
PhD Thesis
Production Technology
2023 No. 54

A Control Framework for
Industrial Plug & Produce

Mattias Bennulf

Trycksak
3041 0234

SV
ANENMÄRKET

Trycksak
3041 0234

SV
ANENMÄRKET

Tryck: Stema Specialtryck AB, Januari 2023

PhD Thesis
Production Technology
2023 No. 54

A Control Framework for
Industrial Plug & Produce

Mattias Bennulf

University West
SE-46186 Trollhättan
Sweden
+46 52022 30 00
www.hv.se

© Mattias Bennulf 2023
ISBN 978-91-89325-42-5 (Printed version)
ISBN 978-91-89325-41-8 (Electronic version)

University West
SE-46186 Trollhättan
Sweden
+46 52022 30 00
www.hv.se

© Mattias Bennulf 2023
ISBN 978-91-89325-42-5 (Printed version)
ISBN 978-91-89325-41-8 (Electronic version)

iii

Acknowledgements

The work presented in this thesis was mainly carried out at University West in
Trollhättan, Sweden. It was a part of the project: Miljo:FIA (Miljö för Flexibel
och Innovativ Automation), project reference: 20201192, funded under:
Europeiska regionala utvecklingsfonden/VGR. The work was also part of the
project: PoPCoRN (Plug & Produce with Configurable Resources inspired by
Natural language), funded by the K-K foundation, reference number: Dnr
20200036, Sweden.

This thesis is to a considerable extent based on my previously published licentiate
thesis: A User-Friendly Approach for Applying Multi-Agent Technology in Plug & Produce
Systems, that was covering the first half of my PhD studies.

I thank my supervisors Fredrik Danielsson, Bo Svensson and Bengt Lennartson
for supporting me and guiding me through these years.

Mattias Bennulf

Trollhättan, January 2023

iii

Acknowledgements

The work presented in this thesis was mainly carried out at University West in
Trollhättan, Sweden. It was a part of the project: Miljo:FIA (Miljö för Flexibel
och Innovativ Automation), project reference: 20201192, funded under:
Europeiska regionala utvecklingsfonden/VGR. The work was also part of the
project: PoPCoRN (Plug & Produce with Configurable Resources inspired by
Natural language), funded by the K-K foundation, reference number: Dnr
20200036, Sweden.

This thesis is to a considerable extent based on my previously published licentiate
thesis: A User-Friendly Approach for Applying Multi-Agent Technology in Plug & Produce
Systems, that was covering the first half of my PhD studies.

I thank my supervisors Fredrik Danielsson, Bo Svensson and Bengt Lennartson
for supporting me and guiding me through these years.

Mattias Bennulf

Trollhättan, January 2023

v

Populärvetenskaplig Sammanfattning

Titel: Ett ramverk för styrning av industriell Plug & Produce

Nyckelord: Flexibel tillverkning, Ontologi, Multiagentsystem, Automation,
Planering

Kundanpassade produkter och korta produktionsserier blir alltmer populärt.
Detta har lett till problem för dedikerade tillverkningssystem som är designade
för massproduktion. Det krävs ofta långa produktionsserier för att det ska bli en
rimlig investering att ställa om produktionen. Därför används människor för
tillverkningsuppgifter som ofta ställs om. Denna avhandling fokuserar på
konceptet Plug & Produce, som gör det enklare att flytta, lägga till och ta bort
resurser från ett tillverkningssystem. Tanken är att resurser placeras i
processmoduler som alla har samma fysiska gränssnitt för att kopplas in i
tillverkningssystemet. Styrningen av tillverkningssystemet görs av ett
multiagentsystem där varje detalj som ska produceras för produkter får en egen
agent som representerar detaljen och agerar som styrningsmjukvara. Varje detaljs
agent tar hand on sina egna tillverkningsmål genom att kommunicera med
resursagenter i systemet som används för styrning av resurserna. I detta arbete,
presenteras ett ramverk för Plug & Produce som består av ett konfigurerbart
multiagentsystem, samt ett konfigurationsverktyg som kan användas för att
definiera agenterna. Arbetet inkluderar metoder för att identifiera inkopplade
resurser, kommunikation mellan agenter, schemaläggning som kan undvika
konflikter mellan agenter, samt metoder för att automatiskt hitta vägar för
transport genom tillverkningssystemet.

vi

Abstract

Title: A Control Framework for Industrial Plug & Produce

Keywords: Flexible Manufacturing, Ontology, Multi-agent system,
Automation, Planning

ISBN: 978-91-89325-42-5 (Printed)
 978-91-89325-41-8 (Electronic)

