfaces to connect a part with resource skills. Available interface connections are illustrated by red lines with a circle marking the
connection point.

algorithm in this example explains how the metal part agent will
run this algorithm, i.e., this example describes the algorithm
from the part perspective.

Step 1: The process plan πg has four demands du ∈
D, based on the abstract interfaces U = {a, b, c, d}
in πg . The demands consist of demanded skills Su

and variables Vu, forming the set D of all demands
for U

Sa = {Load}
Sb = {Transport, MoveAlong}
Sc = {Grinding}
Sd = {Unload}
Va = { }
Vb = {From, To}
Vc = {Speed, StartPos}
Vd = {LeavePos}
da = {Sa, Va}
db = {Sb, Vb}
dc = {Sc, Vc}
dd = {Sd, Vd}
D = {da, db, dc, dd} .

Step 2: For each abstract interface u ∈ U, the related de-
mand du is broadcasted to resource agents in the
network that reply if they have an interface that
meets the demand du. The local agent (in this case
the part p) checks if any of the found interfaces
are compatible with the local agents interfaces. If

they are compatible, they are added to the potential
interfaces Ip, in this case, representing a total of four
interfaces on resources. Hence,

Ipa = {if Buffer}
Ipb = {if GripMetal}
Ipc = {if Grind}
Ipd = {if Buffer}

Ip = {Ipa , Ipb , Ipc , Ipd} .

For this specific case, there is only one element in
each set Ipu, however, more alternatives could be
available if multiple compatible resources would be
available for the same skill.

Step 3: From the potential interfaces Ipu, select the interfaces
with the lowest cost Is, where

Is = {min (Ipa) ,min (Ipb ) ,min (Ipc ) ,min (Ipd )}

and use the selected interfaces Is to map the plan πg

to physical resources in the agent network. Save the
mapped process plan as an executable process plan

πe
g = map (πg, I

s) .

The algorithm that was described turns process plans πg into
executable process plans πe

g . Since several process plans πg ∈
Πg for a goal g can exist, Πe

g is formed, where πe
g ∈ Πe

g .
Since each element inΠg is an alternative process plan that can

reach the goal g = SoftEdges, the executable process plan πe
g ∈

Πe
g with the lowest cost for reaching the goal is now chosen. This

makes the plan ready to run since the abstract interfaces U =
(a, b, c, d) are now mapped to interfaces on physical resources
in the agent network.
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TABLE II
NUMBER OF ACTIVITIES THAT USES SOFTWARE TIME, COMPARED BETWEEN
CASES 1, 2, 3, AND 4, WHEN USING THE PLUG & PRODUCE FRAMEWORK

V. EVALUATION

The main motivation for this article is to minimize software
time spent on programming and configuration of Plug & Produce
systems. From the presented Plug & Produce framework, four
cases can be identified that highly affect the software time,
cases 1–4. Four separate activities are observed that contribute
to software time: (A1) preparing goals, (A2) creation of process
plans, (A3) defining interfaces and (A4) programming, as given
in Table II. The introduction of new parts relates to activity A1
and A2 while the preparation of resources relates to activities
A2, A3, and A4. Activity A4, i.e., programming, regards to
the time spent on adapting a resource to the Plug & Produce
framework. In order to adapt a resource to our framework, some
code must be written to make it compatible with the Plug &
Produce framework.

Case 1—Creating a new robot cell: All new resources not pre-
viously prepared for the Plug & Produce framework have to
be programmed (A4) and configured, i.e., creating interfaces
with skills (A3) and plans for running those skills (A2).
Hence, if all resources are new, there will be a considerable
time spent adapting them to the Plug & Produce framework.
However, this is a one-time effort. If new goals and plans are
introduced, they will require time for creating goals (A1) and
defining process plans (A2). The use of the proposed frame-
work simplifies the programming (compared to traditional
central control) since no dependencies or communication
between resources have to be defined.

Case 2—Changing, modifying or replacing a part: In this case,
the agent configuration must be updated to reflect this. It might
also be necessary to change the physical configuration of the
robot cell. For minor changes like adjusting how soft the soft
edges should be or what paint to use when painting a part,
only the goals (A1), plans (A2) and their related variables are
modified. This case shows the main benefits of the presented
Plug & Produce framework, since no programming or config-
uration has to be performed when changing goals or process
plans. This can be compared with a traditional central control,
where reprogramming commonly has to be performed.

Case 3—Adding a new resource: If a new resource is introduced,
then it has to be adapted to the Plug & Produce framework
by plans (A2), interfaces (A3) and programming (A4). The
benefit of using the Plug & Produce framework is that the
resource can be developed and tested offline without inter-
rupting ongoing manufacturing. In the same way as case 1,

TABLE III
TIME COMPARED BETWEEN CASES 1, 2, 3, AND 4. THESE NUMBERS WERE

FOUND DURING A CLOSE COLLABORATION WITH GKN AEROSPACE.

∗Note that Each Value in Cases 2, 3, and 4 are Percentages Out of the Total Time of
Case 1.

the programming is simplified by letting the agent system
manage all communication.

Case 4—Recycling of manufacturing systems: In an industry
with needs for flexibility, a robot cell will not last forever.
When rebuilding, moving, or recycling a robot cell, it is
desirable to reuse the resources, corresponding programming
and agent configurations. Reused resources can drastically
decrease the deployment time. The Plug & Produce frame-
work use a distributed approach for the controller of each
agent. This makes it possible to configure one resource or part
without considering any other objects in the system. Hence, an
agent configuration can effortlessly be moved together with
the resource to another robot cell. The agent configuration
can be compared to a software driver for a USB device with
plug and play functionality. Additionally, the code written
inside the resources, like robot code and PLC code in the
process modules, can be reused, since it has no dependencies
with any other device in the system. Device code and agent
configuration will only be modified if the resource should
receive new functionalities, e.g., adding a new sensor or
button.

Case comparison: In Table II, each activity that adds to the
software time has been counted and sorted into the cases 1, 2,
3, and 4. These cases are taken from the presented scenario in
Fig. 7 and assumes that the Plug & Produce framework is used.
The scenario requires one goal, one plan, 11 interfaces and four
resources. In the first case, all 11 Interfaces and four resources
must be configured and programmed together with one goal and
process plan defined. In the second case, a part is modified,
needing a new goal and process plan to be defined. None of the
interfaces needs to be changed, and no programming is required.
In the third case, one new process module is configured and
programmed, resulting in one interface and one program needed
to be created, together with one process plan to be defined for
solving its skills. In the fourth case, recycling is performed of one
process module without using any software time. The number
of activities needed for each case is given in Table II.

The time consumed on the various activities has been mea-
sured and confirmed during collaboration with GKN Aerospace.
From this data, it was found that out of the total time consumed
in case 1 (100%), a goal (A1) took less than 1%, a plan (A2)
1%, one interface (A3) ∼5%, and programming of one device
(A4) ∼10%. This is shown in Table III.
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The time (case 1) for the 11 interfaces was 57% and the time
for programming 4 devices was 41%, as given in Table III. We
can also see that case 2 uses only a total of 2% of the total time
needed for cases 1 and 3 requires a total of 16% of the total time
of case 1, while case 4 required no software time.

This result clearly shows that the presented Plug & Produce
framework can decrease the software time compared to tradi-
tional approaches. In case 1, the programming is simplified by
letting the agents solve all dependencies and communication be-
tween resources. Case 2 shows that the change of part goals and
plans has a low influence on the software time. In case 3, a new
process module was added similarly to case 1. In case 4, there
was no software time needed. The reason is that resources can
be integrated automatically if they were previously prepared for
the Plug & Produce framework. The hardware time to physically
install a module was, during the conducted experiments, found
to be around one minute. This time is the same for any of the
process modules, as long as they use the standardized hardware
connectors mentioned above. This implies that if a framework
that works as described in this article would be used as a standard,
then a company could buy a resource that is delivered with
configuration data much like a USB device for a computer that
is delivered with a driver. Then there would be no time spent on
the programming (A4) or interface activities (A3) of Table II,
thus avoiding the activities with the highest software time when
a new robot cell is created.

VI. CONCLUSION

In this article, a framework for Plug & Produce was formu-
lated. This includes a new way of describing process plans
with unmapped resources by formulating abstract interfaces.
The mapping of resources to process plans was accomplished
by generating demands for interfaces on other resources in
the agent network. A mapping algorithm was described that
can connect resources to form trees of collaborating agents.
This algorithm runs on every agent in the system, making the
search distributed. The algorithm was implemented and tested
in a physical demonstrator, which verified that the proposed
Plug & Produce framework works.

The main benefit of the proposed framework was that it makes
it possible to add new types of products faster in terms of minutes
rather than days in traditional approaches. It also encapsulates
resources so that they have no dependencies between each other.
This makes it much easier to develop resources and to move
them between manufacturing systems, without adapting them
to specific new scenarios.
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The time (case 1) for the 11 interfaces was 57% and the time
for programming 4 devices was 41%, as given in Table III. We
can also see that case 2 uses only a total of 2% of the total time
needed for cases 1 and 3 requires a total of 16% of the total time
of case 1, while case 4 required no software time.

This result clearly shows that the presented Plug & Produce
framework can decrease the software time compared to tradi-
tional approaches. In case 1, the programming is simplified by
letting the agents solve all dependencies and communication be-
tween resources. Case 2 shows that the change of part goals and
plans has a low influence on the software time. In case 3, a new
process module was added similarly to case 1. In case 4, there
was no software time needed. The reason is that resources can
be integrated automatically if they were previously prepared for
the Plug & Produce framework. The hardware time to physically
install a module was, during the conducted experiments, found
to be around one minute. This time is the same for any of the
process modules, as long as they use the standardized hardware
connectors mentioned above. This implies that if a framework
that works as described in this article would be used as a standard,
then a company could buy a resource that is delivered with
configuration data much like a USB device for a computer that
is delivered with a driver. Then there would be no time spent on
the programming (A4) or interface activities (A3) of Table II,
thus avoiding the activities with the highest software time when
a new robot cell is created.

VI. CONCLUSION

In this article, a framework for Plug & Produce was formu-
lated. This includes a new way of describing process plans
with unmapped resources by formulating abstract interfaces.
The mapping of resources to process plans was accomplished
by generating demands for interfaces on other resources in
the agent network. A mapping algorithm was described that
can connect resources to form trees of collaborating agents.
This algorithm runs on every agent in the system, making the
search distributed. The algorithm was implemented and tested
in a physical demonstrator, which verified that the proposed
Plug & Produce framework works.

The main benefit of the proposed framework was that it makes
it possible to add new types of products faster in terms of minutes
rather than days in traditional approaches. It also encapsulates
resources so that they have no dependencies between each other.
This makes it much easier to develop resources and to move
them between manufacturing systems, without adapting them
to specific new scenarios.
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1. Introduction 

Today, product lifecycles are decreasing (sometimes down to customized products) [1], resulting in difficulties 
for factories to maintain profitability, due to the cost associated with rapidly changing dedicated manufacturing 
equipment [2]. Instead, a trend now is to design automation systems that are reconfigurable for new products by 
decreasing the time it takes to add new resources to the production. A system that handles this automatically can be 
regarded as a Plug and Produce system and was firstly introduced in [3]. 

Adding a resource or a part, i.e., a device, to a system requires three main activities, 1) physically attaching the 
device to the system, 2) establish a communication to the device (or its representative) and 3) integrating the device 
in the production from a logical point of view. In this paper, activity 1 is handled by dividing resources into process 
modules (see Fig. 1 and Fig. 5), that can be connected to the system through standard connectors containing 
communication, air and power. The production cell at University West, referred to (see Fig. 1 and Fig. 5) and used 
for the implementation in this work has 10 standard connection slots where process modules can be placed. Further, 
an industrial robot is also a fixed part of the cell together with a safety system using laser scanners to protect the 
operators. Using standard modules for sharing hardware has been done before for production systems, e.g., [4], [5].  
In other works, such as [6], [7] this type of design is regarded as increasing the mechatronic compatibility. The 
process module approach in Fig. 1 has been implemented and tested in the physical production cell at University 
West and has proved to solve the physical flexibility. However, to reach Plug and Produce, the modules also need to 
automatically be detected and integrated with the production logically. When adding new devices to a 
communication bus or a network, i.e., activity 2, the network configuration and setup is commonly done manually 
today and is to be considered as static. An example is that industrial automation devices commonly communicate 
with shared variables or memory areas and these must be mapped when a new device is connected.  In this paper, a 
platform-independent communication protocol was preferred, rather than traditional vendor specific industrial 
fieldbuses to reach a general proposal. There exist many platform-independent protocols, however, in this work 
OPC UA is used due to its wide acceptance in the industry for automation. To handle the integration of Plug and 
Produce devices in production, i.e., activity 3, a multi-agent-based solution is preferred, where each resource and 
part has a unique agent representing them. Agents do not necessarily run on the hardware for the devices, it can run 
somewhere else in the production cell, e.g., on a server, a PLC or even in the cloud.  

In this paper, two categories of agents are defined, resource agents and part agents. The agent logic is general 
and can be used to represent any device, i.e., the same software represents all parts and resources in the system. To 
prepare an agent for a specific device, an agent configuration is always needed. One agent configuration may be 
used for instantiating multiple agents, since several devices with identical type can be present in the system, e.g., 
several parts of the same type to be processed. However, each agent is unique through its instance. The agent 
configuration contains data describing the connected device physical and logical properties. This includes 
parameters such as definitions of item position and physical properties like locations for gripping an item or base for 
placing them on a table. 

In this concept, all part agents have goals that they want to reach. A part agent searches the network for 
resources with the correct skills to assist in reaching those goals. When a new resource is connected, it will be 
included in the system and becomes visible to other resources and parts.  For the process module in Fig. 1 (B) four 
agents can be identified: the Cell agent, the Process module agent, the Part 1 agent and the Part 2 agent. In this 
example, the process module is a station for loading/unloading parts. Agents can model their points of interaction 
with other agents by defining interfaces, shown as dots in the picture with a number for the interfaces local id on 
each agent. The interfaces, in this case, defines attachment between agents. For Fig. 1 (B), the interface connections 
are: 

 
1) Part 1 is attached on its interface 1 to the Process module interface 2, 
2) Part 2 is attached on its interface 1 to the Process module interface 3 and, 
3) Process module is attached on its interface 1 to the Cell interface 9 (i.e., slot 9).  

 
Resources and parts need positional data when requesting transportation by the robot in the production cell. 

Their agents can use defined interfaces for calculating its position in the production cell by knowing what it is 
attached to. It is essential that each agent has a correct description of what it is attached to, all the way down to the 
Cell agent which has an absolute position in the world. When a Process module is connected to the production cell, 
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1. Introduction 

Today, product lifecycles are decreasing (sometimes down to customized products) [1], resulting in difficulties 
for factories to maintain profitability, due to the cost associated with rapidly changing dedicated manufacturing 
equipment [2]. Instead, a trend now is to design automation systems that are reconfigurable for new products by 
decreasing the time it takes to add new resources to the production. A system that handles this automatically can be 
regarded as a Plug and Produce system and was firstly introduced in [3]. 

Adding a resource or a part, i.e., a device, to a system requires three main activities, 1) physically attaching the 
device to the system, 2) establish a communication to the device (or its representative) and 3) integrating the device 
in the production from a logical point of view. In this paper, activity 1 is handled by dividing resources into process 
modules (see Fig. 1 and Fig. 5), that can be connected to the system through standard connectors containing 
communication, air and power. The production cell at University West, referred to (see Fig. 1 and Fig. 5) and used 
for the implementation in this work has 10 standard connection slots where process modules can be placed. Further, 
an industrial robot is also a fixed part of the cell together with a safety system using laser scanners to protect the 
operators. Using standard modules for sharing hardware has been done before for production systems, e.g., [4], [5].  
In other works, such as [6], [7] this type of design is regarded as increasing the mechatronic compatibility. The 
process module approach in Fig. 1 has been implemented and tested in the physical production cell at University 
West and has proved to solve the physical flexibility. However, to reach Plug and Produce, the modules also need to 
automatically be detected and integrated with the production logically. When adding new devices to a 
communication bus or a network, i.e., activity 2, the network configuration and setup is commonly done manually 
today and is to be considered as static. An example is that industrial automation devices commonly communicate 
with shared variables or memory areas and these must be mapped when a new device is connected.  In this paper, a 
platform-independent communication protocol was preferred, rather than traditional vendor specific industrial 
fieldbuses to reach a general proposal. There exist many platform-independent protocols, however, in this work 
OPC UA is used due to its wide acceptance in the industry for automation. To handle the integration of Plug and 
Produce devices in production, i.e., activity 3, a multi-agent-based solution is preferred, where each resource and 
part has a unique agent representing them. Agents do not necessarily run on the hardware for the devices, it can run 
somewhere else in the production cell, e.g., on a server, a PLC or even in the cloud.  

In this paper, two categories of agents are defined, resource agents and part agents. The agent logic is general 
and can be used to represent any device, i.e., the same software represents all parts and resources in the system. To 
prepare an agent for a specific device, an agent configuration is always needed. One agent configuration may be 
used for instantiating multiple agents, since several devices with identical type can be present in the system, e.g., 
several parts of the same type to be processed. However, each agent is unique through its instance. The agent 
configuration contains data describing the connected device physical and logical properties. This includes 
parameters such as definitions of item position and physical properties like locations for gripping an item or base for 
placing them on a table. 

In this concept, all part agents have goals that they want to reach. A part agent searches the network for 
resources with the correct skills to assist in reaching those goals. When a new resource is connected, it will be 
included in the system and becomes visible to other resources and parts.  For the process module in Fig. 1 (B) four 
agents can be identified: the Cell agent, the Process module agent, the Part 1 agent and the Part 2 agent. In this 
example, the process module is a station for loading/unloading parts. Agents can model their points of interaction 
with other agents by defining interfaces, shown as dots in the picture with a number for the interfaces local id on 
each agent. The interfaces, in this case, defines attachment between agents. For Fig. 1 (B), the interface connections 
are: 

 
1) Part 1 is attached on its interface 1 to the Process module interface 2, 
2) Part 2 is attached on its interface 1 to the Process module interface 3 and, 
3) Process module is attached on its interface 1 to the Cell interface 9 (i.e., slot 9).  