Customized products and low-volume production are becoming more popular
resulting in a problem for dedicated manufacturing systems that are designed for
mass production. Adapting a system to new demands is expensive and requires
many products to be produced before it becomes a reasonable investment. This
has forced factories to use human workers for manufacturing tasks that often
change. This thesis focuses on a concept called Plug & Produce, which makes it
easier to move, add, and remove resources in manufacturing systems. This is done
by containing resources in process modules that all have the same physical
connectors. To handle the control of the manufacturing system a multi-agent
system is considered where each part to be produced for products has a part agent
software running that represents that part. Each part agent takes care of their own
manufacturing goals by communicating with resource agents that control the
resources in the system. In this thesis, a Plug & Produce framework is described
that consists of a configurable multi-agent system, together with a configuration
tool for defining agent behaviours. Methods for identifying the resource that has
been connected to a Plug & Produce system are investigated. Communication
between agents in Plug & Produce is investigated. Scheduling is described for the
presented systems to avoid conflicts when running multiple agents. Also, a
pathfinding method for Plug & Produce is presented, which automatically gathers
the necessary information for finding paths to transport parts through the
manufacturing system.

v

Populärvetenskaplig Sammanfattning

Titel: Ett ramverk för styrning av industriell Plug & Produce

Nyckelord: Flexibel tillverkning, Ontologi, Multiagentsystem, Automation,
Planering

Kundanpassade produkter och korta produktionsserier blir alltmer populärt.
Detta har lett till problem för dedikerade tillverkningssystem som är designade
för massproduktion. Det krävs ofta långa produktionsserier för att det ska bli en
rimlig investering att ställa om produktionen. Därför används människor för
tillverkningsuppgifter som ofta ställs om. Denna avhandling fokuserar på
konceptet Plug & Produce, som gör det enklare att flytta, lägga till och ta bort
resurser från ett tillverkningssystem. Tanken är att resurser placeras i
processmoduler som alla har samma fysiska gränssnitt för att kopplas in i
tillverkningssystemet. Styrningen av tillverkningssystemet görs av ett
multiagentsystem där varje detalj som ska produceras för produkter får en egen
agent som representerar detaljen och agerar som styrningsmjukvara. Varje detaljs
agent tar hand on sina egna tillverkningsmål genom att kommunicera med
resursagenter i systemet som används för styrning av resurserna. I detta arbete,
presenteras ett ramverk för Plug & Produce som består av ett konfigurerbart
multiagentsystem, samt ett konfigurationsverktyg som kan användas för att
definiera agenterna. Arbetet inkluderar metoder för att identifiera inkopplade
resurser, kommunikation mellan agenter, schemaläggning som kan undvika
konflikter mellan agenter, samt metoder för att automatiskt hitta vägar för
transport genom tillverkningssystemet.

vi

Abstract

Title: A Control Framework for Industrial Plug & Produce

Keywords: Flexible Manufacturing, Ontology, Multi-agent system,
Automation, Planning

ISBN: 978-91-89325-42-5 (Printed)
 978-91-89325-41-8 (Electronic)

Customized products and low-volume production are becoming more popular
resulting in a problem for dedicated manufacturing systems that are designed for
mass production. Adapting a system to new demands is expensive and requires
many products to be produced before it becomes a reasonable investment. This
has forced factories to use human workers for manufacturing tasks that often
change. This thesis focuses on a concept called Plug & Produce, which makes it
easier to move, add, and remove resources in manufacturing systems. This is done
by containing resources in process modules that all have the same physical
connectors. To handle the control of the manufacturing system a multi-agent
system is considered where each part to be produced for products has a part agent
software running that represents that part. Each part agent takes care of their own
manufacturing goals by communicating with resource agents that control the
resources in the system. In this thesis, a Plug & Produce framework is described
that consists of a configurable multi-agent system, together with a configuration
tool for defining agent behaviours. Methods for identifying the resource that has
been connected to a Plug & Produce system are investigated. Communication
between agents in Plug & Produce is investigated. Scheduling is described for the
presented systems to avoid conflicts when running multiple agents. Also, a
pathfinding method for Plug & Produce is presented, which automatically gathers
the necessary information for finding paths to transport parts through the
manufacturing system.

vii

Acronyms

DM Dedicated Manufacturing
 Static systems, designed for specific products

FMS Flexible Manufacturing Systems
 A system that can react to changes

RMS Reconfigurable Manufacturing Systems
 A system that can manage rapid changes in hardware and software

CNC Computer Numerical Control
Automated control of machines

HMI Human Machine Interfaces
An interface for interaction between a human and a machine

PLC Programmable Logic Controller
A programmable computer for controlling automation systems

C-MAS Configurable Multi-Agent System
A control framework for Plug & Produce

ST Structured Text
A programming language

AHS Agent Handling System
A system to manage agents in the manufacturing

OPC UA OPC Unified Architecture
A communication protocol

BDI Belief-Desire-Intention
 A software model for intelligent agents

FIPA Foundation for Intelligent Physical Agents
 Is an organization that promotes agent-based technology

AP Agent Platform

Provides the physical infrastructure to deploy agents in systems
following FIPA standards

AMS Agent Management System
Keeps a record of agents and their identifiers in a system that
follows FIPA standards

MTS Message Transport Service
As defined by FIPA this can be used for communication between
agents

viii

DF Directory Facilitator

FIPA has a Directory Facilitator that acts as a “Yellow Pages”
service for agents. Agents in FIPA can be connected to this service

SPADE Smart Python Agent Development Environment
A multi-agent framework

Cougaar Cognitive Agent Architecture
A multi-agent framework

JADE Java Agent Development Framework
A multi-agent framework

KQML Knowledge Query Manipulation Language
A multi-agent framework

ACL Agent Communication Language
A standard language for agent communication defined by FIPA

CAL Communicative Act Library
Library with communicative acts defined by FIPA

RRT Rapidly exploring Random Tree
An algorithm for automatically generating collision-free paths

CAD Computer-Aided Design
The use of computer software for design

OMPL Open Motion Planning Library
A library with many algorithms for motion planning

ROS Robot Operating System
A set of software libraries and tools for robot applications

DHCP Dynamic Host Configuration Protocol
A protocol for automatically assigning IP addresses

IP address Internet Protocol address
A numerical label for connected devices in a network

ER model Entity-Relationship model
Model to describe interrelated things

vii

Acronyms

DM Dedicated Manufacturing
 Static systems, designed for specific products

FMS Flexible Manufacturing Systems
 A system that can react to changes

RMS Reconfigurable Manufacturing Systems
 A system that can manage rapid changes in hardware and software

CNC Computer Numerical Control
Automated control of machines

HMI Human Machine Interfaces
An interface for interaction between a human and a machine

PLC Programmable Logic Controller
A programmable computer for controlling automation systems

C-MAS Configurable Multi-Agent System
A control framework for Plug & Produce

ST Structured Text
A programming language

AHS Agent Handling System
A system to manage agents in the manufacturing

OPC UA OPC Unified Architecture
A communication protocol

BDI Belief-Desire-Intention
 A software model for intelligent agents

FIPA Foundation for Intelligent Physical Agents
 Is an organization that promotes agent-based technology

AP Agent Platform

Provides the physical infrastructure to deploy agents in systems
following FIPA standards

AMS Agent Management System
Keeps a record of agents and their identifiers in a system that
follows FIPA standards

MTS Message Transport Service
As defined by FIPA this can be used for communication between
agents

viii

DF Directory Facilitator

FIPA has a Directory Facilitator that acts as a “Yellow Pages”
service for agents. Agents in FIPA can be connected to this service

SPADE Smart Python Agent Development Environment
A multi-agent framework

Cougaar Cognitive Agent Architecture
A multi-agent framework

JADE Java Agent Development Framework
A multi-agent framework

KQML Knowledge Query Manipulation Language
A multi-agent framework

ACL Agent Communication Language
A standard language for agent communication defined by FIPA

CAL Communicative Act Library
Library with communicative acts defined by FIPA

RRT Rapidly exploring Random Tree
An algorithm for automatically generating collision-free paths

CAD Computer-Aided Design
The use of computer software for design

OMPL Open Motion Planning Library
A library with many algorithms for motion planning

ROS Robot Operating System
A set of software libraries and tools for robot applications

DHCP Dynamic Host Configuration Protocol
A protocol for automatically assigning IP addresses

IP address Internet Protocol address
A numerical label for connected devices in a network

ER model Entity-Relationship model
Model to describe interrelated things

ix

Nomenclature

𝑎𝑎 ∈ 𝐴𝐴 One agent in the set of all agents

𝑝𝑝 ∈ 𝑃𝑃 One part agent in the set of all part agents

𝑟𝑟 ∈ 𝑅𝑅 One resource agent in the set of all resource agents

𝐴𝐴 = 𝑅𝑅 ∪ 𝑃𝑃 There are resource agents and part agents

𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝 One goal in the set of goals for one part 𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝 One variable in the set of variables for one part 𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟 One variable in the set of variables for one
resource 𝑟𝑟

𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐹𝐹𝑝𝑝 One interface in the set of interfaces for one part
𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑔𝑔 One variable in the set of variables for one goal 𝑔𝑔

𝜋𝜋𝑔𝑔 ∈ Π𝑔𝑔 One process plan in the set of process plans for
one goal 𝑔𝑔

𝜋𝜋𝑔𝑔
𝑒𝑒 ∈ Π𝑔𝑔

𝑒𝑒 One executable process plan in the set of
executable process plans for one goal 𝑔𝑔