 
Resources and parts need positional data when requesting transportation by the robot in the production cell. 

Their agents can use defined interfaces for calculating its position in the production cell by knowing what it is 
attached to. It is essential that each agent has a correct description of what it is attached to, all the way down to the 
Cell agent which has an absolute position in the world. When a Process module is connected to the production cell, 
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it needs to determine which slot it is placed in, i.e., which of the Cell interface 1-10 it is attached to. Similarly, Part 
1 and Part 2 needs to detect its position on the Process module. However, the parts in this case have no network 
connection and must therefore rely on sensors on the Process module. 

 

Fig. 1. Simulated production cell with process modules (A) and a close look at one process module that act as a load/unload station (B). An 
industrial robot with a tool changer is located in the middle of the cell in A. 

This paper focuses on activity 2, i.e., a new method for discovering newly added devices in a Plug and Produce 
system and how to automatically configure the network to make those devices part of the OPC UA framework. A 
multi-agent system that handles activity 3 has been developed at University West and was used in the 
implementations described in this paper. This agent system extends a previously developed multi-agent system in 
[8]. When a device is attached to the system, a related agent should be instantiated and given a correct agent 
configuration based on what resource or part it is representing and then set up communication between the physical 
device and its agent. Some of the devices have no direct network connection but still should have a software agent 
instantiated for representing them. 

2. Related work 

Agents were described by Wooldridge et al. [9] in 1995. An agent is some software or hardware perceiving the 
environment and reacting on that. In this paper, parts have production goals to reach. A multi-agent system is a 
group of agents working together. Several researchers have described that the reason for not seeing multi-agent 
systems in production today is because the lack of systems and tools to reconfigure the system without 
understanding the agent-systems complexity [10], [11]. In this paper, this is regarded by focusing on simplifying the 
connection and setup of new resources and parts. 

OPC UA is a platform-independent communication protocol for industrial automation, developed by OPC 
Foundation [12]. It enables the use of service-oriented architecture (SOA), that is a paradigm for designing software 
that is loosely coupled, decreasing the dependencies between the softwares in the network. Additionally, using OPC 
UA, it is possible to model data with object-oriented techniques, which makes communication more sophisticated. 
OPC UA supports client/server communication as well as publish/subscribe. In [13] automatic device discovery is 
investigated for OPC UA communication. They extend the OPC UA built-in Local Discovery Server (LDS) to make 
automatic detection of connected devices on the network. They describe that devices need the IP address to be either 
manually preconfigured or found by detecting the device on the network automatically. They focus on the automatic 
approach and use a DHCP server for giving the IP address to the connected device. Then another discovery server 
independently detects the connected device. Dynamic Host Configuration Protocol (DHCP) is a protocol that can be 
used to dynamically assign IP addresses to any device connected to a network. 

For the work presented in this paper, their solution will not work by itself, since not all devices have a network 
connection, e.g., part or tool. Also, this paper aims at a system that could include other protocols than OPC UA for 
legacy devices not supporting OPC UA. This paper uses the DHCP server directly for detecting the device without 
the need for a discovery server. That makes it possible to detect legacy devices not running OPC UA and connecting 
to them using other protocols if implemented in the system.  
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3. Method for identification and agent instantiation 

This chapter presents a method for automating the previously described activity 2, i.e., discovering added 
devices, automatic configuration of the network and instantiation of the corresponding agent representing the added 
devices. The method describes an Agent Handling System (AHS) that is controlling and interacting with: Agents, 
Devices on the network and the agent configuration database (Config-DB). A device, could, for example, be a 
process module that is connected to the network, carrying several agents without a network connection. The Config-
DB is a database containing all needed agent configurations that are matching devices connected to the network. 
 
The Agent Handling System method can be divided into six main steps and are shown in Fig. 2 and described in the 
following list: 
 

1) Detect new devices in the network:  
       Assign a unique IP address to each new device on the network and store the address in the AHS. 

2) Establish a connection to the new devices: 
Use the new IP address found to establish an OPC UA connection between the new device and the 
OPC UA HUB that is a part of the AHS. 

3) Identify possible agents:  
Use the established connection to identify all resources and parts on the newly attached device and 
save them in an array A. 

4) Get global configuration:  
For each resource and part in A select correct agent configuration from the Config-DB and populate the 
OPC UA HUB with the new configuration values.  

5) Get local configuration: 
For each new resource and part get local configurations from the new device and update the OPC UA 
HUB with local values. 

6) Instantiate new agent program:   
Instantiate a new agent on an available CPU, using the OPC UA HUB with populated configuration 
and specific states created in the previous steps.  

After these six steps are done, a loop starts in the OPC UA HUB that begins to send data between the physical 
devices and their corresponding agents, see Fig. 2. 
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Send data

Get Global Configuration

Instantiate new agent

Detect module

DeviceAHS AgentConfig-DB

Loop n

Identify agents

Connect HUB

 

Fig. 2 Method for adding a network device to the Plug and Produce system by using an Agent Handling System. 
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it needs to determine which slot it is placed in, i.e., which of the Cell interface 1-10 it is attached to. Similarly, Part 
1 and Part 2 needs to detect its position on the Process module. However, the parts in this case have no network 
connection and must therefore rely on sensors on the Process module. 

 

Fig. 1. Simulated production cell with process modules (A) and a close look at one process module that act as a load/unload station (B). An 
industrial robot with a tool changer is located in the middle of the cell in A. 

This paper focuses on activity 2, i.e., a new method for discovering newly added devices in a Plug and Produce 
system and how to automatically configure the network to make those devices part of the OPC UA framework. A 
multi-agent system that handles activity 3 has been developed at University West and was used in the 
implementations described in this paper. This agent system extends a previously developed multi-agent system in 
[8]. When a device is attached to the system, a related agent should be instantiated and given a correct agent 
configuration based on what resource or part it is representing and then set up communication between the physical 
device and its agent. Some of the devices have no direct network connection but still should have a software agent 
instantiated for representing them. 

2. Related work 

Agents were described by Wooldridge et al. [9] in 1995. An agent is some software or hardware perceiving the 
environment and reacting on that. In this paper, parts have production goals to reach. A multi-agent system is a 
group of agents working together. Several researchers have described that the reason for not seeing multi-agent 
systems in production today is because the lack of systems and tools to reconfigure the system without 
understanding the agent-systems complexity [10], [11]. In this paper, this is regarded by focusing on simplifying the 
connection and setup of new resources and parts. 

OPC UA is a platform-independent communication protocol for industrial automation, developed by OPC 
Foundation [12]. It enables the use of service-oriented architecture (SOA), that is a paradigm for designing software 
that is loosely coupled, decreasing the dependencies between the softwares in the network. Additionally, using OPC 
UA, it is possible to model data with object-oriented techniques, which makes communication more sophisticated. 
OPC UA supports client/server communication as well as publish/subscribe. In [13] automatic device discovery is 
investigated for OPC UA communication. They extend the OPC UA built-in Local Discovery Server (LDS) to make 
automatic detection of connected devices on the network. They describe that devices need the IP address to be either 
manually preconfigured or found by detecting the device on the network automatically. They focus on the automatic 
approach and use a DHCP server for giving the IP address to the connected device. Then another discovery server 
independently detects the connected device. Dynamic Host Configuration Protocol (DHCP) is a protocol that can be 
used to dynamically assign IP addresses to any device connected to a network. 

For the work presented in this paper, their solution will not work by itself, since not all devices have a network 
connection, e.g., part or tool. Also, this paper aims at a system that could include other protocols than OPC UA for 
legacy devices not supporting OPC UA. This paper uses the DHCP server directly for detecting the device without 
the need for a discovery server. That makes it possible to detect legacy devices not running OPC UA and connecting 
to them using other protocols if implemented in the system.  
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3. Method for identification and agent instantiation 

This chapter presents a method for automating the previously described activity 2, i.e., discovering added 
devices, automatic configuration of the network and instantiation of the corresponding agent representing the added 
devices. The method describes an Agent Handling System (AHS) that is controlling and interacting with: Agents, 
Devices on the network and the agent configuration database (Config-DB). A device, could, for example, be a 
process module that is connected to the network, carrying several agents without a network connection. The Config-
DB is a database containing all needed agent configurations that are matching devices connected to the network. 
 
The Agent Handling System method can be divided into six main steps and are shown in Fig. 2 and described in the 
following list: 
 

1) Detect new devices in the network:  
       Assign a unique IP address to each new device on the network and store the address in the AHS. 

2) Establish a connection to the new devices: 
Use the new IP address found to establish an OPC UA connection between the new device and the 
OPC UA HUB that is a part of the AHS. 

3) Identify possible agents:  
Use the established connection to identify all resources and parts on the newly attached device and 
save them in an array A. 

4) Get global configuration:  
For each resource and part in A select correct agent configuration from the Config-DB and populate the 
OPC UA HUB with the new configuration values.  

5) Get local configuration: 
For each new resource and part get local configurations from the new device and update the OPC UA 
HUB with local values. 

6) Instantiate new agent program:   
Instantiate a new agent on an available CPU, using the OPC UA HUB with populated configuration 
and specific states created in the previous steps.  

After these six steps are done, a loop starts in the OPC UA HUB that begins to send data between the physical 
devices and their corresponding agents, see Fig. 2. 
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Fig. 2 Method for adding a network device to the Plug and Produce system by using an Agent Handling System. 
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4. Implementation 

In the FIPA97 specification [14], an Agent Management System (AMS) is described as required for managing 
the agent's life cycles. Similarly, the Plug and Produce system in this paper has an Agent Handling System (AHS), 
containing an Agent Creator that takes care of agent instantiation.  

4.1. Test scenario 

The AHS consist of an OPC UA HUB, Agent Creator, DHCP server and an Agent Detector.  In Fig. 3, an 
overview of the implemented Plug and Produce system is presented, with one process module (Load Station) 
carrying two devices (Part and Load) and another process module (Motor Station) carrying a device (Motor). The 
AHS connect the three devices, to the agents in the cloud. Using the strategy of having agents decoupled from the 
Agent Handling System and devices, implies that they can be placed anywhere in the network or even in a cloud 
service. This also increases the scalability of the agent concept, which is particularly useful when agents run 
extensive algorithms with a high computational load. A configuration database is also available containing all agents 
global configuration templates, related to device types presented on OPC UA Servers on the two process modules.   
 

 

Fig. 3. Test scenario of the Agent Handling System and process modules. 

The states of all agents in the production cell are mirrored to the OPC UA HUB in the AHS. Hence, the HUB 
contains all configuration data for agents and variables that could have changed value since agent instantiation. Each 
agent in the production cell has a profile in the HUB, created automatically when it is instantiated. The HUB has 
both OPC UA clients and servers available to be used for communication with the agents and devices, since agents 
and devices in the network may have either OPC UA server or client.  Values in the HUB is synchronized between 
the agent and the physical world in real-time, making it necessary to map some variables used for communication 
between agents and their connected devices. Consider the example in Fig. 4 where the Agent 1 for the Part needs a 
motor for a specific process. The Agent 1 request the Agent 2 for the Motor to run the skill StartMotor. The Agent 2 
for the Motor sets the variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, the physical motor device is mapped to that variable, so that it does 
indeed, start the motor. The Motor device also sends data to its agent, e.g. Status: Running.  
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Fig. 4. Example of a motor syncing variables with its related agent. 

4.2. Method validation 

The method has been implemented and validated in the physical production cell at University West. The 
implementation details of each step in the described method are explained based on the scenario in Fig. 3, that is 
corresponding to the real setup in the production cell. For physically attaching the device to the system, standard 
connectors for the physical connection was used, containing communication, air and power, see Fig. 5.  

 
Step 1) Detect new devices in the network: Both process modules 1 and 2 in the production cell, are equipped with a 
PLC running an OPC UA server. When the PLC is connected to the network using Ethernet, it is detected by the 
DHCP server and assigned an IP address. The DHCP server is designed to notify the Agent Detector (in the AHS) 
that a new device is connected. The IP address of the connected device together with the connection slot number is 
stored for later use in the AHS, to determine at what position it was connected. Hence, the AHS now know that the 
device is attached to the Cell agent. 
 
Step 2) Establish a connection to the new device: The AHS establish an OPC UA connection between the process 
module and the central OPC UA HUB, using the IP addresses assigned by the DHCP. 
 
Step 3) Identify possible agents:  The OPC UA server on each process module presents information about each 
device its representing. For process module 1 in Fig. 3, it presents two devices, the Part and Load. For process 
module 2 there is only one device, the Motor. The Part on the Load Station have no electronics or network 
connection, so it needs to rely on the Load Station to detect it. The PLC on the Load Station is programmed to detect 
the Part when attached to it and present its local configurations on the modules OPC UA server. For each device 
presented on the modules OPC UA server a related agent should be instantiated by the AHS. To do that, the Agent 
Detector in the AHS searches each module discovered in step 1, to determine if that module needs any agents to be 
instantiated. Some devices could be connected for other purposes in the network and they should in this step be 
filtered out. 

One way for the Load Station to detect the Part is to attach a QR code or RFID tag to the device, encoded with 
information that the module can read. Another approach is to predefine holders for loading specific part types to the 
system, then the PLC uses a sensor with Boolean values and is preconfigured with information to put into the OPC 
UA server on the module. In both approaches, the PLC adds the position of the Part to its OPC UA server. Hence, 
the AHS can get the data about where the Part was attached to the process module, (in case that there are several 
slots for placing parts). Hence, if connecting a process module carrying parts already attached to it, then those parts 
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4. Implementation 

In the FIPA97 specification [14], an Agent Management System (AMS) is described as required for managing 
the agent's life cycles. Similarly, the Plug and Produce system in this paper has an Agent Handling System (AHS), 
containing an Agent Creator that takes care of agent instantiation.  

4.1. Test scenario 

The AHS consist of an OPC UA HUB, Agent Creator, DHCP server and an Agent Detector.  In Fig. 3, an 
overview of the implemented Plug and Produce system is presented, with one process module (Load Station) 
carrying two devices (Part and Load) and another process module (Motor Station) carrying a device (Motor). The 
AHS connect the three devices, to the agents in the cloud. Using the strategy of having agents decoupled from the 
Agent Handling System and devices, implies that they can be placed anywhere in the network or even in a cloud 
service. This also increases the scalability of the agent concept, which is particularly useful when agents run 
extensive algorithms with a high computational load. A configuration database is also available containing all agents 
global configuration templates, related to device types presented on OPC UA Servers on the two process modules.   
 

 

Fig. 3. Test scenario of the Agent Handling System and process modules. 

The states of all agents in the production cell are mirrored to the OPC UA HUB in the AHS. Hence, the HUB 
contains all configuration data for agents and variables that could have changed value since agent instantiation. Each 
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for the Motor sets the variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, the physical motor device is mapped to that variable, so that it does 
indeed, start the motor. The Motor device also sends data to its agent, e.g. Status: Running.  

 

Agent Handling System Process module 2: Motor Station

Global Configurations

OPC UA HUB

Profile
Agent 1

Profile 
Agent 2

Profile 
Agent 3

Config
Motor

Agent 2 
Motor

Agent 3 
Load Agent 1 

Part

Agent 
Creator

DHCP Agent 
Detector

OPC UA

Process module 1: Load Station

Device
Part 

Config
Load

Config
Part 

Device
Motor

Device
Load

OPC UA Server

OPC UA Server

6 Mattias Bennulf et al / Procedia Manufacturing  00 (2019) 000–000 

  

 

Fig. 4. Example of a motor syncing variables with its related agent. 
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will be recognized by the readers and agents instantiated. In this way, parts can be removed and added to the process 
module even when it’s not connected to the production cell.  
 
Step 4) Get global configuration: The agent creator now has all the information it needs and selects the correct 
agent configuration from the database of configurations and populates the OPC UA HUB with the new 
configuration values.  
  
Step 5) Get local configuration: Update the OPC UA HUB with the local values like position fetched from the 
modules earlier. Additional values could be fetched in this step such as specific part identification number, for 
tracking device through the production or any other configuration values that deviate from the global configuration 
in the database. 
 
Step 6) Instantiate new agent program: Configurations uploaded into the HUB needs to have one or more agent 
running somewhere in the network since the HUB only moves data and has no agent logic. The AHS has functions 
for searching the network to find possible servers that can be used for instantiating and hosting agents. 
Configurations in the HUB without any related agent instance is assigned a CPU in the network by the AHS.  The 
configuration is used to create the new agent instance on the selected server. Finally, the agents on the servers start 
to sync data from and to the OPC_UA HUB. The HUB has a function that continuously goes through each agent’s 
profile and synchronizes it with the devices OPC UA servers.  

 

 

 
The six steps described in the method was implemented and tested in the physical production cell. The Part in Fig. 5 
(B) could be detected by the process module and published on its OPC UA server. The AHS instantiated the newly 
added devices and connected them to the OPC UA HUB.  