𝜋𝜋𝑠𝑠
𝑒𝑒 ∈ Π𝑠𝑠

𝑒𝑒 One executable process plan in the set of
executable process plans for one skill 𝑠𝑠

𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 Set of all goals that must be fulfilled before this
goal 𝑔𝑔 can be assigned

𝑠𝑠 ∈ 𝑆𝑆 One skill in the set of all skills for the whole system

𝜋𝜋𝑠𝑠 A process plan for one skill 𝑠𝑠

𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 One interface in the set of all interfaces

𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖𝑖𝑖 One skill in the set of all skills on interface 𝑖𝑖𝑖𝑖

𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖𝑖𝑖 One variable in the set of all variables on one
interface 𝑖𝑖𝑖𝑖

𝑢𝑢 ∈ 𝑈𝑈 One abstract interface in the set of all abstract
 interfaces

x

𝑑𝑑𝑢𝑢 One demand

𝐺𝐺 All goals for all part agents in the system

𝑞𝑞 A state in a process plan

𝐺𝐺𝑝𝑝𝑝𝑝 Set of goal sequences running in parallel

𝐺𝐺𝑠𝑠𝑠𝑠 A sequence of goals

𝑔𝑔ℎ A goal to be scheduled or that already is scheduled

𝑠𝑠ℎ A skill to be scheduled or that already is scheduled

𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 ∈ 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 One interface dependency in the set of interface

dependencies on 𝑟𝑟

𝑆𝑆𝐶𝐶𝑟𝑟 Local schedule on 𝑟𝑟

𝑛𝑛 A name, such as the name of a skill

𝑠𝑠𝑡𝑡𝑠𝑠 A state that the interface having 𝑠𝑠 should be in

𝑖𝑖𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 Local interface

𝑖𝑖𝑓𝑓𝑠𝑠𝑟𝑟𝑟𝑟 Remote interface

𝑆𝑆𝑠𝑠ℎ Other skills needed to run 𝑠𝑠

𝛾𝛾 A local graph for one part

𝐼𝐼𝐹𝐹𝛾𝛾 Set of interfaces used as nodes in one graph

𝜏𝜏 ∈ Τ𝛾𝛾 One transfer in the set of transfers between nodes
in the graph 𝛾𝛾

𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 Interface before transfer

𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Interface after transfer

𝑐𝑐𝑠𝑠 Cost of running skill 𝑠𝑠

𝑖𝑖𝑓𝑓𝑠𝑠 Address to the interface of skill 𝑠𝑠

ix

Nomenclature

𝑎𝑎 ∈ 𝐴𝐴 One agent in the set of all agents

𝑝𝑝 ∈ 𝑃𝑃 One part agent in the set of all part agents

𝑟𝑟 ∈ 𝑅𝑅 One resource agent in the set of all resource agents

𝐴𝐴 = 𝑅𝑅 ∪ 𝑃𝑃 There are resource agents and part agents

𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝 One goal in the set of goals for one part 𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝 One variable in the set of variables for one part 𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟 One variable in the set of variables for one
resource 𝑟𝑟

𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐹𝐹𝑝𝑝 One interface in the set of interfaces for one part
𝑝𝑝

𝑣𝑣 ∈ 𝑉𝑉𝑔𝑔 One variable in the set of variables for one goal 𝑔𝑔

𝜋𝜋𝑔𝑔 ∈ Π𝑔𝑔 One process plan in the set of process plans for
one goal 𝑔𝑔

𝜋𝜋𝑔𝑔
𝑒𝑒 ∈ Π𝑔𝑔

𝑒𝑒 One executable process plan in the set of
executable process plans for one goal 𝑔𝑔

𝜋𝜋𝑠𝑠
𝑒𝑒 ∈ Π𝑠𝑠

𝑒𝑒 One executable process plan in the set of
executable process plans for one skill 𝑠𝑠

𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 Set of all goals that must be fulfilled before this
goal 𝑔𝑔 can be assigned

𝑠𝑠 ∈ 𝑆𝑆 One skill in the set of all skills for the whole system

𝜋𝜋𝑠𝑠 A process plan for one skill 𝑠𝑠

𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 One interface in the set of all interfaces

𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖𝑖𝑖 One skill in the set of all skills on interface 𝑖𝑖𝑖𝑖

𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖𝑖𝑖 One variable in the set of all variables on one
interface 𝑖𝑖𝑖𝑖