5. Conclusion 

In this paper, a new method is described that automate the detection, identification and configuration of newly 
added devices, i.e., resources and parts, in a Plug and Produce system. This was done by developing an Agent 
Handling System, that can control and interact with agents, devices and the global configuration database. Each 
device connected to the network in the system has an OPC UA server. Devices without a network connection, such 
as parts and tools can be detected by letting another device, connected to the network (such as process modules) 
present the types of devices that are attached to it. The Agent Handling System has the ability to detect newly added 
devices in the network and searches their OPC UA servers to identify presented devices to choose which agents to 
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Fig. 5. Image A shows a process module (Load Station) from GKN Aerospace in the production cell at University West. 
The module has physical docking to the floor and cables containing communication, air and power. Image B shows a 
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be instantiated, based on the device types presented. The instantiated agents are then automatically connected to the 
newly attached devices. The method was implemented and tested in the physical production cell at University West, 
focusing on a scenario with two process modules. The implementation had successful results, showing that the 
detection, identification and configuration are possible to automate using the developed Agent Handling System, 
which will decrease the time it takes to connect a new device in a Plug and Produce system. The production cell at 
University West has several laser scanners to protect the operator from robot movements. This made it necessary to 
stop the robot whenever a part or module was added. In future work it would be of interest to consider the safety 
systems in the production cell, to enable the human operator to add parts without interruption the ongoing 
production.  
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tracking device through the production or any other configuration values that deviate from the global configuration 
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Step 6) Instantiate new agent program: Configurations uploaded into the HUB needs to have one or more agent 
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be instantiated, based on the device types presented. The instantiated agents are then automatically connected to the 
newly attached devices. The method was implemented and tested in the physical production cell at University West, 
focusing on a scenario with two process modules. The implementation had successful results, showing that the 
detection, identification and configuration are possible to automate using the developed Agent Handling System, 
which will decrease the time it takes to connect a new device in a Plug and Produce system. The production cell at 
University West has several laser scanners to protect the operator from robot movements. This made it necessary to 
stop the robot whenever a part or module was added. In future work it would be of interest to consider the safety 
systems in the production cell, to enable the human operator to add parts without interruption the ongoing 
production.  
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing 
systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce 
systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general 
standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how 
to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing 
system. 
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1. Introduction 

     The demand for customized products and low volume 
production is increasing [1]. Due to the costs associated with 
changing dedicated manufacturing equipment, it is difficult to 
adapt to these new trends [2]. An alternative solution is 
reconfigurable systems that can decrease the time and cost it 
takes to add new resources or product types to ongoing 
manufacturing. These typically have limitations since they 
focus on hardware rather than software. To further decrease the 
cost for adapting the manufacturing, the software has to be 
taken into consideration by designing systems such as Plug & 
Produce, that was introduced in [3].  
     One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part 
and resource in the system is controlled by a piece of 
autonomous software called an agent. Together these agents 
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack 
of standards and guidelines for implementing those systems. 
The result is that multi-agent systems demand more time and 

cost in research and development than traditional 
manufacturing systems. This makes multi-agent systems an 
expensive solution to implement in the industry today.  
     To make multi-agent systems available for companies to 
use, there have to be clear guidelines on how to implement such 
systems for manufacturing. Guidelines need to include a 
complete description of how to design a multi-agent-based 
manufacturing system. In this paper, we address this by 
proposing a conceptual model for communication and 
negotiation between agents for Plug & Produce systems. 
Currently, there exist standards for agent communication, such 
as the FIPA 97 [4], that was later updated in 2002 to the current 
FIPA specifications [5]. These standards were developed by the 
Foundation for Intelligent Physical Agents (FIPA) [9]. 
However, this standard is general, aiming for all kinds of agent 
systems. This leaves the engineer with too many options and 
decisions to make.  
     When building the core software for agents there are many 
things to consider. There is communication, negotiation, 
optimization, booking and much more. It can quickly become 
extremely complex to develop these systems. Guidelines 
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1. Introduction 

     The demand for customized products and low volume 
production is increasing [1]. Due to the costs associated with 
changing dedicated manufacturing equipment, it is difficult to 
adapt to these new trends [2]. An alternative solution is 
reconfigurable systems that can decrease the time and cost it 
takes to add new resources or product types to ongoing 
manufacturing. These typically have limitations since they 
focus on hardware rather than software. To further decrease the 
cost for adapting the manufacturing, the software has to be 
taken into consideration by designing systems such as Plug & 
Produce, that was introduced in [3].  
     One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part 
and resource in the system is controlled by a piece of 
autonomous software called an agent. Together these agents 
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack 
of standards and guidelines for implementing those systems. 
The result is that multi-agent systems demand more time and 

cost in research and development than traditional 
manufacturing systems. This makes multi-agent systems an 
expensive solution to implement in the industry today.  
     To make multi-agent systems available for companies to 
use, there have to be clear guidelines on how to implement such 
systems for manufacturing. Guidelines need to include a 
complete description of how to design a multi-agent-based 
manufacturing system. In this paper, we address this by 
proposing a conceptual model for communication and 
negotiation between agents for Plug & Produce systems. 
Currently, there exist standards for agent communication, such 
as the FIPA 97 [4], that was later updated in 2002 to the current 
FIPA specifications [5]. These standards were developed by the 
Foundation for Intelligent Physical Agents (FIPA) [9]. 
However, this standard is general, aiming for all kinds of agent 
systems. This leaves the engineer with too many options and 
decisions to make.  
     When building the core software for agents there are many 
things to consider. There is communication, negotiation, 
optimization, booking and much more. It can quickly become 
extremely complex to develop these systems. Guidelines 
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

     The demand for customized products and low volume 
production is increasing [1]. Due to the costs associated with 
changing dedicated manufacturing equipment, it is difficult to 
adapt to these new trends [2]. An alternative solution is 
reconfigurable systems that can decrease the time and cost it 
takes to add new resources or product types to ongoing 
manufacturing. These typically have limitations since they 
focus on hardware rather than software. To further decrease the 
cost for adapting the manufacturing, the software has to be 
taken into consideration by designing systems such as Plug & 
Produce, that was introduced in [3].  
     One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part 
and resource in the system is controlled by a piece of 
autonomous software called an agent. Together these agents 
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack 
of standards and guidelines for implementing those systems. 
The result is that multi-agent systems demand more time and 

cost in research and development than traditional 
manufacturing systems. This makes multi-agent systems an 
expensive solution to implement in the industry today.  
     To make multi-agent systems available for companies to 
use, there have to be clear guidelines on how to implement such 
systems for manufacturing. Guidelines need to include a 
complete description of how to design a multi-agent-based 
manufacturing system. In this paper, we address this by 
proposing a conceptual model for communication and 
negotiation between agents for Plug & Produce systems. 
Currently, there exist standards for agent communication, such 
as the FIPA 97 [4], that was later updated in 2002 to the current 
FIPA specifications [5]. These standards were developed by the 
Foundation for Intelligent Physical Agents (FIPA) [9]. 
However, this standard is general, aiming for all kinds of agent 
systems. This leaves the engineer with too many options and 
decisions to make.  
     When building the core software for agents there are many 
things to consider. There is communication, negotiation, 
optimization, booking and much more. It can quickly become 
extremely complex to develop these systems. Guidelines 
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1. Introduction 

     The demand for customized products and low volume 
production is increasing [1]. Due to the costs associated with 
changing dedicated manufacturing equipment, it is difficult to 
adapt to these new trends [2]. An alternative solution is 
reconfigurable systems that can decrease the time and cost it 
takes to add new resources or product types to ongoing 
manufacturing. These typically have limitations since they 
focus on hardware rather than software. To further decrease the 
cost for adapting the manufacturing, the software has to be 
taken into consideration by designing systems such as Plug & 
Produce, that was introduced in [3].  
     One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part 
and resource in the system is controlled by a piece of 
autonomous software called an agent. Together these agents 
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack 
of standards and guidelines for implementing those systems. 
The result is that multi-agent systems demand more time and 

cost in research and development than traditional 
manufacturing systems. This makes multi-agent systems an 
expensive solution to implement in the industry today.  
     To make multi-agent systems available for companies to 
use, there have to be clear guidelines on how to implement such 
systems for manufacturing. Guidelines need to include a 
complete description of how to design a multi-agent-based 
manufacturing system. In this paper, we address this by 
proposing a conceptual model for communication and 
negotiation between agents for Plug & Produce systems. 
Currently, there exist standards for agent communication, such 
as the FIPA 97 [4], that was later updated in 2002 to the current 
FIPA specifications [5]. These standards were developed by the 
Foundation for Intelligent Physical Agents (FIPA) [9]. 
However, this standard is general, aiming for all kinds of agent 
systems. This leaves the engineer with too many options and 
decisions to make.  
     When building the core software for agents there are many 
things to consider. There is communication, negotiation, 
optimization, booking and much more. It can quickly become 
extremely complex to develop these systems. Guidelines 
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designed specifically for communication between agents in 
Plug & Produce systems could help to simplify this by limiting 
the choices one has to make to design such a system. The 
guidelines need to include detailed information on how the 
communication between agents is supposed to be implemented.  
This paper presents a conceptual model and guidelines for 
agent communication together with a physical implementation 
in our labs. The conceptual model was developed, separating 
multi-agent communication in four different layers. The 
implementation generates further suggestions on how the agent 
environment, such as the physical flexibility and network 
layout should be designed. 

2. Background 

     A multi-agent system consists of multiple agents. Agents 
were described by Wooldridge et al. [6] in 1995. They are 
pieces of software that run independently. They perceive the 
world, using inputs and reacts to it using its outputs. They can 
also have their own goals to solve. This is somewhat different 
from a traditional computer function, where a certain response 
is always expected. An agent can say no to a request or suggest 
another solution. This is what makes them autonomous, see 
Fig. 1. 

 
Fig. 1. An agent sensing the environment and reacting based on an internal 

decision. 

     Agents can be used for implementing a cyber-physical 
system since they are a virtual representation of the physical 
objects. They help to clearly separate the cyber components 
from the physical world. In a multi-agent system, several 
agents collaborate by communicating and negotiating to reach 
manufacturing goals, see Fig. 2.  

 
Fig. 2. A network of multiple agents that together makes a multi-agent 

system. 

     Cyber-physical systems are about combining cyber 
components with physical components. Cyber components are 
regarded as the computation and software components, while 
the physical components are the plant and process. Cyber 
components and physical components might be connected 
through communication networks.  
     To be able to communicate, agents all need to speak a 
common agent language. Agent communication standards 
exist, the FIPA specification is today widely used in research 
[5]. A multi-agent system can be used to create a Plug & 
Produce system with high flexibility and reconfigurability. 
Many researchers have worked with developing various types 
of agent systems. However, the use of these systems is still 
extremely uncommon in the manufacturing industry. Other 
researchers have identified that the main reason is the lack of a 
standardized abstraction layer that hides the agent complexity 
from the developer [7], [8]. To implement an agent system can 

be more time-consuming than to implement a traditional 
control system. A standardized abstraction layer, reuse of agent 
code and simplified industrial adapted configuration tools are 
ways to overcome the implementation cost. 
      FIPA or the Foundation for Intelligent Physical Agents is 
an IEEE organization developing standards for multi-agent 
systems [9]. FIPA defines a collection of specifications, 
including an Agent Communication Language (FIPA ACL) 
describing how communication is performed between agents in 
a multi-agent system [10] together with a Communicative Acts 
Library (FIPA CAL). FIPA also specifies an Agent 
Management Specification, describing general guidelines for 
designing a multi-agent system [5].  

2.1.      FIPA ACL 

     The FIPA ACL specification describes the message 
structure of agent communication [10]. An ACL message 
usually contains the message parameters: sender, receiver, 
content and performative. FIPA also describes many more 
message parameters, not listed in this paper. The performative 
describes the communicative act that the message is related to. 

2.2.       FIPA CAL  

     FIPA CAL introduces the concept of communicative acts 
between agents. Communicative acts are used to categorize 
different types of communication [11]. FIPA defines 22 
different communicative acts shown in Table 1. These are not 
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using 
this library. 
 
Table 1. Communicative acts in FIPA 2002. 

Communicative act Description 

Accept proposal Accept a submitted proposal 

Agree Agree to perform some action 

Cancel Cancel an action 

Call For Proposal Request proposals 

Confirm Confirms a proposition 

Disconfirm Disconfirm a proposition 

Failure Inform that an action failed 

Inform Inform about a proposition being true 

Inform If Inform if a proposition is true 

Inform Ref Asks for value of expression 

Not Understood Did not understand message 

Propagate Asks agents to forward this message 

Propose Send a proposal 

Proxy Ask agent to act as proxy 

Query If Ask agent if proposition is true 

Query Ref Ask for an object 

Refuse Refuse to perform action 

Reject Proposal Rejecting a given proposal 

Request Request agent to perform action 

Request When Request when proposition is true 

Request Whenever Always run when proposition is true 

Subscribe Let other agent send updated data 

Agent
Sensing
Reacting

Agent

Agent

Agent
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2.3. Agent Management 

     In FIPA Agent Management Specification [5] an Agent 
Platform (AP) is introduced. This platform provides an 
infrastructure for deploying agents. The platform consists of 
the computational hardware, agents and FIPA components. The 
components are the Directory Facilitator (DF), Agent 
Management System (AMS) and the Message Transport 
Service (MTS). 
     Director Facilitator: This component is acting as a “yellow 
pages” service where each agent can list their skills, in order to 
help other agents to find them. 
     Agent Management System: The AMS gives the agents a 
unique identification number when registered with the AMS. 
There can only exist one AMS in a single Agent Platform (AP). 
     Message Transport Service: This is the communication 
channel used for all agents to communicate with each other 
[12].  

3. Agent communication 

     Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system, 
due to the lack of standards and tools that are easy enough to 
use. To overcome part of this, it is possible to let the software 
agents be based on one single agent class [13]. The agent class 
contains all methods for negotiation among other agents and 
strategies to solve the personal goals of the agents. This agent 
class can be instantiated as an object for each product and 
resource in the system. 

3.1. Re-configuration 

    All agents in the system should be configured rather than 
reprogrammed to avoid costly implementation tasks. Resources 
have skills while parts have goals. All skills in the system are 
𝑆𝑆𝑆𝑆 =  �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own 
subset of skills 𝑆𝑆𝑆𝑆� ⊆   𝑆𝑆𝑆𝑆.  All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of 
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺. 
     The agent source code is never changed and can be 
considered static. Hence, the behaviour of an agent depends 
highly on its configuration.  When configuring an instantiated 
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝 
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable 
with the positions where a gripper can pick it up together with 
geometry data such as its weight and size. Then  𝑝𝑝𝑝𝑝 could use 
these variables to find a resource in the system that can perform 
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔. 
In this way, the system never needs to be reprogrammed but 
instead reconfigured for new scenarios.  
     Interfaces: When two agents collaborate, they need a shared 
understanding of points of interaction, e.g., when a robot tool 
is to be attached to a robot, they both need to know if they are 
compatible. This can be solved by defining interfaces for 
interaction, i.e., a compatible interface has to exist between two 
agents in order to carry out a specific skill that is going to be 
executed. Interfaces are also part of the agent configuration. 
     Process plans: For the industry, it is usually not desirable to 
have unpredictable systems, but rather extremely reliable 
systems. Because of this, it is not suitable to let the agents 

figure everything out by themselves. Instead, process plans 
need to be defined by human experts and given to the agents. 
Process plans should be abstract representations without too 
many details. Several process plans can be created for solving 
the same goal. Process plans should be written as recipes, rather 
than a program.  

3.2. Semantics 

     Agents need to have a common language for 
communication. In FIPA ACL there exist many guidelines on 
how to set up communication and how to send data between 
agents. As described earlier, this includes a set of pre-coded 
communicative acts (co-acts), e.g., Inform, Request and Agree 
[14]. These types of co-acts are made to be general for any 
agent system and not specifically for manufacturing systems. 
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource, 
starting a process or requesting an agent to translate 
coordinates. In this paper, the specialized co-acts are separated 
from the general co-acts making it easier to change the 
specialized co-acts.  
     Additionally, agents need to share a common naming 
standard about interfaces, skills and variables names. These 
semantics must be defined in each agent so that they have a 
common understanding when communicating. Semantics 
should be configured rather than programmed into the agents 
so that they can be changed and adapted to specific processes 
without re-programming. Researchers have previously 
suggested that agent-based solutions should be created as 
“black boxes” with simple configuration tools hiding the 
complexity of the agents from the user [8].  
     Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)  describe a 
location. The knowledge about what this variable is 
representing can be regarded as semantics that is configured 
into the agent system. It is not enough to know that this is a 
location variable since there could be a location both for 
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to 
maintain a strict and rigid standard for naming the variables. 
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  describes functionality that 
needs to be understood by each agent using that skill. To 
support the user to preserve a strict consistent configuration, 
tools must be designed that handle the semantics. A promising 
approach is to have a database describing the semantics with 
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users 
will get suggestions and the possibility to see the description 
for a given signal or skill. If creating a global standard for 
several companies, then agent configurations would be 
compatible with all those companies systems. This would make 
it possible to move a resource, e.g., a robot from one company 
to another without reconfiguring anything. 
     An example of semantics that is part of the agent language 
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 
Then a message would be sent written in an agent language 
from 𝑃𝑃𝑃𝑃�  to 𝑃𝑃𝑃𝑃�  containing something like “Have skill: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ?”. This sentence consisting of three keywords: 
“have”, “skill” and "? " has to be understood in the same way 
on both agents and the semantics for these must be understood 
in both agents. The semantics becomes a part of the agent 
language while the content, e.g., the skill name is not part of 
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designed specifically for communication between agents in 
Plug & Produce systems could help to simplify this by limiting 
the choices one has to make to design such a system. The 
guidelines need to include detailed information on how the 
communication between agents is supposed to be implemented.  
This paper presents a conceptual model and guidelines for 
agent communication together with a physical implementation 
in our labs. The conceptual model was developed, separating 
multi-agent communication in four different layers. The 
implementation generates further suggestions on how the agent 
environment, such as the physical flexibility and network 
layout should be designed. 

2. Background 

     A multi-agent system consists of multiple agents. Agents 
were described by Wooldridge et al. [6] in 1995. They are 
pieces of software that run independently. They perceive the 
world, using inputs and reacts to it using its outputs. They can 
also have their own goals to solve. This is somewhat different 
from a traditional computer function, where a certain response 
is always expected. An agent can say no to a request or suggest 
another solution. This is what makes them autonomous, see 
Fig. 1. 

 
Fig. 1. An agent sensing the environment and reacting based on an internal 

decision. 

     Agents can be used for implementing a cyber-physical 
system since they are a virtual representation of the physical 
objects. They help to clearly separate the cyber components 
from the physical world. In a multi-agent system, several 
agents collaborate by communicating and negotiating to reach 
manufacturing goals, see Fig. 2.  

 
Fig. 2. A network of multiple agents that together makes a multi-agent 

system. 

     Cyber-physical systems are about combining cyber 
components with physical components. Cyber components are 
regarded as the computation and software components, while 
the physical components are the plant and process. Cyber 
components and physical components might be connected 
through communication networks.  
     To be able to communicate, agents all need to speak a 
common agent language. Agent communication standards 
exist, the FIPA specification is today widely used in research 
[5]. A multi-agent system can be used to create a Plug & 
Produce system with high flexibility and reconfigurability. 
Many researchers have worked with developing various types 
of agent systems. However, the use of these systems is still 
extremely uncommon in the manufacturing industry. Other 
researchers have identified that the main reason is the lack of a 
standardized abstraction layer that hides the agent complexity 
from the developer [7], [8]. To implement an agent system can 

be more time-consuming than to implement a traditional 
control system. A standardized abstraction layer, reuse of agent 
code and simplified industrial adapted configuration tools are 
ways to overcome the implementation cost. 
      FIPA or the Foundation for Intelligent Physical Agents is 
an IEEE organization developing standards for multi-agent 
systems [9]. FIPA defines a collection of specifications, 
including an Agent Communication Language (FIPA ACL) 
describing how communication is performed between agents in 
a multi-agent system [10] together with a Communicative Acts 
Library (FIPA CAL). FIPA also specifies an Agent 
Management Specification, describing general guidelines for 
designing a multi-agent system [5].  