𝑢𝑢 ∈ 𝑈𝑈 One abstract interface in the set of all abstract
 interfaces

x

𝑑𝑑𝑢𝑢 One demand

𝐺𝐺 All goals for all part agents in the system

𝑞𝑞 A state in a process plan

𝐺𝐺𝑝𝑝𝑝𝑝 Set of goal sequences running in parallel

𝐺𝐺𝑠𝑠𝑠𝑠 A sequence of goals

𝑔𝑔ℎ A goal to be scheduled or that already is scheduled

𝑠𝑠ℎ A skill to be scheduled or that already is scheduled

𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 ∈ 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 One interface dependency in the set of interface

dependencies on 𝑟𝑟

𝑆𝑆𝐶𝐶𝑟𝑟 Local schedule on 𝑟𝑟

𝑛𝑛 A name, such as the name of a skill

𝑠𝑠𝑡𝑡𝑠𝑠 A state that the interface having 𝑠𝑠 should be in

𝑖𝑖𝑓𝑓𝑠𝑠𝑙𝑙𝑙𝑙 Local interface

𝑖𝑖𝑓𝑓𝑠𝑠𝑟𝑟𝑟𝑟 Remote interface

𝑆𝑆𝑠𝑠ℎ Other skills needed to run 𝑠𝑠

𝛾𝛾 A local graph for one part

𝐼𝐼𝐹𝐹𝛾𝛾 Set of interfaces used as nodes in one graph

𝜏𝜏 ∈ Τ𝛾𝛾 One transfer in the set of transfers between nodes
in the graph 𝛾𝛾

𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 Interface before transfer

𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Interface after transfer

𝑐𝑐𝑠𝑠 Cost of running skill 𝑠𝑠

𝑖𝑖𝑓𝑓𝑠𝑠 Address to the interface of skill 𝑠𝑠

xi

List of Figures

Figure 1. A Plug & Produce system located in the research laboratory at University
West in Trollhättan, Sweden. .. 8
Figure 2: Plug & Produce system considered in this thesis, where the colours
represent the different types of modules. ... 9
Figure 3: An agent sensing and reacting to its environment. 10
Figure 4: When multiple agents connect in a network, they form a multi-agent
system. .. 11
Figure 5. This figure shows that the computational time, due to planning in a
manufacturing system is a function of computational complexity and online
flexibility. The highest computation time is type 4 and the lowest is type 2, noted
with Max and Min. .. 15
Figure 6: Top view of a Plug & Produce robot cell, containing one industrial robot
in the centre, surrounded by ten process modules. The robot should move
between the start position 𝑝𝑝1 and target position 𝑝𝑝2. .. 17
Figure 7: Dijkstra's algorithm, where the blue marked line is the shortest path
between the start and target positions. .. 18
Figure 8: Industrial robots' reachability example for checking if they can reach the
point 𝑝𝑝1 and 𝑝𝑝2 marked in the figure. .. 19
Figure 9. Class diagram showing the ontology used when configuring one agent.
.. 21
Figure 10. Flowchart showing a simplified part agent strategy where the detailed
steps are hidden. .. 24
Figure 11. Flowchart showing the strategy of a resource agent, that receives
messages and manages them based on communicative acts. 25
Figure 12: Process plan with five skills, where the initial state is 𝑞𝑞0 and final state
is 𝑞𝑞𝑞𝑞. .. 26
Figure 13: A plan 𝜋𝜋𝜋𝜋 is checked for availability in the agent network. 27
Figure 14. Example of one part interacting with three resources. 28
Figure 15: Entity-Relationship model (ER model), showing a simplified view of
the ontology used for configuring the agents. For further simplicity, the attributes
are not included. .. 29
Figure 16: A combined model, showing a partial view of the internal ontology of
three agents 𝑝𝑝, 𝑟𝑟1, and 𝑟𝑟2. In this example, the part agent 𝑝𝑝 is requesting a
resource 𝑟𝑟1 to run a skill, and that resource is requesting a second resource 𝑟𝑟2 to
run an additional skill. .. 30
Figure 17. A part agent, placed on a buffer, requests a transporter to move the
part from the buffer. This requires the part to first ask the buffer for the world
coordinate that the part is placed on. .. 31
Figure 18: Conceptual model for agent communication. 32

xii

Figure 19: The data hub for synchronizing data between agents and their related
objects in the world. ... 33
Figure 20: This figure shows the Agent Handling System connected to two
devices on the right side that are controlled by the two agents on the left side. 34
Figure 21: Method for registering new devices added to the Plug & Produce
system. .. 35
Figure 22. This illustrates an example of goal sequences 𝐺𝐺𝐺𝐺𝐺𝐺 running in parallel
𝐺𝐺𝐺𝐺𝐺𝐺, with goals 𝑔𝑔ℎ having skills 𝑠𝑠ℎ to be scheduled. Each 𝐺𝐺𝐺𝐺𝐺𝐺 must wait for
each arrow pointing to it to be done for 𝐺𝐺𝐺𝐺𝐺𝐺 to start executing any of its skills.
.. 37
Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station
𝑟𝑟2, using gripper 𝑟𝑟3, and robot 𝑟𝑟4. ... 39
Figure 24: Variables for locations 1-4. ... 41
Figure 25: Interface connections are shown with lines for interfaces 1-7. 41
Figure 26: Example of two process modules: one with a part placed on top of it,
and another with a robot that can interact with its neighbouring modules......... 42
Figure 27: Example, with part and gripper having compatible interfaces since
signals and skills are matching. ... 43
Figure 28: Example, with a part and paint station having compatible interfaces.
.. 43
Figure 29: Gripper and robot connecting through an interface. 43
Figure 30: Process plan 𝜋𝜋𝜋𝜋 for solving the goal PaintBlue...................................... 44
Figure 31: A process plan 𝜋𝜋𝜋𝜋3that is written specifically to execute the skill
Transport for the gripper. .. 44
Figure 32: A plan 𝜋𝜋𝜋𝜋 is checked for availability in the agent network. 45
Figure 33: Main view, showing five agents and one process plan. 46
Figure 34: Agent view for the part, showing variables, interfaces and goals. 47
Figure 35: Interface view for the BufferInterface on the Paint station. 48

xi

List of Figures

Figure 1. A Plug & Produce system located in the research laboratory at University
West in Trollhättan, Sweden. .. 8
Figure 2: Plug & Produce system considered in this thesis, where the colours
represent the different types of modules. ... 9
Figure 3: An agent sensing and reacting to its environment. 10
Figure 4: When multiple agents connect in a network, they form a multi-agent
system. .. 11
Figure 5. This figure shows that the computational time, due to planning in a
manufacturing system is a function of computational complexity and online
flexibility. The highest computation time is type 4 and the lowest is type 2, noted
with Max and Min. .. 15
Figure 6: Top view of a Plug & Produce robot cell, containing one industrial robot
in the centre, surrounded by ten process modules. The robot should move
between the start position 𝑝𝑝1 and target position 𝑝𝑝2. .. 17
Figure 7: Dijkstra's algorithm, where the blue marked line is the shortest path
between the start and target positions. .. 18
Figure 8: Industrial robots' reachability example for checking if they can reach the
point 𝑝𝑝1 and 𝑝𝑝2 marked in the figure. .. 19
Figure 9. Class diagram showing the ontology used when configuring one agent.
.. 21
Figure 10. Flowchart showing a simplified part agent strategy where the detailed
steps are hidden. .. 24
Figure 11. Flowchart showing the strategy of a resource agent, that receives
messages and manages them based on communicative acts. 25
Figure 12: Process plan with five skills, where the initial state is 𝑞𝑞0 and final state
is 𝑞𝑞𝑞𝑞. .. 26
Figure 13: A plan 𝜋𝜋𝜋𝜋 is checked for availability in the agent network. 27
Figure 14. Example of one part interacting with three resources. 28
Figure 15: Entity-Relationship model (ER model), showing a simplified view of
the ontology used for configuring the agents. For further simplicity, the attributes
are not included. .. 29
Figure 16: A combined model, showing a partial view of the internal ontology of
three agents 𝑝𝑝, 𝑟𝑟1, and 𝑟𝑟2. In this example, the part agent 𝑝𝑝 is requesting a
resource 𝑟𝑟1 to run a skill, and that resource is requesting a second resource 𝑟𝑟2 to
run an additional skill. .. 30
Figure 17. A part agent, placed on a buffer, requests a transporter to move the
part from the buffer. This requires the part to first ask the buffer for the world
coordinate that the part is placed on. .. 31
Figure 18: Conceptual model for agent communication. 32

xii

Figure 19: The data hub for synchronizing data between agents and their related
objects in the world. ... 33
Figure 20: This figure shows the Agent Handling System connected to two
devices on the right side that are controlled by the two agents on the left side. 34
Figure 21: Method for registering new devices added to the Plug & Produce
system. .. 35
Figure 22. This illustrates an example of goal sequences 𝐺𝐺𝐺𝐺𝐺𝐺 running in parallel
𝐺𝐺𝐺𝐺𝐺𝐺, with goals 𝑔𝑔ℎ having skills 𝑠𝑠ℎ to be scheduled. Each 𝐺𝐺𝐺𝐺𝐺𝐺 must wait for
each arrow pointing to it to be done for 𝐺𝐺𝐺𝐺𝐺𝐺 to start executing any of its skills.
.. 37
Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station
𝑟𝑟2, using gripper 𝑟𝑟3, and robot 𝑟𝑟4. ... 39
Figure 24: Variables for locations 1-4. ... 41
Figure 25: Interface connections are shown with lines for interfaces 1-7. 41
Figure 26: Example of two process modules: one with a part placed on top of it,
and another with a robot that can interact with its neighbouring modules......... 42
Figure 27: Example, with part and gripper having compatible interfaces since
signals and skills are matching. ... 43
Figure 28: Example, with a part and paint station having compatible interfaces.
.. 43
Figure 29: Gripper and robot connecting through an interface. 43
Figure 30: Process plan 𝜋𝜋𝜋𝜋 for solving the goal PaintBlue...................................... 44
Figure 31: A process plan 𝜋𝜋𝜋𝜋3that is written specifically to execute the skill
Transport for the gripper. .. 44
Figure 32: A plan 𝜋𝜋𝜋𝜋 is checked for availability in the agent network. 45
Figure 33: Main view, showing five agents and one process plan. 46
Figure 34: Agent view for the part, showing variables, interfaces and goals. 47
Figure 35: Interface view for the BufferInterface on the Paint station. 48