2.1.      FIPA ACL 

     The FIPA ACL specification describes the message 
structure of agent communication [10]. An ACL message 
usually contains the message parameters: sender, receiver, 
content and performative. FIPA also describes many more 
message parameters, not listed in this paper. The performative 
describes the communicative act that the message is related to. 

2.2.       FIPA CAL  

     FIPA CAL introduces the concept of communicative acts 
between agents. Communicative acts are used to categorize 
different types of communication [11]. FIPA defines 22 
different communicative acts shown in Table 1. These are not 
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using 
this library. 
 
Table 1. Communicative acts in FIPA 2002. 

Communicative act Description 

Accept proposal Accept a submitted proposal 

Agree Agree to perform some action 

Cancel Cancel an action 

Call For Proposal Request proposals 

Confirm Confirms a proposition 

Disconfirm Disconfirm a proposition 

Failure Inform that an action failed 

Inform Inform about a proposition being true 

Inform If Inform if a proposition is true 

Inform Ref Asks for value of expression 

Not Understood Did not understand message 

Propagate Asks agents to forward this message 

Propose Send a proposal 

Proxy Ask agent to act as proxy 

Query If Ask agent if proposition is true 

Query Ref Ask for an object 

Refuse Refuse to perform action 

Reject Proposal Rejecting a given proposal 

Request Request agent to perform action 

Request When Request when proposition is true 

Request Whenever Always run when proposition is true 

Subscribe Let other agent send updated data 

Agent
Sensing
Reacting

Agent

Agent

Agent
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2.3. Agent Management 

     In FIPA Agent Management Specification [5] an Agent 
Platform (AP) is introduced. This platform provides an 
infrastructure for deploying agents. The platform consists of 
the computational hardware, agents and FIPA components. The 
components are the Directory Facilitator (DF), Agent 
Management System (AMS) and the Message Transport 
Service (MTS). 
     Director Facilitator: This component is acting as a “yellow 
pages” service where each agent can list their skills, in order to 
help other agents to find them. 
     Agent Management System: The AMS gives the agents a 
unique identification number when registered with the AMS. 
There can only exist one AMS in a single Agent Platform (AP). 
     Message Transport Service: This is the communication 
channel used for all agents to communicate with each other 
[12].  

3. Agent communication 

     Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system, 
due to the lack of standards and tools that are easy enough to 
use. To overcome part of this, it is possible to let the software 
agents be based on one single agent class [13]. The agent class 
contains all methods for negotiation among other agents and 
strategies to solve the personal goals of the agents. This agent 
class can be instantiated as an object for each product and 
resource in the system. 

3.1. Re-configuration 

    All agents in the system should be configured rather than 
reprogrammed to avoid costly implementation tasks. Resources 
have skills while parts have goals. All skills in the system are 
𝑆𝑆𝑆𝑆 =  �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own 
subset of skills 𝑆𝑆𝑆𝑆� ⊆   𝑆𝑆𝑆𝑆.  All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of 
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺. 
     The agent source code is never changed and can be 
considered static. Hence, the behaviour of an agent depends 
highly on its configuration.  When configuring an instantiated 
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝 
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable 
with the positions where a gripper can pick it up together with 
geometry data such as its weight and size. Then  𝑝𝑝𝑝𝑝 could use 
these variables to find a resource in the system that can perform 
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔. 
In this way, the system never needs to be reprogrammed but 
instead reconfigured for new scenarios.  
     Interfaces: When two agents collaborate, they need a shared 
understanding of points of interaction, e.g., when a robot tool 
is to be attached to a robot, they both need to know if they are 
compatible. This can be solved by defining interfaces for 
interaction, i.e., a compatible interface has to exist between two 
agents in order to carry out a specific skill that is going to be 
executed. Interfaces are also part of the agent configuration. 
     Process plans: For the industry, it is usually not desirable to 
have unpredictable systems, but rather extremely reliable 
systems. Because of this, it is not suitable to let the agents 

figure everything out by themselves. Instead, process plans 
need to be defined by human experts and given to the agents. 
Process plans should be abstract representations without too 
many details. Several process plans can be created for solving 
the same goal. Process plans should be written as recipes, rather 
than a program.  

3.2. Semantics 

     Agents need to have a common language for 
communication. In FIPA ACL there exist many guidelines on 
how to set up communication and how to send data between 
agents. As described earlier, this includes a set of pre-coded 
communicative acts (co-acts), e.g., Inform, Request and Agree 
[14]. These types of co-acts are made to be general for any 
agent system and not specifically for manufacturing systems. 
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource, 
starting a process or requesting an agent to translate 
coordinates. In this paper, the specialized co-acts are separated 
from the general co-acts making it easier to change the 
specialized co-acts.  
     Additionally, agents need to share a common naming 
standard about interfaces, skills and variables names. These 
semantics must be defined in each agent so that they have a 
common understanding when communicating. Semantics 
should be configured rather than programmed into the agents 
so that they can be changed and adapted to specific processes 
without re-programming. Researchers have previously 
suggested that agent-based solutions should be created as 
“black boxes” with simple configuration tools hiding the 
complexity of the agents from the user [8].  
     Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)  describe a 
location. The knowledge about what this variable is 
representing can be regarded as semantics that is configured 
into the agent system. It is not enough to know that this is a 
location variable since there could be a location both for 
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to 
maintain a strict and rigid standard for naming the variables. 
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  describes functionality that 
needs to be understood by each agent using that skill. To 
support the user to preserve a strict consistent configuration, 
tools must be designed that handle the semantics. A promising 
approach is to have a database describing the semantics with 
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users 
will get suggestions and the possibility to see the description 
for a given signal or skill. If creating a global standard for 
several companies, then agent configurations would be 
compatible with all those companies systems. This would make 
it possible to move a resource, e.g., a robot from one company 
to another without reconfiguring anything. 
     An example of semantics that is part of the agent language 
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 
Then a message would be sent written in an agent language 
from 𝑃𝑃𝑃𝑃�  to 𝑃𝑃𝑃𝑃�  containing something like “Have skill: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ?”. This sentence consisting of three keywords: 
“have”, “skill” and "? " has to be understood in the same way 
on both agents and the semantics for these must be understood 
in both agents. The semantics becomes a part of the agent 
language while the content, e.g., the skill name is not part of 
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designed specifically for communication between agents in 
Plug & Produce systems could help to simplify this by limiting 
the choices one has to make to design such a system. The 
guidelines need to include detailed information on how the 
communication between agents is supposed to be implemented.  
This paper presents a conceptual model and guidelines for 
agent communication together with a physical implementation 
in our labs. The conceptual model was developed, separating 
multi-agent communication in four different layers. The 
implementation generates further suggestions on how the agent 
environment, such as the physical flexibility and network 
layout should be designed. 

2. Background 

     A multi-agent system consists of multiple agents. Agents 
were described by Wooldridge et al. [6] in 1995. They are 
pieces of software that run independently. They perceive the 
world, using inputs and reacts to it using its outputs. They can 
also have their own goals to solve. This is somewhat different 
from a traditional computer function, where a certain response 
is always expected. An agent can say no to a request or suggest 
another solution. This is what makes them autonomous, see 
Fig. 1. 

 
Fig. 1. An agent sensing the environment and reacting based on an internal 

decision. 

     Agents can be used for implementing a cyber-physical 
system since they are a virtual representation of the physical 
objects. They help to clearly separate the cyber components 
from the physical world. In a multi-agent system, several 
agents collaborate by communicating and negotiating to reach 
manufacturing goals, see Fig. 2.  

 
Fig. 2. A network of multiple agents that together makes a multi-agent 

system. 

     Cyber-physical systems are about combining cyber 
components with physical components. Cyber components are 
regarded as the computation and software components, while 
the physical components are the plant and process. Cyber 
components and physical components might be connected 
through communication networks.  
     To be able to communicate, agents all need to speak a 
common agent language. Agent communication standards 
exist, the FIPA specification is today widely used in research 
[5]. A multi-agent system can be used to create a Plug & 
Produce system with high flexibility and reconfigurability. 
Many researchers have worked with developing various types 
of agent systems. However, the use of these systems is still 
extremely uncommon in the manufacturing industry. Other 
researchers have identified that the main reason is the lack of a 
standardized abstraction layer that hides the agent complexity 
from the developer [7], [8]. To implement an agent system can 

be more time-consuming than to implement a traditional 
control system. A standardized abstraction layer, reuse of agent 
code and simplified industrial adapted configuration tools are 
ways to overcome the implementation cost. 
      FIPA or the Foundation for Intelligent Physical Agents is 
an IEEE organization developing standards for multi-agent 
systems [9]. FIPA defines a collection of specifications, 
including an Agent Communication Language (FIPA ACL) 
describing how communication is performed between agents in 
a multi-agent system [10] together with a Communicative Acts 
Library (FIPA CAL). FIPA also specifies an Agent 
Management Specification, describing general guidelines for 
designing a multi-agent system [5].  

2.1.      FIPA ACL 

     The FIPA ACL specification describes the message 
structure of agent communication [10]. An ACL message 
usually contains the message parameters: sender, receiver, 
content and performative. FIPA also describes many more 
message parameters, not listed in this paper. The performative 
describes the communicative act that the message is related to. 

2.2.       FIPA CAL  

     FIPA CAL introduces the concept of communicative acts 
between agents. Communicative acts are used to categorize 
different types of communication [11]. FIPA defines 22 
different communicative acts shown in Table 1. These are not 
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using 
this library. 
 
Table 1. Communicative acts in FIPA 2002. 

Communicative act Description 

Accept proposal Accept a submitted proposal 

Agree Agree to perform some action 

Cancel Cancel an action 

Call For Proposal Request proposals 

Confirm Confirms a proposition 

Disconfirm Disconfirm a proposition 

Failure Inform that an action failed 

Inform Inform about a proposition being true 

Inform If Inform if a proposition is true 

Inform Ref Asks for value of expression 

Not Understood Did not understand message 

Propagate Asks agents to forward this message 

Propose Send a proposal 

Proxy Ask agent to act as proxy 

Query If Ask agent if proposition is true 

Query Ref Ask for an object 

Refuse Refuse to perform action 

Reject Proposal Rejecting a given proposal 

Request Request agent to perform action 

Request When Request when proposition is true 

Request Whenever Always run when proposition is true 

Subscribe Let other agent send updated data 

Agent
Sensing
Reacting

Agent

Agent

Agent
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2.3. Agent Management 

     In FIPA Agent Management Specification [5] an Agent 
Platform (AP) is introduced. This platform provides an 
infrastructure for deploying agents. The platform consists of 
the computational hardware, agents and FIPA components. The 
components are the Directory Facilitator (DF), Agent 
Management System (AMS) and the Message Transport 
Service (MTS). 
     Director Facilitator: This component is acting as a “yellow 
pages” service where each agent can list their skills, in order to 
help other agents to find them. 
     Agent Management System: The AMS gives the agents a 
unique identification number when registered with the AMS. 
There can only exist one AMS in a single Agent Platform (AP). 
     Message Transport Service: This is the communication 
channel used for all agents to communicate with each other 
[12].  

3. Agent communication 

     Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system, 
due to the lack of standards and tools that are easy enough to 
use. To overcome part of this, it is possible to let the software 
agents be based on one single agent class [13]. The agent class 
contains all methods for negotiation among other agents and 
strategies to solve the personal goals of the agents. This agent 
class can be instantiated as an object for each product and 
resource in the system. 

3.1. Re-configuration 

    All agents in the system should be configured rather than 
reprogrammed to avoid costly implementation tasks. Resources 
have skills while parts have goals. All skills in the system are 
𝑆𝑆𝑆𝑆 =  �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own 
subset of skills 𝑆𝑆𝑆𝑆� ⊆   𝑆𝑆𝑆𝑆.  All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of 
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺. 
     The agent source code is never changed and can be 
considered static. Hence, the behaviour of an agent depends 
highly on its configuration.  When configuring an instantiated 
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝 
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable 
with the positions where a gripper can pick it up together with 
geometry data such as its weight and size. Then  𝑝𝑝𝑝𝑝 could use 
these variables to find a resource in the system that can perform 
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔. 
In this way, the system never needs to be reprogrammed but 
instead reconfigured for new scenarios.  
     Interfaces: When two agents collaborate, they need a shared 
understanding of points of interaction, e.g., when a robot tool 
is to be attached to a robot, they both need to know if they are 
compatible. This can be solved by defining interfaces for 
interaction, i.e., a compatible interface has to exist between two 
agents in order to carry out a specific skill that is going to be 
executed. Interfaces are also part of the agent configuration. 
     Process plans: For the industry, it is usually not desirable to 
have unpredictable systems, but rather extremely reliable 
systems. Because of this, it is not suitable to let the agents 

figure everything out by themselves. Instead, process plans 
need to be defined by human experts and given to the agents. 
Process plans should be abstract representations without too 
many details. Several process plans can be created for solving 
the same goal. Process plans should be written as recipes, rather 
than a program.  

3.2. Semantics 

     Agents need to have a common language for 
communication. In FIPA ACL there exist many guidelines on 
how to set up communication and how to send data between 
agents. As described earlier, this includes a set of pre-coded 
communicative acts (co-acts), e.g., Inform, Request and Agree 
[14]. These types of co-acts are made to be general for any 
agent system and not specifically for manufacturing systems. 
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource, 
starting a process or requesting an agent to translate 
coordinates. In this paper, the specialized co-acts are separated 
from the general co-acts making it easier to change the 
specialized co-acts.  
     Additionally, agents need to share a common naming 
standard about interfaces, skills and variables names. These 
semantics must be defined in each agent so that they have a 
common understanding when communicating. Semantics 
should be configured rather than programmed into the agents 
so that they can be changed and adapted to specific processes 
without re-programming. Researchers have previously 
suggested that agent-based solutions should be created as 
“black boxes” with simple configuration tools hiding the 
complexity of the agents from the user [8].  
     Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)  describe a 
location. The knowledge about what this variable is 
representing can be regarded as semantics that is configured 
into the agent system. It is not enough to know that this is a 
location variable since there could be a location both for 
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to 
maintain a strict and rigid standard for naming the variables. 
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  describes functionality that 
needs to be understood by each agent using that skill. To 
support the user to preserve a strict consistent configuration, 
tools must be designed that handle the semantics. A promising 
approach is to have a database describing the semantics with 
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users 
will get suggestions and the possibility to see the description 
for a given signal or skill. If creating a global standard for 
several companies, then agent configurations would be 
compatible with all those companies systems. This would make 
it possible to move a resource, e.g., a robot from one company 
to another without reconfiguring anything. 
     An example of semantics that is part of the agent language 
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 
Then a message would be sent written in an agent language 
from 𝑃𝑃𝑃𝑃�  to 𝑃𝑃𝑃𝑃�  containing something like “Have skill: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ?”. This sentence consisting of three keywords: 
“have”, “skill” and "? " has to be understood in the same way 
on both agents and the semantics for these must be understood 
in both agents. The semantics becomes a part of the agent 
language while the content, e.g., the skill name is not part of 
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designed specifically for communication between agents in 
Plug & Produce systems could help to simplify this by limiting 
the choices one has to make to design such a system. The 
guidelines need to include detailed information on how the 
communication between agents is supposed to be implemented.  
This paper presents a conceptual model and guidelines for 
agent communication together with a physical implementation 
in our labs. The conceptual model was developed, separating 
multi-agent communication in four different layers. The 
implementation generates further suggestions on how the agent 
environment, such as the physical flexibility and network 
layout should be designed. 

2. Background 

     A multi-agent system consists of multiple agents. Agents 
were described by Wooldridge et al. [6] in 1995. They are 
pieces of software that run independently. They perceive the 
world, using inputs and reacts to it using its outputs. They can 
also have their own goals to solve. This is somewhat different 
from a traditional computer function, where a certain response 
is always expected. An agent can say no to a request or suggest 
another solution. This is what makes them autonomous, see 
Fig. 1. 

 
Fig. 1. An agent sensing the environment and reacting based on an internal 

decision. 

     Agents can be used for implementing a cyber-physical 
system since they are a virtual representation of the physical 
objects. They help to clearly separate the cyber components 
from the physical world. In a multi-agent system, several 
agents collaborate by communicating and negotiating to reach 
manufacturing goals, see Fig. 2.  

 
Fig. 2. A network of multiple agents that together makes a multi-agent 

system. 

     Cyber-physical systems are about combining cyber 
components with physical components. Cyber components are 
regarded as the computation and software components, while 
the physical components are the plant and process. Cyber 
components and physical components might be connected 
through communication networks.  
     To be able to communicate, agents all need to speak a 
common agent language. Agent communication standards 
exist, the FIPA specification is today widely used in research 
[5]. A multi-agent system can be used to create a Plug & 
Produce system with high flexibility and reconfigurability. 
Many researchers have worked with developing various types 
of agent systems. However, the use of these systems is still 
extremely uncommon in the manufacturing industry. Other 
researchers have identified that the main reason is the lack of a 
standardized abstraction layer that hides the agent complexity 
from the developer [7], [8]. To implement an agent system can 

be more time-consuming than to implement a traditional 
control system. A standardized abstraction layer, reuse of agent 
code and simplified industrial adapted configuration tools are 
ways to overcome the implementation cost. 
      FIPA or the Foundation for Intelligent Physical Agents is 
an IEEE organization developing standards for multi-agent 
systems [9]. FIPA defines a collection of specifications, 
including an Agent Communication Language (FIPA ACL) 
describing how communication is performed between agents in 
a multi-agent system [10] together with a Communicative Acts 
Library (FIPA CAL). FIPA also specifies an Agent 
Management Specification, describing general guidelines for 
designing a multi-agent system [5].  