xiii

List of Tables

Table 1. FIPA ACL message acts in FIPA 2002. .. 13
Table 2. Communicative acts in FIPA 2002. .. 14
Table 3. Configuration values for the scenario. ... 40
Table 4. Specialized communicative acts. ... 49

xiv

Appended Publications

The following publications are appended to this thesis:

Paper A. Goal-Oriented Process Plans in a Multiagent System for Plug &
Produce

Published in scientific journal – IEEE Transactions on Industrial Informatics –
Authors: Mattias Bennulf, Fredrik Danielsson, Bo Svensson, Bengt Lennartson

Author’s contributions: Principal author and partially idea initiator. Implemented and
tested proposed algorithms. Carried out experiments and analysed results.

Paper B. Identification of resources and parts in a Plug and Produce system

using OPC UA
Presented at conference – 29th International Conference on Flexible Automation
and Intelligent Manufacturing, FAIM 2019, in Limerick, Ireland, June 2019 –
Authors: Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed methods. Carried out experiments and analysed results.

Paper C. A conceptual model for multi-agent communication applied on a

Plug & Produce system
Presented at conference – 53rd CIRP Conference on Manufacturing Systems
2020, CIRP CMS 2020, in Chicago, IL, U.S., July 2020 – Authors: Mattias
Bennulf, Fredrik Danielsson, Bo Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed models.

Paper D. A Method for Configuring Agents in Plug & Produce Systems
Presented at conference – The 10th Swedish Production Symposium, SPS2022, in
Skövde, Sweden, April 2022 – Authors: Mattias Bennulf, Fredrik Danielsson, Bo
Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed systems. Carried out experiments and analysed results.

xiii

List of Tables

Table 1. FIPA ACL message acts in FIPA 2002. .. 13
Table 2. Communicative acts in FIPA 2002. .. 14
Table 3. Configuration values for the scenario. ... 40
Table 4. Specialized communicative acts. ... 49

xiv

Appended Publications

The following publications are appended to this thesis:

Paper A. Goal-Oriented Process Plans in a Multiagent System for Plug &
Produce

Published in scientific journal – IEEE Transactions on Industrial Informatics –
Authors: Mattias Bennulf, Fredrik Danielsson, Bo Svensson, Bengt Lennartson

Author’s contributions: Principal author and partially idea initiator. Implemented and
tested proposed algorithms. Carried out experiments and analysed results.

Paper B. Identification of resources and parts in a Plug and Produce system

using OPC UA
Presented at conference – 29th International Conference on Flexible Automation
and Intelligent Manufacturing, FAIM 2019, in Limerick, Ireland, June 2019 –
Authors: Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed methods. Carried out experiments and analysed results.

Paper C. A conceptual model for multi-agent communication applied on a

Plug & Produce system
Presented at conference – 53rd CIRP Conference on Manufacturing Systems
2020, CIRP CMS 2020, in Chicago, IL, U.S., July 2020 – Authors: Mattias
Bennulf, Fredrik Danielsson, Bo Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed models.

Paper D. A Method for Configuring Agents in Plug & Produce Systems
Presented at conference – The 10th Swedish Production Symposium, SPS2022, in
Skövde, Sweden, April 2022 – Authors: Mattias Bennulf, Fredrik Danielsson, Bo
Svensson

Author’s contributions: Principal author and idea initiator. Implemented and tested
proposed systems. Carried out experiments and analysed results.

xv

Paper E. Part Oriented Planning for Unpredictable Events in Plug &
Produce

Submitted to a scientific journal – Authors: Mattias Bennulf, Fredrik Danielsson,
Bo Svensson

Author’s contributions: Principal author and idea initiator. Designed and evaluated
proposed systems.