2.1.      FIPA ACL 

     The FIPA ACL specification describes the message 
structure of agent communication [10]. An ACL message 
usually contains the message parameters: sender, receiver, 
content and performative. FIPA also describes many more 
message parameters, not listed in this paper. The performative 
describes the communicative act that the message is related to. 

2.2.       FIPA CAL  

     FIPA CAL introduces the concept of communicative acts 
between agents. Communicative acts are used to categorize 
different types of communication [11]. FIPA defines 22 
different communicative acts shown in Table 1. These are not 
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using 
this library. 
 
Table 1. Communicative acts in FIPA 2002. 

Communicative act Description 

Accept proposal Accept a submitted proposal 

Agree Agree to perform some action 

Cancel Cancel an action 

Call For Proposal Request proposals 

Confirm Confirms a proposition 

Disconfirm Disconfirm a proposition 

Failure Inform that an action failed 

Inform Inform about a proposition being true 

Inform If Inform if a proposition is true 

Inform Ref Asks for value of expression 

Not Understood Did not understand message 

Propagate Asks agents to forward this message 

Propose Send a proposal 

Proxy Ask agent to act as proxy 

Query If Ask agent if proposition is true 

Query Ref Ask for an object 

Refuse Refuse to perform action 

Reject Proposal Rejecting a given proposal 

Request Request agent to perform action 

Request When Request when proposition is true 

Request Whenever Always run when proposition is true 

Subscribe Let other agent send updated data 

Agent
Sensing
Reacting

Agent

Agent

Agent
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2.3. Agent Management 

     In FIPA Agent Management Specification [5] an Agent 
Platform (AP) is introduced. This platform provides an 
infrastructure for deploying agents. The platform consists of 
the computational hardware, agents and FIPA components. The 
components are the Directory Facilitator (DF), Agent 
Management System (AMS) and the Message Transport 
Service (MTS). 
     Director Facilitator: This component is acting as a “yellow 
pages” service where each agent can list their skills, in order to 
help other agents to find them. 
     Agent Management System: The AMS gives the agents a 
unique identification number when registered with the AMS. 
There can only exist one AMS in a single Agent Platform (AP). 
     Message Transport Service: This is the communication 
channel used for all agents to communicate with each other 
[12].  

3. Agent communication 

     Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system, 
due to the lack of standards and tools that are easy enough to 
use. To overcome part of this, it is possible to let the software 
agents be based on one single agent class [13]. The agent class 
contains all methods for negotiation among other agents and 
strategies to solve the personal goals of the agents. This agent 
class can be instantiated as an object for each product and 
resource in the system. 

3.1. Re-configuration 

    All agents in the system should be configured rather than 
reprogrammed to avoid costly implementation tasks. Resources 
have skills while parts have goals. All skills in the system are 
𝑆𝑆𝑆𝑆 =  �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own 
subset of skills 𝑆𝑆𝑆𝑆� ⊆   𝑆𝑆𝑆𝑆.  All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of 
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺. 
     The agent source code is never changed and can be 
considered static. Hence, the behaviour of an agent depends 
highly on its configuration.  When configuring an instantiated 
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝 
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable 
with the positions where a gripper can pick it up together with 
geometry data such as its weight and size. Then  𝑝𝑝𝑝𝑝 could use 
these variables to find a resource in the system that can perform 
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔. 
In this way, the system never needs to be reprogrammed but 
instead reconfigured for new scenarios.  
     Interfaces: When two agents collaborate, they need a shared 
understanding of points of interaction, e.g., when a robot tool 
is to be attached to a robot, they both need to know if they are 
compatible. This can be solved by defining interfaces for 
interaction, i.e., a compatible interface has to exist between two 
agents in order to carry out a specific skill that is going to be 
executed. Interfaces are also part of the agent configuration. 
     Process plans: For the industry, it is usually not desirable to 
have unpredictable systems, but rather extremely reliable 
systems. Because of this, it is not suitable to let the agents 

figure everything out by themselves. Instead, process plans 
need to be defined by human experts and given to the agents. 
Process plans should be abstract representations without too 
many details. Several process plans can be created for solving 
the same goal. Process plans should be written as recipes, rather 
than a program.  

3.2. Semantics 

     Agents need to have a common language for 
communication. In FIPA ACL there exist many guidelines on 
how to set up communication and how to send data between 
agents. As described earlier, this includes a set of pre-coded 
communicative acts (co-acts), e.g., Inform, Request and Agree 
[14]. These types of co-acts are made to be general for any 
agent system and not specifically for manufacturing systems. 
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource, 
starting a process or requesting an agent to translate 
coordinates. In this paper, the specialized co-acts are separated 
from the general co-acts making it easier to change the 
specialized co-acts.  
     Additionally, agents need to share a common naming 
standard about interfaces, skills and variables names. These 
semantics must be defined in each agent so that they have a 
common understanding when communicating. Semantics 
should be configured rather than programmed into the agents 
so that they can be changed and adapted to specific processes 
without re-programming. Researchers have previously 
suggested that agent-based solutions should be created as 
“black boxes” with simple configuration tools hiding the 
complexity of the agents from the user [8].  
     Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)  describe a 
location. The knowledge about what this variable is 
representing can be regarded as semantics that is configured 
into the agent system. It is not enough to know that this is a 
location variable since there could be a location both for 
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to 
maintain a strict and rigid standard for naming the variables. 
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  describes functionality that 
needs to be understood by each agent using that skill. To 
support the user to preserve a strict consistent configuration, 
tools must be designed that handle the semantics. A promising 
approach is to have a database describing the semantics with 
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users 
will get suggestions and the possibility to see the description 
for a given signal or skill. If creating a global standard for 
several companies, then agent configurations would be 
compatible with all those companies systems. This would make 
it possible to move a resource, e.g., a robot from one company 
to another without reconfiguring anything. 
     An example of semantics that is part of the agent language 
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 
Then a message would be sent written in an agent language 
from 𝑃𝑃𝑃𝑃�  to 𝑃𝑃𝑃𝑃�  containing something like “Have skill: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ?”. This sentence consisting of three keywords: 
“have”, “skill” and "? " has to be understood in the same way 
on both agents and the semantics for these must be understood 
in both agents. The semantics becomes a part of the agent 
language while the content, e.g., the skill name is not part of 
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the language, but rather something the agents talk about using 
the language. Both systems need to understand this syntax to 
be able to know the meaning of “have”, what a skill is and the 
understanding of what a question is. This is especially of 
importance in agent systems where agents use a language more 
similar to humans languages.  

3.3. Network design 

     It can be debated whether the actual software for the agents 
should run close to the physical device, e.g., in a robot 
controller or if it should be running in a cloud service. The 
benefit of distributing software agents on multiple hardware is 
that it decreases the risk of single-point failure. However, it is 
common in multi agent-systems to still have a central point of 
connection, e.g., “yellow pages” for looking up other agents.  
     For Plug & Produce systems it would be desirable to have a 
standardized connection between the cyber and physical 
components, such as OPC UA developed by OPC Foundation 
[15]. Together with this an automatic detection of connected 
physical components and the corresponding agent in 
cyberspace is needed. In this paper, OPC UA was used for 
connecting all resource agents with their physical resources. 
This approach has previously been implemented and verified 
in [13]. 

3.4. Communication layers 

     Four layers of communication can be identified. The first 
two layers identified already exists in previous 
implementations, while layers three and four are new and part 
of the contribution of this paper, see Fig. 3. 
 

 
Fig. 3. The conceptual model with four layers, describing multi-agent 

communication. 

     The first layer (1) is a basic network protocol used to set up 
a channel for communication between agents, e.g., OPC UA or 
Data Distribution Service (DDS). The second layer (2) is the 
general communicative acts layer that is working for any type 
of agent system. Here, FIPA has developed a de facto standard 
describing how this could be implemented. The third layer (3) 
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden 
from the other layers. It only needs to be updated if an entirely 
new concept is introduced that the agents need to communicate 
about, e.g., if an assembly application was not considered when 
designing the agent code, it could be necessary to add a new 
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎� 
that they are now merged. However, most of the time any 
changes to a manufacturing system only affect layer four (4), 
the reconfigurable layer, e.g., when a new resource or new 

product is introduced the only task is to reconfigure the system 
on layer four. The specialized co-acts are implemented as static 
skills existing on each agent instance in the system. 

4. Implementation 

     This chapter evaluates the conceptual model described and 
introduced in this paper with a given scenario. The scenario 
will be tested with an implementation based on the presented 
concepts in this paper. 

4.1. Manufacturing scenario 

     This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is 
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper 
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.  
 

 

 
Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟� 

from buffer 𝑟𝑟𝑟𝑟�. 

    In Table 2, all configuration values needed for this scenario 
are shown.  

Table 2. Configuration values in reconfigurable layer (4). 
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     Location variables are defined locally on each agent for 
resources or parts. They must be translated into world 
coordinates before shared with other agents. In Fig. 5, the part 
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The 
variable 𝑣𝑣𝑣𝑣�  for gripping has to be translated before 
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This 
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built 
in functionality to translate coordinates before communicating 
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint 
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some 
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are mechanically compatible, see Fig. 6. The interfaces are 
discussed more in detail in [13]. 
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     In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and 
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃�  communicates further with 𝑃𝑃𝑃𝑃� . This 
communication layout is shown in Fig. 7. 
 

 
Fig. 7. Agent communication layout. 

     A process plan 𝜋𝜋𝜋𝜋  is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The plan describes two steps 1) transport part 
to paint station 2) paint part. The physical resources for 
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 . 
Hence the system must find matching resources before 
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these 
resources, the following two steps will be generated: 
 

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.  
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�. 

 
     The robot is not part of the process plan since it is not known 
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with 
𝑃𝑃𝑃𝑃�. 

4.2. Experiment 

     A multi-agent system was developed to evaluate the 
proposed conceptual model. The system has the functionality 
to add new specialized co-acts in layer 3. By testing multiple 
manufacturing scenarios it was found that all of them could be 
described with the following specialized co-acts: 1) Request 
information, 2) Give information, 3) Book/Unbook skill, 4) 
Request skill to start and 5) Attach/Detach. All coordinates 
shared between agents are translated to world coordinates 
before communicated to other agents. 
     It is important to understand that these co-acts work for 
many scenarios but are limited to a specific type of system. In 
this case, they apply to some types of manufacturing systems 
including the one in the scenario described in this paper. In 
Table 3, each specialized co-act for our scenario is listed.  

Table 3. Specialized co-acts layer (3). 

Number Specialized co-act  

1 Request information 

Give information 

Book/Unbook skill  

Request skill to start 

Attach/Detach 

2 

3 

4 

5 
 

   

  
     The following list describes each communication step in the 
scenario using the previously defined specialized co-acts for 
agent communication. This list is limited to the perspective of 
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the 
following list are described in detail in Table 2. Each step 
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number 
presented in Table 3: 
 
• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The 
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks 
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to 
world coordinates before sending it to 𝑝𝑝𝑝𝑝. 

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the 
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the language, but rather something the agents talk about using 
the language. Both systems need to understand this syntax to 
be able to know the meaning of “have”, what a skill is and the 
understanding of what a question is. This is especially of 
importance in agent systems where agents use a language more 
similar to humans languages.  

3.3. Network design 

     It can be debated whether the actual software for the agents 
should run close to the physical device, e.g., in a robot 
controller or if it should be running in a cloud service. The 
benefit of distributing software agents on multiple hardware is 
that it decreases the risk of single-point failure. However, it is 
common in multi agent-systems to still have a central point of 
connection, e.g., “yellow pages” for looking up other agents.  
     For Plug & Produce systems it would be desirable to have a 
standardized connection between the cyber and physical 
components, such as OPC UA developed by OPC Foundation 
[15]. Together with this an automatic detection of connected 
physical components and the corresponding agent in 
cyberspace is needed. In this paper, OPC UA was used for 
connecting all resource agents with their physical resources. 
This approach has previously been implemented and verified 
in [13]. 

3.4. Communication layers 

     Four layers of communication can be identified. The first 
two layers identified already exists in previous 
implementations, while layers three and four are new and part 
of the contribution of this paper, see Fig. 3. 
 

 
Fig. 3. The conceptual model with four layers, describing multi-agent 

communication. 
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to paint station 2) paint part. The physical resources for 
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 . 
Hence the system must find matching resources before 
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these 
resources, the following two steps will be generated: 
 

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.  
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�. 

 
     The robot is not part of the process plan since it is not known 
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with 
𝑃𝑃𝑃𝑃�. 

4.2. Experiment 

     A multi-agent system was developed to evaluate the 
proposed conceptual model. The system has the functionality 
to add new specialized co-acts in layer 3. By testing multiple 
manufacturing scenarios it was found that all of them could be 
described with the following specialized co-acts: 1) Request 
information, 2) Give information, 3) Book/Unbook skill, 4) 
Request skill to start and 5) Attach/Detach. All coordinates 
shared between agents are translated to world coordinates 
before communicated to other agents. 
     It is important to understand that these co-acts work for 
many scenarios but are limited to a specific type of system. In 
this case, they apply to some types of manufacturing systems 
including the one in the scenario described in this paper. In 
Table 3, each specialized co-act for our scenario is listed.  

Table 3. Specialized co-acts layer (3). 

Number Specialized co-act  

1 Request information 

Give information 

Book/Unbook skill  

Request skill to start 

Attach/Detach 

2 

3 

4 
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     The following list describes each communication step in the 
scenario using the previously defined specialized co-acts for 
agent communication. This list is limited to the perspective of 
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the 
following list are described in detail in Table 2. Each step 
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number 
presented in Table 3: 
 
• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The 
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks 
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to 
world coordinates before sending it to 𝑝𝑝𝑝𝑝. 

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the 
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the language, but rather something the agents talk about using 
the language. Both systems need to understand this syntax to 
be able to know the meaning of “have”, what a skill is and the 
understanding of what a question is. This is especially of 
importance in agent systems where agents use a language more 
similar to humans languages.  

3.3. Network design 

     It can be debated whether the actual software for the agents 
should run close to the physical device, e.g., in a robot 
controller or if it should be running in a cloud service. The 
benefit of distributing software agents on multiple hardware is 
that it decreases the risk of single-point failure. However, it is 
common in multi agent-systems to still have a central point of 
connection, e.g., “yellow pages” for looking up other agents.  
     For Plug & Produce systems it would be desirable to have a 
standardized connection between the cyber and physical 
components, such as OPC UA developed by OPC Foundation 
[15]. Together with this an automatic detection of connected 
physical components and the corresponding agent in 
cyberspace is needed. In this paper, OPC UA was used for 
connecting all resource agents with their physical resources. 
This approach has previously been implemented and verified 
in [13]. 

3.4. Communication layers 

     Four layers of communication can be identified. The first 
two layers identified already exists in previous 
implementations, while layers three and four are new and part 
of the contribution of this paper, see Fig. 3. 
 

 
Fig. 3. The conceptual model with four layers, describing multi-agent 

communication. 

     The first layer (1) is a basic network protocol used to set up 
a channel for communication between agents, e.g., OPC UA or 
Data Distribution Service (DDS). The second layer (2) is the 
general communicative acts layer that is working for any type 
of agent system. Here, FIPA has developed a de facto standard 
describing how this could be implemented. The third layer (3) 
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden 
from the other layers. It only needs to be updated if an entirely 
new concept is introduced that the agents need to communicate 
about, e.g., if an assembly application was not considered when 
designing the agent code, it could be necessary to add a new 
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎� 
that they are now merged. However, most of the time any 
changes to a manufacturing system only affect layer four (4), 
the reconfigurable layer, e.g., when a new resource or new 

product is introduced the only task is to reconfigure the system 
on layer four. The specialized co-acts are implemented as static 
skills existing on each agent instance in the system. 

4. Implementation 

     This chapter evaluates the conceptual model described and 
introduced in this paper with a given scenario. The scenario 
will be tested with an implementation based on the presented 
concepts in this paper. 

4.1. Manufacturing scenario 

     This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is 
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper 
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.  
 

 

 
Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟� 

from buffer 𝑟𝑟𝑟𝑟�. 

    In Table 2, all configuration values needed for this scenario 
are shown.  

Table 2. Configuration values in reconfigurable layer (4). 

Agent Description Data type Name 

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔 

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣� 

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣� 

𝑟𝑟𝑟𝑟� Buffer interface  Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠� 

𝑟𝑟𝑟𝑟� Grip interface  Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠� 

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

    

 

 Author name / Procedia CIRP 00 (2019) 000–000  5 

     The part 𝑝𝑝𝑝𝑝  has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and three 
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are 
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable 
to lift the part using a robot tool.  𝑣𝑣𝑣𝑣�  describes a point 
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣� 
is a coordinate system used for painting.  
 

 

Fig. 5. Location variables for agents. 

 
     Location variables are defined locally on each agent for 
resources or parts. They must be translated into world 
coordinates before shared with other agents. In Fig. 5, the part 
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The 
variable 𝑣𝑣𝑣𝑣�  for gripping has to be translated before 
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This 
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built 
in functionality to translate coordinates before communicating 
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint 
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some 
point defined in the world coordinate system to be able to 
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations 
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as 
the robot utilizes for transportation. However, note that the 
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further, 
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can 
physically be attached to the surface of the resources, i.e., they 
are mechanically compatible, see Fig. 6. The interfaces are 
discussed more in detail in [13]. 
 

 

Fig. 6. Interfaces, defining mechanical compatibility between agents. 

     In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and 
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃�  communicates further with 𝑃𝑃𝑃𝑃� . This 
communication layout is shown in Fig. 7. 
 

 
Fig. 7. Agent communication layout. 

     A process plan 𝜋𝜋𝜋𝜋  is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The plan describes two steps 1) transport part 
to paint station 2) paint part. The physical resources for 
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 . 
Hence the system must find matching resources before 
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these 
resources, the following two steps will be generated: 
 

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.  
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�. 

 
     The robot is not part of the process plan since it is not known 
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with 
𝑃𝑃𝑃𝑃�. 

4.2. Experiment 

     A multi-agent system was developed to evaluate the 
proposed conceptual model. The system has the functionality 
to add new specialized co-acts in layer 3. By testing multiple 
manufacturing scenarios it was found that all of them could be 
described with the following specialized co-acts: 1) Request 
information, 2) Give information, 3) Book/Unbook skill, 4) 
Request skill to start and 5) Attach/Detach. All coordinates 
shared between agents are translated to world coordinates 
before communicated to other agents. 
     It is important to understand that these co-acts work for 
many scenarios but are limited to a specific type of system. In 
this case, they apply to some types of manufacturing systems 
including the one in the scenario described in this paper. In 
Table 3, each specialized co-act for our scenario is listed.  

Table 3. Specialized co-acts layer (3). 

Number Specialized co-act  

1 Request information 

Give information 

Book/Unbook skill  

Request skill to start 

Attach/Detach 

2 

3 

4 
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     The following list describes each communication step in the 
scenario using the previously defined specialized co-acts for 
agent communication. This list is limited to the perspective of 
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the 
following list are described in detail in Table 2. Each step 
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number 
presented in Table 3: 
 
• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 
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part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks 
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to 
world coordinates before sending it to 𝑝𝑝𝑝𝑝. 

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the 
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the language, but rather something the agents talk about using 
the language. Both systems need to understand this syntax to 
be able to know the meaning of “have”, what a skill is and the 
understanding of what a question is. This is especially of 
importance in agent systems where agents use a language more 
similar to humans languages.  

3.3. Network design 

     It can be debated whether the actual software for the agents 
should run close to the physical device, e.g., in a robot 
controller or if it should be running in a cloud service. The 
benefit of distributing software agents on multiple hardware is 
that it decreases the risk of single-point failure. However, it is 
common in multi agent-systems to still have a central point of 
connection, e.g., “yellow pages” for looking up other agents.  
     For Plug & Produce systems it would be desirable to have a 
standardized connection between the cyber and physical 
components, such as OPC UA developed by OPC Foundation 
[15]. Together with this an automatic detection of connected 
physical components and the corresponding agent in 
cyberspace is needed. In this paper, OPC UA was used for 
connecting all resource agents with their physical resources. 
This approach has previously been implemented and verified 
in [13]. 

3.4. Communication layers 

     Four layers of communication can be identified. The first 
two layers identified already exists in previous 
implementations, while layers three and four are new and part 
of the contribution of this paper, see Fig. 3. 
 

 
Fig. 3. The conceptual model with four layers, describing multi-agent 

communication. 

     The first layer (1) is a basic network protocol used to set up 
a channel for communication between agents, e.g., OPC UA or 
Data Distribution Service (DDS). The second layer (2) is the 
general communicative acts layer that is working for any type 
of agent system. Here, FIPA has developed a de facto standard 
describing how this could be implemented. The third layer (3) 
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden 
from the other layers. It only needs to be updated if an entirely 
new concept is introduced that the agents need to communicate 
about, e.g., if an assembly application was not considered when 
designing the agent code, it could be necessary to add a new 
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎� 
that they are now merged. However, most of the time any 
changes to a manufacturing system only affect layer four (4), 
the reconfigurable layer, e.g., when a new resource or new 

product is introduced the only task is to reconfigure the system 
on layer four. The specialized co-acts are implemented as static 
skills existing on each agent instance in the system. 

4. Implementation 

     This chapter evaluates the conceptual model described and 
introduced in this paper with a given scenario. The scenario 
will be tested with an implementation based on the presented 
concepts in this paper. 

4.1. Manufacturing scenario 

     This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is 
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper 
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.  
 

 

 
Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟� 

from buffer 𝑟𝑟𝑟𝑟�. 

    In Table 2, all configuration values needed for this scenario 
are shown.  

Table 2. Configuration values in reconfigurable layer (4). 

Agent Description Data type Name 

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣� 

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔 

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣� 

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣� 

𝑟𝑟𝑟𝑟� Buffer interface  Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�  

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠� 

𝑟𝑟𝑟𝑟� Grip interface  Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠� 

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 
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     The part 𝑝𝑝𝑝𝑝  has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and three 
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are 
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable 
to lift the part using a robot tool.  𝑣𝑣𝑣𝑣�  describes a point 
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣� 
is a coordinate system used for painting.  
 

 

Fig. 5. Location variables for agents. 

 
     Location variables are defined locally on each agent for 
resources or parts. They must be translated into world 
coordinates before shared with other agents. In Fig. 5, the part 
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The 
variable 𝑣𝑣𝑣𝑣�  for gripping has to be translated before 
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This 
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built 
in functionality to translate coordinates before communicating 
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint 
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some 
point defined in the world coordinate system to be able to 
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations 
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as 
the robot utilizes for transportation. However, note that the 
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further, 
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can 
physically be attached to the surface of the resources, i.e., they 
are mechanically compatible, see Fig. 6. The interfaces are 
discussed more in detail in [13]. 
 

 

Fig. 6. Interfaces, defining mechanical compatibility between agents. 

     In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and 
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃�  communicates further with 𝑃𝑃𝑃𝑃� . This 
communication layout is shown in Fig. 7. 
 

 
Fig. 7. Agent communication layout. 

     A process plan 𝜋𝜋𝜋𝜋  is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The plan describes two steps 1) transport part 
to paint station 2) paint part. The physical resources for 
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 . 
Hence the system must find matching resources before 
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these 
resources, the following two steps will be generated: 
 

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.  
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�. 

 
     The robot is not part of the process plan since it is not known 
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with 
𝑃𝑃𝑃𝑃�. 

4.2. Experiment 

     A multi-agent system was developed to evaluate the 
proposed conceptual model. The system has the functionality 
to add new specialized co-acts in layer 3. By testing multiple 
manufacturing scenarios it was found that all of them could be 
described with the following specialized co-acts: 1) Request 
information, 2) Give information, 3) Book/Unbook skill, 4) 
Request skill to start and 5) Attach/Detach. All coordinates 
shared between agents are translated to world coordinates 
before communicated to other agents. 
     It is important to understand that these co-acts work for 
many scenarios but are limited to a specific type of system. In 
this case, they apply to some types of manufacturing systems 
including the one in the scenario described in this paper. In 
Table 3, each specialized co-act for our scenario is listed.  

Table 3. Specialized co-acts layer (3). 

Number Specialized co-act  

1 Request information 

Give information 

Book/Unbook skill  

Request skill to start 

Attach/Detach 

2 

3 

4 

5 
 

   

  
     The following list describes each communication step in the 
scenario using the previously defined specialized co-acts for 
agent communication. This list is limited to the perspective of 
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the 
following list are described in detail in Table 2. Each step 
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number 
presented in Table 3: 
 
• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The 
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is 
therefore booked by 𝑝𝑝𝑝𝑝. 

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks 
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to 
world coordinates before sending it to 𝑝𝑝𝑝𝑝. 

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the 

𝑃𝑃𝑃𝑃� 

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣� 𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑃𝑃𝑃𝑃� 

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
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𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃� 𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
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variable 𝑣𝑣𝑣𝑣�. Resource 𝑟𝑟𝑟𝑟� translates 𝑣𝑣𝑣𝑣� to world coordinates 
before sending it to 𝑝𝑝𝑝𝑝.  

• (2) 𝑝𝑝𝑝𝑝 uses its grip location 𝑣𝑣𝑣𝑣� to calculate the pick and 
place location to move between 𝑟𝑟𝑟𝑟� and 𝑟𝑟𝑟𝑟�. Then these are 
sent to the gripper 𝑟𝑟𝑟𝑟�.  

• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠� 
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟� 
• (5) 𝑝𝑝𝑝𝑝 tells 𝑟𝑟𝑟𝑟� that 𝑝𝑝𝑝𝑝 is attached to 𝑟𝑟𝑟𝑟� 
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟� 
• (2) 𝑝𝑝𝑝𝑝 gives the variable data 𝑣𝑣𝑣𝑣�  to 𝑟𝑟𝑟𝑟�.  
• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠� 

5. Conclusion 

     In this paper, a conceptual model was presented that divides 
agent communication into four layers. The network layer (1), 
General co-acts layer (2), Specialized co-acts layer (3) and a 
Reconfigurable layer (4). This helps to separate the logic for 
general communication (layer 2) from the specialized 
communication in this paper a manufacturing system (layer 3). 
The reconfigurable layer (4) makes it possible to change a 
manufacturing system without reprogramming. A multi-agent 
system was developed and used to evaluate the conceptual 
model.   
      Two types of semantics were identified. The static 
semantics (a) were hardcoded into the specialized co-acts, layer 
three in the conceptual model. The reconfigurable semantics 
(b), i.e., interfaces, skills, and variables were configured in the 
reconfigurable layer (layer four). By only reconfiguring the 
agents, it is possible to change how they use the variables 
shared with other agents. Hence, we change the semantics in 
the system without reprogramming or changing anything in 
layer three (specialized co-acts layer). Based on this 
conclusion, the best practice is to place semantics that often 
changes their meaning in layer four (reconfigurable layer).        
     Further, the implementation shows that it is possible to limit 
the number of choices one must make to implement a multi-
agent system for Plug & Produce by customizing layer three in 
our model for a specific type of application. In this paper, the 
scenario was customized for manufacturing systems. Hence, 
one implementation of layer three can be used for many 
scenarios with different configurations in layer four. This 
means that it is in many cases possible to work only in layer 
four when implementing a multi-agent system for a new 
scenario. This helps the industry by hiding the complexity of 
agent design and agent communication. Thus, making it 
possible to avoid reprogramming and its related educational 
requirements on personnel. Further, the flexibility of using a 
Plug & Produce system increases the adaption speed for adding 
new products and resources. 
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variable 𝑣𝑣𝑣𝑣�. Resource 𝑟𝑟𝑟𝑟� translates 𝑣𝑣𝑣𝑣� to world coordinates 
before sending it to 𝑝𝑝𝑝𝑝.  

• (2) 𝑝𝑝𝑝𝑝 uses its grip location 𝑣𝑣𝑣𝑣� to calculate the pick and 
place location to move between 𝑟𝑟𝑟𝑟� and 𝑟𝑟𝑟𝑟�. Then these are 
sent to the gripper 𝑟𝑟𝑟𝑟�.  

• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠� 
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟� 
• (5) 𝑝𝑝𝑝𝑝 tells 𝑟𝑟𝑟𝑟� that 𝑝𝑝𝑝𝑝 is attached to 𝑟𝑟𝑟𝑟� 
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟� 
• (2) 𝑝𝑝𝑝𝑝 gives the variable data 𝑣𝑣𝑣𝑣�  to 𝑟𝑟𝑟𝑟�.  
• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠� 

5. Conclusion 

     In this paper, a conceptual model was presented that divides 
agent communication into four layers. The network layer (1), 
General co-acts layer (2), Specialized co-acts layer (3) and a 
Reconfigurable layer (4). This helps to separate the logic for 
general communication (layer 2) from the specialized 
communication in this paper a manufacturing system (layer 3). 
The reconfigurable layer (4) makes it possible to change a 
manufacturing system without reprogramming. A multi-agent 
system was developed and used to evaluate the conceptual 
model.   
      Two types of semantics were identified. The static 
semantics (a) were hardcoded into the specialized co-acts, layer 
three in the conceptual model. The reconfigurable semantics 
(b), i.e., interfaces, skills, and variables were configured in the 
reconfigurable layer (layer four). By only reconfiguring the 
agents, it is possible to change how they use the variables 
shared with other agents. Hence, we change the semantics in 
the system without reprogramming or changing anything in 
layer three (specialized co-acts layer). Based on this 
conclusion, the best practice is to place semantics that often 
changes their meaning in layer four (reconfigurable layer).        
     Further, the implementation shows that it is possible to limit 
the number of choices one must make to implement a multi-
agent system for Plug & Produce by customizing layer three in 
our model for a specific type of application. In this paper, the 
scenario was customized for manufacturing systems. Hence, 
one implementation of layer three can be used for many 
scenarios with different configurations in layer four. This 
means that it is in many cases possible to work only in layer 
four when implementing a multi-agent system for a new 
scenario. This helps the industry by hiding the complexity of 
agent design and agent communication. Thus, making it 
possible to avoid reprogramming and its related educational 
requirements on personnel. Further, the flexibility of using a 
Plug & Produce system increases the adaption speed for adding 
new products and resources. 
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Abstract. Multi-agent technology, used for implementing Plug & Produce systems 
have many proposed benefits for fast adaption of manufacturing systems. However, 
still today multi-agent technology is not ready for the industry, due to the lack of 
mature supporting tools and guidelines. The result is that today, multi-agent systems 
are more complicated and time-consuming to use than traditional approaches. This 
hides their true benefits. In this paper, a new method for configuring agents is 
presented that includes automated deployment to manufacturing systems and by its 
flexible design opens the possibility to connect many other supporting tools when 
needed. A configuration tool is also designed that works with the proposed method 
by connecting to an agent configuration database. The overall aim of the method is 
to simplify the steps taken for adapting a manufacturing system for new parts and 
resources. 

Keywords. Plug & Produce, Configuration, Multi-Agent System, Deployment, 
Industry 4.0 

1. Introduction 

For many years, the demand for low volume production and customization has 
increased [1]. It is costly to rebuild a manufacturing system for each new type of part to 
be produced, forcing many manufacturing processes to still be performed manually. The 
reason that it is difficult to change automated manufacturing systems is that they usually 
have rigid control solutions that are difficult to change, due to the lack of abstraction of 
logic and encapsulation of code. Programming of a resource such as a robot takes up a 
huge amount of time [2], limiting the possibilities to quickly add new product designs to 
the system. Further, in traditional systems with central control, there typically exists 
strong dependencies between resources. For example, it is not always easy to change the 
code of one industrial robot without changing the code also in surrounding resources 
such as a PLC or another robot. This makes it difficult to write the local code for one 
resource without considering the specific manufacturing system where that resource is 
to be used. This is a problem when implementing Plug & Produce systems, where 
resources should be easy to connect/disconnect and even have the possibility to be moved 
between different manufacturing areas or even plants.  

Plug & Produce is a concept where resources are connected using standardized 
hardware connectors and are automatically included in the manufacturing [3]. One 
approach to implement the controller in a Plug & Produce system is to utilize multi-agent 
technology that was described by Wooldridge et.al. [4]. Multi-agent systems simplify the 
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design of manufacturing system controllers by encapsulating each resource logic in the 
system. This is done by creating a separate agent (controller) for each resource and part 
in the system. Each agent can communicate with each other to reach manufacturing goals 
through a standardised communication interface. Hence, the agent for each resource is 
independent of logic and signals of other resources and can act independently through 
negotiation. This makes it possible to adapt to new types of parts and resources in 
minutes rather than days or months as in conventional systems with hierarchical central 
control. The reason that it is faster to adopt is that a resource such as an industrial robot 
only needs to know its own skills, e.g., how to perform transportation of a robot tool. 
While the tool, such as a robot gripper only need to know how to transport parts. 
Dependencies between the robot and the tool, in this case, is only based on demands of 
skills and are not hardcoded in the control logic itself.  In this way, logic is completely 
isolated into carefully defined resources with different skills and parts with 
manufacturing goals. However, still today such a flexible system is not used in the 
industry due to a lack of mature tools and platforms [5], [6]. Prototypes has been 
developed but they are not used in large-scale production [7].   

In existing multi-agent frameworks such as the Java Agent Development Framework 
(JADE), each agent still has individual tailormade control code, that is manually written. 
The idea is that the programmer writes the agent control code in such a way that the 
agents automatically communicate and negotiate to make the dependencies between 
them limited since they can find each other without for example mapping specific signals 
to static addresses. This makes it easier to add new resources since they do not have 
strong dependencies on surrounding resources. However, the control code still has to be 
written manually to create or change the local behaviour of an agent.  

To avoid programming of agents, one approach presented in [8] proposes to write 
one single agent control code and then reuse the exact same agent code for all agents. 
The unique and local behaviour of each agent is given through configurations. In contrast 
to frameworks such as JADE, the one presented in [8] have predefined strategies for 
negotiating and communicating among agents, making it easier to introduce new agents. 
Our paper is a continuation of this agent framework presented in [8]. Hence, agents in 
this paper are instantiated based on one single agent control code and are given individual 
configuration data. The approach that one single agent code is developed and never 
changed drastically limits the need for a deeper understanding of the internal control 
logic since communication and negotiation are standardized and handled automatically 
by the agents. However, this requires a standardized configuration ontology as well as a 
special-purpose configuration tool that can be used to define the necessary configuration 
data for each individual agent.  

In this paper, such a tool for configuring agents is proposed and evaluated. This 
paper also investigates how the configuration tool can include functionality for 
automated deployment to physical manufacturing systems. Further, connections with 
other supporting tools, such as extracting data from robotic simulations and product 
designs are investigated. 

2. Configurable Agents 

As described earlier, one approach to implement a Plug & Produce system is to 
create a multi-agent system, that consists of multiple agents that are communicating with 
each other. This means that physical objects, such as resources and parts have a 
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corresponding agent (controller). If data should be synchronized between an agent and 
its corresponding physical object, they should be connected. The separation of cyber and 
physical components is identical to the concept of designing a Cyber-Physical System 
such as the one presented in [9]. 

Using agents limits the direct communication between physical objects and instead 
forces all resources to communicate through their agents using standardized 
communication interfaces. This completely removes the need for defining specific 
network details, such as addresses for communication between resources. Standards for 
implementing agents exist today. Some of these standards are developed by the 
Foundation for Intelligent Physical Agents (FIPA), which is an IEEE organization. They 
specify an agent communication language, specified in the specification: FIPA Agent 
Communication Language (ACL) [10]. Further, the FIPA Agent Management 
Specification [11] describes the general guidelines on how to design an agent system. To 
develop an agent system that follows FIPA it is common to use JADE. This is an agent 
framework that implements the agent standards from FIPA. However, JADE and FIPA 
are only considering agents in general, thus no information or supporting tools for the 
manufacturing industry are included today. Configuration tools are not considered in 
JADE, since the approach is mainly to design agents by manual coding in the JAVA 
language.  

There currently is a lack of standardized agent configuration formats since many 
continue to write agent code manually. However, some initiatives exist, such as the one 
presented in [8] that specifies that an agent’s configuration should consist of variables, 
goals, skills, process plans, and interfaces. Further, the agent itself is defined and 
specified as a part or a resource. This is shown in Figure.  1, which is based on the 
ontology presented in [8].  

 
Figure.  1. Agent classes for defining an agent configuration. 

 In our method for configuring agents, these classes in Figure.  1 are used but 
extended with more details such as using pre-conditions on goals. Each of the agent 
classes is regarded as an entity that has a unique id, name, description, and type. The 
detailed description of the configuration format that will be considered in the rest of this 
paper is presented in the following sections: 

Variable: A variable can be any data that is needed such as pick and place positions, 
tool specifications such as weight, or the speed of a motor. It could also be more 
advanced data such as a specific path for grinding with a robot. In that case, the path is 
not configured for the robot but instead configured as a path locally defined on the part 
agent.  
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design of manufacturing system controllers by encapsulating each resource logic in the 
system. This is done by creating a separate agent (controller) for each resource and part 
in the system. Each agent can communicate with each other to reach manufacturing goals 
through a standardised communication interface. Hence, the agent for each resource is 
independent of logic and signals of other resources and can act independently through 
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minutes rather than days or months as in conventional systems with hierarchical central 
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(JADE), each agent still has individual tailormade control code, that is manually written. 
The idea is that the programmer writes the agent control code in such a way that the 
agents automatically communicate and negotiate to make the dependencies between 
them limited since they can find each other without for example mapping specific signals 
to static addresses. This makes it easier to add new resources since they do not have 
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special-purpose configuration tool that can be used to define the necessary configuration 
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automated deployment to physical manufacturing systems. Further, connections with 
other supporting tools, such as extracting data from robotic simulations and product 
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physical components is identical to the concept of designing a Cyber-Physical System 
such as the one presented in [9]. 

Using agents limits the direct communication between physical objects and instead 
forces all resources to communicate through their agents using standardized 
communication interfaces. This completely removes the need for defining specific 
network details, such as addresses for communication between resources. Standards for 
implementing agents exist today. Some of these standards are developed by the 
Foundation for Intelligent Physical Agents (FIPA), which is an IEEE organization. They 
specify an agent communication language, specified in the specification: FIPA Agent 
Communication Language (ACL) [10]. Further, the FIPA Agent Management 
Specification [11] describes the general guidelines on how to design an agent system. To 
develop an agent system that follows FIPA it is common to use JADE. This is an agent 
framework that implements the agent standards from FIPA. However, JADE and FIPA 
are only considering agents in general, thus no information or supporting tools for the 
manufacturing industry are included today. Configuration tools are not considered in 
JADE, since the approach is mainly to design agents by manual coding in the JAVA 
language.  

There currently is a lack of standardized agent configuration formats since many 
continue to write agent code manually. However, some initiatives exist, such as the one 
presented in [8] that specifies that an agent’s configuration should consist of variables, 
goals, skills, process plans, and interfaces. Further, the agent itself is defined and 
specified as a part or a resource. This is shown in Figure.  1, which is based on the 
ontology presented in [8].  

 
Figure.  1. Agent classes for defining an agent configuration. 

 In our method for configuring agents, these classes in Figure.  1 are used but 
extended with more details such as using pre-conditions on goals. Each of the agent 
classes is regarded as an entity that has a unique id, name, description, and type. The 
detailed description of the configuration format that will be considered in the rest of this 
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Goal: Parts have goals that define what should happen to the part in the 
manufacturing system. A goal can for example be to drill a hole with a specific diameter 
or to grind a part to get soft edges. Goals are described with pre-conditions and can run 
in parallel if the pre-conditions allow this. 

Skill: Resources in the system has skills that describe a specific capability. This can 
for example be a skill to transport a part, paint a part with colour, or store a part in a 
buffer. Skills are always defined on interfaces in order to organize them and ensure that 
hardware and software compatibility is maintained between connected agents. Implying 
that a skill can only be utilized by agents that have compatible interfaces. 

Process Plan: A process plan defines how to solve a specific goal or to execute a 
skill. It is described as a recipe with demanded resource skills without referring to 
specific resources. The syntax is similar to a high-level programming language such as 
Structured Text (ST). However, the idea here is to not include advanced logic but to keep 
a strong abstraction from the details of the control logic. The process plans for goals 
typically only have a sequence of skills defined, while the process plans for running a 
skill includes skills as well as some local abilities such as setting a local variable to true.  

Interface: An interface is a point of interaction between two agents and is used for 
agents to find each other. The interfaces are searchable in the agent network and can be 
used for collaboration. An interface could, for instance, act as the boundary between a 
robot gripper and a robot. Both the gripper and the robot need interfaces that are 
compatible in order to be connected. In that case, the robot presents on its interface, a 
skill with the functionality to transport the gripper. In this way, the gripper would never 
request to be attached to a resource that cannot transport or that is not physically 
compatible with the gripper. 

There are many approaches to format such configuration data explained above. 
General data formats exist such as XML, JSON and AutomationML. Extensible Markup 
Language (XML) is a data format that supports objects and lists. Similarly, JavaScript 
Object Notation (JSON) can be used to structure the same data in a slightly different way. 
AutomationML is a standardized storage format for manufacturing systems, that was 
presented at the Hannover fair in 2008 [12]. It is based on XML and was designed to be 
used with engineering tools for manufacturing systems. AutomationML uses the object-
oriented paradigm in order to describe plant components. It can store the plant topology, 
geometry, kinematic, behaviour description and references/relations. For this paper, 
JSON has been considered due to its multiple existing libraries for implementation with 
several programming languages and platforms. JSON is a format that is also currently 
implemented in various industrial devices, such as the “Robot Web Services” for ABB 
industrial robots. It also tends to be more lightweight as a format than XML, due to less 
overhead in its data structure. Because of this, it is a bit more difficult to read by humans 
than XML. However, this should not be a problem since the aim of this paper is to use a 
configuration tool instead of editing the data directly. Specifically, we have considered 
JSON RPC, which is a remote procedure call protocol for sending JSON data between 
different components in the system. Note that, since the configuration classes presented 
earlier are used for the configurations the JSON format must be combined with these 
configuration classes to work properly. 

To work directly in text-based formats is time-consuming, complex and exposed to 
syntax mistakes when manually creating and handling the configuration parameters. 
General tools for editing these formats exist, such as the “AutomationML Editor”, 
Microsoft’s “XML Notepad” and Altova’s “XMLSpy”, which can edit both XML and 
JSON. The problem with these tools is that they do not consider the agent configuration 
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classes presented earlier in this paper. It is however possible to include them in such tools 
as a class tree. But still, these tools do not give enough support to the user since they are 
not specifically made for use with the agent configurations. Instead, a configuration tool 
should give the user support and simplify the understanding of the agent’s local 
configurations and their possible interactions and compatibility with each other. The 
configuration tool also needs to help the user to avoid syntax errors by verifying entered 
data directly when configuring. This is limited if not impossible to do in a general editing 
tool for these data formats. Further, in the considered agent system, all configurations 
are stored in one single database that the configuration tool should edit directly. 
Otherwise, it would be required to manually copy configuration files from the supporting 
tools to the agents when instantiated. However, in the existing editors, the 
synchronization with such an agent configuration database is not implemented. The 
reason for choosing a central database to store the configurations is to enable the 
integration of other software such as simulation tools which support the extraction of 
data that otherwise has to be manually copied between software. It also simplifies the 
deployment of configurations to agents and enables the possibility to work 
simultaneously on editing the agent configurations. 

Thus, this paper aims to develop a configuration tool that is specifically made for 
the agent configuration format presented earlier in this chapter. All configuration data 
defined in the developed configuration tool is then placed in a JSON structure. This can 
then be communicated over JSON RPC to other devices. The approach is to use a central 
database, in our case an SQL database, that contains all configuration data needed for the 
complete manufacturing system. The configuration tool connects to this central database 
over the JSON RPC and downloads the latest configuration as JSON objects and uploads 
the changes made in the configuration tool. This will enable multiple users to work with 
the configurations simultaneously. 

3. Proposed Configuration Method 

The configuration classes shown in Figure.  1 needs to be implemented in all the 
agents, the configuration tool and in the data storage format for agent configurations. 
Only then is it possible to share a common knowledge about the meaning, i.e. ontology, 
of the configuration data. When a resource or part is added to the manufacturing system, 
an agent is instantiated, running in a cloud service. As described earlier, there is 
sometimes data to be controlled by the agent, e.g., sensor input or start signals to a motor. 
In that case, a network connection is established automatically, based on the 
configuration, between the agent in the cloud and the hardware in the added resource or 
part. A similar concept of agents running in a cloud service is presented in [13], where 
the agents are instantiated based on configurations in a configuration database. The 
correct configuration is chosen based on the agent type presented by the added resource 
or part. 

3.1. Configuration tool design 

The configuration tool presented in this paper is based on a standalone graphical 
HMI to assist the configuration. Using the proposed configuration tool, it is possible to 
focus on one single resource or part at a time. The work order for the configuration tool 
presented in this paper is that resource agents are configured first with their related 
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a strong abstraction from the details of the control logic. The process plans for goals 
typically only have a sequence of skills defined, while the process plans for running a 
skill includes skills as well as some local abilities such as setting a local variable to true.  

Interface: An interface is a point of interaction between two agents and is used for 
agents to find each other. The interfaces are searchable in the agent network and can be 
used for collaboration. An interface could, for instance, act as the boundary between a 
robot gripper and a robot. Both the gripper and the robot need interfaces that are 
compatible in order to be connected. In that case, the robot presents on its interface, a 
skill with the functionality to transport the gripper. In this way, the gripper would never 
request to be attached to a resource that cannot transport or that is not physically 
compatible with the gripper. 

There are many approaches to format such configuration data explained above. 
General data formats exist such as XML, JSON and AutomationML. Extensible Markup 
Language (XML) is a data format that supports objects and lists. Similarly, JavaScript 
Object Notation (JSON) can be used to structure the same data in a slightly different way. 
AutomationML is a standardized storage format for manufacturing systems, that was 
presented at the Hannover fair in 2008 [12]. It is based on XML and was designed to be 
used with engineering tools for manufacturing systems. AutomationML uses the object-
oriented paradigm in order to describe plant components. It can store the plant topology, 
geometry, kinematic, behaviour description and references/relations. For this paper, 
JSON has been considered due to its multiple existing libraries for implementation with 
several programming languages and platforms. JSON is a format that is also currently 
implemented in various industrial devices, such as the “Robot Web Services” for ABB 
industrial robots. It also tends to be more lightweight as a format than XML, due to less 
overhead in its data structure. Because of this, it is a bit more difficult to read by humans 
than XML. However, this should not be a problem since the aim of this paper is to use a 
configuration tool instead of editing the data directly. Specifically, we have considered 
JSON RPC, which is a remote procedure call protocol for sending JSON data between 
different components in the system. Note that, since the configuration classes presented 
earlier are used for the configurations the JSON format must be combined with these 
configuration classes to work properly. 

To work directly in text-based formats is time-consuming, complex and exposed to 
syntax mistakes when manually creating and handling the configuration parameters. 
General tools for editing these formats exist, such as the “AutomationML Editor”, 
Microsoft’s “XML Notepad” and Altova’s “XMLSpy”, which can edit both XML and 
JSON. The problem with these tools is that they do not consider the agent configuration 
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classes presented earlier in this paper. It is however possible to include them in such tools 
as a class tree. But still, these tools do not give enough support to the user since they are 
not specifically made for use with the agent configurations. Instead, a configuration tool 
should give the user support and simplify the understanding of the agent’s local 
configurations and their possible interactions and compatibility with each other. The 
configuration tool also needs to help the user to avoid syntax errors by verifying entered 
data directly when configuring. This is limited if not impossible to do in a general editing 
tool for these data formats. Further, in the considered agent system, all configurations 
are stored in one single database that the configuration tool should edit directly. 
Otherwise, it would be required to manually copy configuration files from the supporting 
tools to the agents when instantiated. However, in the existing editors, the 
synchronization with such an agent configuration database is not implemented. The 
reason for choosing a central database to store the configurations is to enable the 
integration of other software such as simulation tools which support the extraction of 
data that otherwise has to be manually copied between software. It also simplifies the 
deployment of configurations to agents and enables the possibility to work 
simultaneously on editing the agent configurations. 

Thus, this paper aims to develop a configuration tool that is specifically made for 
the agent configuration format presented earlier in this chapter. All configuration data 
defined in the developed configuration tool is then placed in a JSON structure. This can 
then be communicated over JSON RPC to other devices. The approach is to use a central 
database, in our case an SQL database, that contains all configuration data needed for the 
complete manufacturing system. The configuration tool connects to this central database 
over the JSON RPC and downloads the latest configuration as JSON objects and uploads 
the changes made in the configuration tool. This will enable multiple users to work with 
the configurations simultaneously. 

3. Proposed Configuration Method 

The configuration classes shown in Figure.  1 needs to be implemented in all the 
agents, the configuration tool and in the data storage format for agent configurations. 
Only then is it possible to share a common knowledge about the meaning, i.e. ontology, 
of the configuration data. When a resource or part is added to the manufacturing system, 
an agent is instantiated, running in a cloud service. As described earlier, there is 
sometimes data to be controlled by the agent, e.g., sensor input or start signals to a motor. 
In that case, a network connection is established automatically, based on the 
configuration, between the agent in the cloud and the hardware in the added resource or 
part. A similar concept of agents running in a cloud service is presented in [13], where 
the agents are instantiated based on configurations in a configuration database. The 
correct configuration is chosen based on the agent type presented by the added resource 
or part. 

3.1. Configuration tool design 

The configuration tool presented in this paper is based on a standalone graphical 
HMI to assist the configuration. Using the proposed configuration tool, it is possible to 
focus on one single resource or part at a time. The work order for the configuration tool 
presented in this paper is that resource agents are configured first with their related 
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interfaces and skills. Then the part agents and process plans are defined. Thus, it should 
be possible to make a list of available skills and variables on the resources and to drag 
and drop those onto the process plans and part configurations. This removes the need for 
the user to remember all variables and skill names of the resources. Descriptions can also 
be given on configuration parameters, describing with a user-friendly message what they 
do. For example, such a message could describe what a certain skill on a resource can 
achieve if executed. This is a great way to connect multiple users, working with 
configuration parameters for the same manufacturing system. The configuration tool also 
needs to assist the user with warnings when for example a resource with specific skills 
is missing in the configuration database. The proposed configuration tool presents 
several views to the user. Each of these views can also edit its related entity details, i.e., 
its id, name, description, and type. The views are created based on the classes described 
in Figure.  1. Thus, the views are Main view, Agent view, Interface view, Goal view, 
Process plan view, Skill view, and Variable view. Each of these views could for example 
describe an individual window in the configuration tool.  

3.2. Database for storage  

A database was chosen for storing the agent configurations. This enables multiple 
users to edit the data simultaneously. It also makes it possible to automate the deployment 
of agent configurations directly to a real manufacturing system. It is in some cases even 
possible to deploy updates while the manufacturing system is online. Imagine a new part 
with a new agent configuration. It is then possible to deploy that agent configuration 
directly to the configuration database used in the manufacturing system. When the new 
part is entering the manufacturing system it gets a corresponding agent associated with 
it, using the new configuration added. 

 The JSON format is used for communicating with the database, see Figure.  2. This 
means that a software is developed to convert between JSON and a database format, such 
as SQL queries in the case of using an SQL database. The main aim of not using for 
example SQL queries directly from the configuration tool is to avoid knowing anything 
about the database format or type. This makes it possible to completely change the 
database structure as long as the software attached to the database can convert it to JSON 
objects. On the configuration tool, there is also a software that can convert JSON to 
objects in the configuration tool. This can, for instance, be a JAVA object, in the case of 
using that programming language. This makes it easier to extend the agent configuration 
format in the future if needed.  

 

 
Figure.  2. This figure shows the typical information flow for committing updates from the configuration tool 
to the agents through the configuration database. 

When an agent is instantiated using the standardized code for all agents, then it 
downloads an agent configuration from the database based on some information about 
what part or resource it should represent. All agents start by requesting their 
configuration from the database by a JSON RPC call. The configuration is then 
transferred to the agent as a JSON structure. Hence, the reason for using the database is 
to automate the deployment of new configurations and to share the configurations 
directly with other users of the configuration tool, enabling the possibility for 
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collaborating in projects to develop an entire manufacturing systems configuration. We 
have now only considered a single database, meaning that we are changing the 
manufacturing system directly when changes are applied. Thus, in the future, it could be 
useful to make development copies of the entire system that could be used and tested in 
simulations before deploying to the online manufacturing system.  

3.3. Connecting to other supporting tools 

Many parameters that should be entered into a configuration tool are defined or 
calculated in other software such as 3D CAD tools or robotic simulation tools. This 
makes it necessary to develop a bridge between those tools and the agent configuration 
database. Such an approach is presented in Figure.  3, where the arrows show the 
information flow for updates made in the configurations. However, it should be noted that 
information can be accessed from the database by all software. This is needed when 
editing an already existing agent configuration, nonetheless, updates are always 
committed in the direction of the arrows. 

 

 

Figure.  3. This figure shows the agent configuration tool together with some additional supporting tools 1,2 
and 3. All these four tools can be connected to the agent configuration database and automatically deployed 
to agents in the manufacturing system.  

Product design 1): As an example, for a part designed in a CAD tool, it would be 
useful if all specifications such as the definition of a hole with a specific diameter would 
automatically be translated into a manufacturing goal for the part agent. This requires the 
CAD tool to be extended with an add-on feature that can identify such goals and 
synchronize them to the configuration database. In the configuration database there exist 
multiple process plans designed for solving specific types of manufacturing goals. Thus, 
the addon feature should fetch the goal names for these process plans as a list and present 
them in the CAD tool. The user will then manually add goals from that list directly on 
the part design. When the user adds such a goal, then it should also be visually reflected 
on the part design, where the user then would see a hole. This will give the user an 
experience similar to that of working in any other traditional CAD project. The main 
difference from using a regular CAD tool will be the limitations to only using predefined 
goals. However, this can in some cases completely remove all manual steps for 
translating and preparing the part design for manufacturing. Only when a completely 
new part is designed, details must be defined manually in the agent configuration tool. 
This is not always needed if smaller part changes are made in a CAD tool such as adding 
a goal. 

Robot simulation 2): Similarly, other parameters such as pick and place locations on 
a table or a location in a buffer station are usually defined on either a physical robot or 
in a robotics simulation tool. One example of such a tool is RobotStudio, which is a robot 
simulation software from ABB where robot programs can be developed and tested offline 
[14]. However, when using the proposed concept of agents, then the robot should not 
have such a standard robot program and act as a central controller. Instead, the control is 
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interfaces and skills. Then the part agents and process plans are defined. Thus, it should 
be possible to make a list of available skills and variables on the resources and to drag 
and drop those onto the process plans and part configurations. This removes the need for 
the user to remember all variables and skill names of the resources. Descriptions can also 
be given on configuration parameters, describing with a user-friendly message what they 
do. For example, such a message could describe what a certain skill on a resource can 
achieve if executed. This is a great way to connect multiple users, working with 
configuration parameters for the same manufacturing system. The configuration tool also 
needs to assist the user with warnings when for example a resource with specific skills 
is missing in the configuration database. The proposed configuration tool presents 
several views to the user. Each of these views can also edit its related entity details, i.e., 
its id, name, description, and type. The views are created based on the classes described 
in Figure.  1. Thus, the views are Main view, Agent view, Interface view, Goal view, 
Process plan view, Skill view, and Variable view. Each of these views could for example 
describe an individual window in the configuration tool.  

3.2. Database for storage  

A database was chosen for storing the agent configurations. This enables multiple 
users to edit the data simultaneously. It also makes it possible to automate the deployment 
of agent configurations directly to a real manufacturing system. It is in some cases even 
possible to deploy updates while the manufacturing system is online. Imagine a new part 
with a new agent configuration. It is then possible to deploy that agent configuration 
directly to the configuration database used in the manufacturing system. When the new 
part is entering the manufacturing system it gets a corresponding agent associated with 
it, using the new configuration added. 

 The JSON format is used for communicating with the database, see Figure.  2. This 
means that a software is developed to convert between JSON and a database format, such 
as SQL queries in the case of using an SQL database. The main aim of not using for 
example SQL queries directly from the configuration tool is to avoid knowing anything 
about the database format or type. This makes it possible to completely change the 
database structure as long as the software attached to the database can convert it to JSON 
objects. On the configuration tool, there is also a software that can convert JSON to 
objects in the configuration tool. This can, for instance, be a JAVA object, in the case of 
using that programming language. This makes it easier to extend the agent configuration 
format in the future if needed.  

 

 
Figure.  2. This figure shows the typical information flow for committing updates from the configuration tool 
to the agents through the configuration database. 

When an agent is instantiated using the standardized code for all agents, then it 
downloads an agent configuration from the database based on some information about 
what part or resource it should represent. All agents start by requesting their 
configuration from the database by a JSON RPC call. The configuration is then 
transferred to the agent as a JSON structure. Hence, the reason for using the database is 
to automate the deployment of new configurations and to share the configurations 
directly with other users of the configuration tool, enabling the possibility for 
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collaborating in projects to develop an entire manufacturing systems configuration. We 
have now only considered a single database, meaning that we are changing the 
manufacturing system directly when changes are applied. Thus, in the future, it could be 
useful to make development copies of the entire system that could be used and tested in 
simulations before deploying to the online manufacturing system.  

3.3. Connecting to other supporting tools 

Many parameters that should be entered into a configuration tool are defined or 
calculated in other software such as 3D CAD tools or robotic simulation tools. This 
makes it necessary to develop a bridge between those tools and the agent configuration 
database. Such an approach is presented in Figure.  3, where the arrows show the 
information flow for updates made in the configurations. However, it should be noted that 
information can be accessed from the database by all software. This is needed when 
editing an already existing agent configuration, nonetheless, updates are always 
committed in the direction of the arrows. 

 

 

Figure.  3. This figure shows the agent configuration tool together with some additional supporting tools 1,2 
and 3. All these four tools can be connected to the agent configuration database and automatically deployed 
to agents in the manufacturing system.  

Product design 1): As an example, for a part designed in a CAD tool, it would be 
useful if all specifications such as the definition of a hole with a specific diameter would 
automatically be translated into a manufacturing goal for the part agent. This requires the 
CAD tool to be extended with an add-on feature that can identify such goals and 
synchronize them to the configuration database. In the configuration database there exist 
multiple process plans designed for solving specific types of manufacturing goals. Thus, 
the addon feature should fetch the goal names for these process plans as a list and present 
them in the CAD tool. The user will then manually add goals from that list directly on 
the part design. When the user adds such a goal, then it should also be visually reflected 
on the part design, where the user then would see a hole. This will give the user an 
experience similar to that of working in any other traditional CAD project. The main 
difference from using a regular CAD tool will be the limitations to only using predefined 
goals. However, this can in some cases completely remove all manual steps for 
translating and preparing the part design for manufacturing. Only when a completely 
new part is designed, details must be defined manually in the agent configuration tool. 
This is not always needed if smaller part changes are made in a CAD tool such as adding 
a goal. 

Robot simulation 2): Similarly, other parameters such as pick and place locations on 
a table or a location in a buffer station are usually defined on either a physical robot or 
in a robotics simulation tool. One example of such a tool is RobotStudio, which is a robot 
simulation software from ABB where robot programs can be developed and tested offline 
[14]. However, when using the proposed concept of agents, then the robot should not 
have such a standard robot program and act as a central controller. Instead, the control is 
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a shared task between each configurable agent in the system that the positions can be 
used on. For example, a part has local target positions that describe a suitable location 
for gripping it with a robot gripper or placing it on a buffer. These positions are related 
to the parts local coordinate system. The functions for translating between coordinate 
systems are included in all agents (resources and parts) and used when they communicate. 
A software should be developed that can identify which agent each target position should 
be attached with in the configuration database. 

Robot teaching 3):  It is also possible to create a software to extract positions directly 
from a physical robot, by teaching points and selecting which agent they belong to. This 
would require a user-friendly HMI used by the operator that manually moves the robot 
and stores target positions to the configuration database.  

4. Evaluation 

This section introduces a manufacturing scenario where a part should get painted 
and then leave the manufacturing system. All configuration parameters needed for this 
scenario are defined in this chapter. The proposed configuration tool is implemented in 
the C# language as a form application. To evaluate the implemented configuration tool, 
all parameters from the described scenario are entered into it. 

The scenario, presented in this section, is used to evaluate the configuration tool. It 
includes one part � with a goal � = ���������. The part is placed at the input position 
���������� on the conveyor �� and is moved to the paint station �� by conveyors ��, �� 
and the robot ��, see Figure.  4. After the part has been painted with the correct colour, it 
should be transported by the robot �� to the unloading station ��. Each conveyor has two 
position variables, describing where the part can be located: ����������  and 
����������� . Thus, ��  has: ���������� = 1  and ����������� = 2  while ��  has: 
���������� = 2  and ����������� = 3 . These correspond to the positions 1,2,3 in 
Figure.  4. 

 

Figure.  4. Example of a part � located on a conveyor ��with the goal � = ���������, that is solved by moving 
to the paint station ��, using resources ��. �� and ��. 

The letters �, �, �, �  and �, describes locations where a resource is expected to exist. 
This notation is used since resources can be replaced and the possibility exists that 
multiple alternative resources may exist in the same location. For example, there could 
exist parallel conveyors in location �. The part agent searches these locations for agents 
that are available and selects one of them. More details about this are described later in 
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this paper, where the process plans are defined. All the required parameters for the 
manufacturing scenario are presented in Table 1. 
 
Table 1. Configuration data for the presented scenario, sorted by agents. 

Id Parameter Name Agent Data type 
�� PaintBlue  Process Plan 
��� BufferInterface � Interface 
��� GripInterface � Interface 

� PaintBlue � Goal 
    

��� BufferInterface �� Interface 
�� InLocation �� Variable 
�� OutLocation �� Variable 
�� Load �� Skill 
�� Transport �� Skill 
�� Input: From �� Variable 
�� Input: To �� Variable 

    
��� BufferInterface �� Interface 
�� InLocation �� Variable 
�� OutLocation �� Variable 
�� Transport �� Skill 
�� Input: From �� Variable 
�� Input: To �� Variable 

    
��� BufferInterface �� Interface 
�� Paint �� Skill 
�� BufferLocation �� Variable 

    
��� BufferInterface �� Interface 
�� Unload �� Skill 

��� BufferLocation �� Variable 
    

��� GripInterface �� Interface 
�� Transport �� Skill 

��� Input: From �� Variable 
��� Input: To �� Variable 

 

 The data types are the corresponding configuration classes from Figure.  1. The 
name is the agent classes entity name and the id is the entity id. The process plan on the 
first row in Table 1 that is noted as �� is not directly related to any specific agent. It is 
related to solving the goal �, that may exist on multiple parts. A process plan is later 
selected automatically that can reach the goal for the part. Hence, there can be multiple 
plans that reach the same goal. Some variable descriptions in Table 1 are noted with 
“Input:” meaning that these variables have no defined value in the configuration but act 
as input signal holders that get values at runtime. 

Multiple process plans may exist that can solve the same goal. In this paper, only 
one process plan for the goal � is considered. In Figure.  4, the letters �, �, �, �, � are used 
to define needed resources in the manufacturing system that are not known at the 
configuration phase. Since the physical resources are not known when the process plan 
is defined, they are searched for and found when the system is running.  
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a shared task between each configurable agent in the system that the positions can be 
used on. For example, a part has local target positions that describe a suitable location 
for gripping it with a robot gripper or placing it on a buffer. These positions are related 
to the parts local coordinate system. The functions for translating between coordinate 
systems are included in all agents (resources and parts) and used when they communicate. 
A software should be developed that can identify which agent each target position should 
be attached with in the configuration database. 

Robot teaching 3):  It is also possible to create a software to extract positions directly 
from a physical robot, by teaching points and selecting which agent they belong to. This 
would require a user-friendly HMI used by the operator that manually moves the robot 
and stores target positions to the configuration database.  

4. Evaluation 

This section introduces a manufacturing scenario where a part should get painted 
and then leave the manufacturing system. All configuration parameters needed for this 
scenario are defined in this chapter. The proposed configuration tool is implemented in 
the C# language as a form application. To evaluate the implemented configuration tool, 
all parameters from the described scenario are entered into it. 

The scenario, presented in this section, is used to evaluate the configuration tool. It 
includes one part � with a goal � = ���������. The part is placed at the input position 
���������� on the conveyor �� and is moved to the paint station �� by conveyors ��, �� 
and the robot ��, see Figure.  4. After the part has been painted with the correct colour, it 
should be transported by the robot �� to the unloading station ��. Each conveyor has two 
position variables, describing where the part can be located: ����������  and 
����������� . Thus, ��  has: ���������� = 1  and ����������� = 2  while ��  has: 
���������� = 2  and ����������� = 3 . These correspond to the positions 1,2,3 in 
Figure.  4. 

 

Figure.  4. Example of a part � located on a conveyor ��with the goal � = ���������, that is solved by moving 
to the paint station ��, using resources ��. �� and ��. 

The letters �, �, �, �  and �, describes locations where a resource is expected to exist. 
This notation is used since resources can be replaced and the possibility exists that 
multiple alternative resources may exist in the same location. For example, there could 
exist parallel conveyors in location �. The part agent searches these locations for agents 
that are available and selects one of them. More details about this are described later in 
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this paper, where the process plans are defined. All the required parameters for the 
manufacturing scenario are presented in Table 1. 
 
Table 1. Configuration data for the presented scenario, sorted by agents. 

Id Parameter Name Agent Data type 
�� PaintBlue  Process Plan 
��� BufferInterface � Interface 
��� GripInterface � Interface 

� PaintBlue � Goal 
    

��� BufferInterface �� Interface 
�� InLocation �� Variable 
�� OutLocation �� Variable 
�� Load �� Skill 
�� Transport �� Skill 
�� Input: From �� Variable 
�� Input: To �� Variable 

    
��� BufferInterface �� Interface 
�� InLocation �� Variable 
�� OutLocation �� Variable 
�� Transport �� Skill 
�� Input: From �� Variable 
�� Input: To �� Variable 

    
��� BufferInterface �� Interface 
�� Paint �� Skill 
�� BufferLocation �� Variable 

    
��� BufferInterface �� Interface 
�� Unload �� Skill 

��� BufferLocation �� Variable 
    

��� GripInterface �� Interface 
�� Transport �� Skill 

��� Input: From �� Variable 
��� Input: To �� Variable 

 

 The data types are the corresponding configuration classes from Figure.  1. The 
name is the agent classes entity name and the id is the entity id. The process plan on the 
first row in Table 1 that is noted as �� is not directly related to any specific agent. It is 
related to solving the goal �, that may exist on multiple parts. A process plan is later 
selected automatically that can reach the goal for the part. Hence, there can be multiple 
plans that reach the same goal. Some variable descriptions in Table 1 are noted with 
“Input:” meaning that these variables have no defined value in the configuration but act 
as input signal holders that get values at runtime. 

Multiple process plans may exist that can solve the same goal. In this paper, only 
one process plan for the goal � is considered. In Figure.  4, the letters �, �, �, �, � are used 
to define needed resources in the manufacturing system that are not known at the 
configuration phase. Since the physical resources are not known when the process plan 
is defined, they are searched for and found when the system is running.  
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For reaching the goal � = ���������, the following process plan �� is defined: 
1. �.Load 
2. �.Transport:  �.From = �.InLocation 

�.To = �.OutLocation 
3. �.Transport:  �.From = �. InLocation 

�.To = �. OutLocation 
4. �.Transport:  �.From = �. OutLocation 

�.To = �. BufferLocation 
5. �.Paint 
6. �.Transport:  �.From = �. BufferLocation 

�.To = �. BufferLocation 
7. �.Unload 

4.1. Implementation of the configuration tool 

The configuration tool was implemented to evaluate the proposed design. All 
configuration parameters are added into the implemented configuration tool to evaluate 
it. In Figure.  5, the agent view of the configuration tool is shown for the part agent. We 
can see that it has a BufferInterface, GripInterface and one goal PaintBlue. Each 
configuration parameter presented in this view can be modified in detail on separate 
views. 

 
Figure.  5. The configuration tool, with the main view shown in the background and the agent view of part � 
shown in the front. 
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All views use a window design, similar to the one presented in Figure.  5. Note that 
these views, together provide all the necessary functionality for creating the agent 
configurations needed for the scenario, presented earlier in this paper.  

5. Conclusion 

In this paper, a method for configuring agents was presented that enables users to 
adapt a manufacturing system to various scenarios with new parts and resources. The 
considered manufacturing system is based on multi-agent technology, where the 
configurations describe the agents for each resource and part. This makes it possible to 
focus on one device at a time, removing the need to understand other controllers in the 
manufacturing system. This is not the case in traditional systems where the users need to 
understand most of the other controllers to add new resources or parts. The developed 
method for configuring agents include a central agent configuration database. A 
configuration tool was also developed where all agent configurations can be managed. 
The configuration tool is connected to the database which makes the configurations easy 
to deploy since agents can fetch their configurations automatically when instantiated. It 
also enables multiple users to collaborate with the same configuration data. The 
configuration tool is designed with multiple views that are specifically designed for 
configuring agents, based on their configuration classes. This resulted in a lightweight 
tool that avoids any unnecessary steps or functionalities. The developed configuration 
tool was evaluated by configuring all necessary parameters for a manufacturing scenario. 
The presented method also prepares the multi-agent system for adding many supporting 
tools, for instance: product design tools for defining goals, and 3D simulation tools for 
defining target positions such as buffer locations and gripping points.  
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For reaching the goal � = ���������, the following process plan �� is defined: 
1. �.Load 
2. �.Transport:  �.From = �.InLocation 

�.To = �.OutLocation 
3. �.Transport:  �.From = �. InLocation 

�.To = �. OutLocation 
4. �.Transport:  �.From = �. OutLocation 

�.To = �. BufferLocation 
5. �.Paint 
6. �.Transport:  �.From = �. BufferLocation 

�.To = �. BufferLocation 
7. �.Unload 

4.1. Implementation of the configuration tool 

The configuration tool was implemented to evaluate the proposed design. All 
configuration parameters are added into the implemented configuration tool to evaluate 
it. In Figure.  5, the agent view of the configuration tool is shown for the part agent. We 
can see that it has a BufferInterface, GripInterface and one goal PaintBlue. Each 
configuration parameter presented in this view can be modified in detail on separate 
views. 

 
Figure.  5. The configuration tool, with the main view shown in the background and the agent view of part � 
shown in the front. 
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All views use a window design, similar to the one presented in Figure.  5. Note that 
these views, together provide all the necessary functionality for creating the agent 
configurations needed for the scenario, presented earlier in this paper.  

5. Conclusion 

In this paper, a method for configuring agents was presented that enables users to 
adapt a manufacturing system to various scenarios with new parts and resources. The 
considered manufacturing system is based on multi-agent technology, where the 
configurations describe the agents for each resource and part. This makes it possible to 
focus on one device at a time, removing the need to understand other controllers in the 
manufacturing system. This is not the case in traditional systems where the users need to 
understand most of the other controllers to add new resources or parts. The developed 
method for configuring agents include a central agent configuration database. A 
configuration tool was also developed where all agent configurations can be managed. 
The configuration tool is connected to the database which makes the configurations easy 
to deploy since agents can fetch their configurations automatically when instantiated. It 
also enables multiple users to collaborate with the same configuration data. The 
configuration tool is designed with multiple views that are specifically designed for 
configuring agents, based on their configuration classes. This resulted in a lightweight 
tool that avoids any unnecessary steps or functionalities. The developed configuration 
tool was evaluated by configuring all necessary parameters for a manufacturing scenario. 
The presented method also prepares the multi-agent system for adding many supporting 
tools, for instance: product design tools for defining goals, and 3D simulation tools for 
defining target positions such as buffer locations and gripping points.  
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Plug & Produce can be used for automation when a manufacturing system needs to adapt fast 
to changes such as new product designs or adjusted production volume. The demand for cus-
tomized products and low-volume production is constantly increasing. The industry has for 
many years used dedicated manufacturing systems that are difficult and expensive to adapt to 
changes. The result of this is that factories are forced to use human workers for certain tasks that 
demand high flexibility. Resources in Plug & Produce are easy to add, move and remove, taking 
only minutes rather than days in dedicated systems, making the system flexible to changes. This 
thesis presents a framework that can be used as a control system for Plug & Produce. The frame-
work is based on the distributed approach called multi-agent systems, where each resource and 
product part has a controller that communicates with each other to reach manufacturing goals. 
The idea is that the system automatically adapts itself to manage changes. This decreases the 
time spent manually preparing the system.
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