Paper F. Online Generation of Graphs used for Pathfinding in Plug &

Produce Systems
Submitted to a scientific journal – Authors: Mattias Bennulf, Fredrik Danielsson,
Bo Svensson

Author’s contributions: Principal author and idea initiator. Designed and evaluated
proposed systems.

xvi

Other publications by the author:

1. Safety System for Industrial Robots to Support Collaboration

International Conference on Applied Human Factors and Ergonomics,
AHFE, in Orlando, Florida, USA, July 2016 – Authors: Gunnar Bolmsjö,
Mattias Bennulf, Xiaoxiao Zhang

2. Verification and deployment of automatically generated robot programs used
in prefabrication of house walls

CIRP Conference on Manufacturing Systems, CIRP CMS, in Stockholm,
Sweden, June 2018 – Authors: Mattias Bennulf, Fredrik Danielsson, Bo
Svensson

3. Automated Path Planning for Plug & Produce in a Cutting-tool Changing
Application

IEEE Conference on Emerging Technologies and Factory Automation,
ETFA, in Zaragoza, Spain, September 2019 – Authors: Sudha Ramasamy,
Xiaoxiao Zhang, Mattias Bennulf, Fredrik Danielsson

4. A Classification of Different Levels of Flexibility in an Automated
Manufacturing System and Needed Competence

Changeable, Agile, Reconfigurable and Virtual Production Conference,
CARV2021, in Aalborg, Denmark, October/November 2021 – Authors:
Anders Nilsson, Fredrik Danielsson, Mattias Bennulf, Bo Svensson

xv

Paper E. Part Oriented Planning for Unpredictable Events in Plug &
Produce

Submitted to a scientific journal – Authors: Mattias Bennulf, Fredrik Danielsson,
Bo Svensson

Author’s contributions: Principal author and idea initiator. Designed and evaluated
proposed systems.

Paper F. Online Generation of Graphs used for Pathfinding in Plug &

Produce Systems
Submitted to a scientific journal – Authors: Mattias Bennulf, Fredrik Danielsson,
Bo Svensson

Author’s contributions: Principal author and idea initiator. Designed and evaluated
proposed systems.

xvi

Other publications by the author:

1. Safety System for Industrial Robots to Support Collaboration

International Conference on Applied Human Factors and Ergonomics,
AHFE, in Orlando, Florida, USA, July 2016 – Authors: Gunnar Bolmsjö,
Mattias Bennulf, Xiaoxiao Zhang

2. Verification and deployment of automatically generated robot programs used
in prefabrication of house walls

CIRP Conference on Manufacturing Systems, CIRP CMS, in Stockholm,
Sweden, June 2018 – Authors: Mattias Bennulf, Fredrik Danielsson, Bo
Svensson

3. Automated Path Planning for Plug & Produce in a Cutting-tool Changing
Application

IEEE Conference on Emerging Technologies and Factory Automation,
ETFA, in Zaragoza, Spain, September 2019 – Authors: Sudha Ramasamy,
Xiaoxiao Zhang, Mattias Bennulf, Fredrik Danielsson

4. A Classification of Different Levels of Flexibility in an Automated
Manufacturing System and Needed Competence

Changeable, Agile, Reconfigurable and Virtual Production Conference,
CARV2021, in Aalborg, Denmark, October/November 2021 – Authors:
Anders Nilsson, Fredrik Danielsson, Mattias Bennulf, Bo Svensson

xvii

Table of Contents

Acknowledgements ... iii
Populärvetenskaplig Sammanfattning .. v

Abstract .. vi
Acronyms .. vii
Nomenclature ... ix

List of Figures ... xi
List of Tables .. xiii
Appended Publications ... xiv

1 Introduction .. 1

1.1 Background .. 1

1.2 Research Questions .. 4

1.3 Research Methodology .. 5

1.4 Contributions .. 6

1.5 Scope and Limitation ... 6

2 Preliminaries ... 7

2.1 Plug & Produce .. 7

2.1.1 Implementation ... 8

2.2 Multi-Agent Systems .. 9

2.2.1 Multi-Agent Frameworks ... 11

2.2.2 Agent Communication .. 12

2.3 Automated Planning and Scheduling 14

2.3.1 Computation Time .. 15

2.3.2 Path Planning ... 16

2.3.3 Pathfinding ... 17

2.3.1 Scheduling ... 19

3 Proposed Plug & Produce Framework 21

3.1 Agent Definition.. 21

3.2 Agent Types ... 23

xviii

3.2.1 Part Agent Strategy .. 23

3.2.2 Resource Agent Strategy.. 24

3.3 Agent Interfaces ... 25

3.4 Process Plans .. 26

3.4.1 Example 1 .. 27

3.5 Configuring the System .. 28

3.5.1 Example 2 .. 30

3.6 Translation of Locations ... 31

3.6.1 Example 3 .. 31

3.7 Agent Communication .. 31

3.8 Agent Handling System .. 33

3.9 Configuration Tool .. 35

3.10 Agent Planning .. 36

3.10.1 Scheduling of Process Plans .. 36

3.10.2 Pathfinding for Part Transfer ... 38

4 Evaluation ... 39

4.1 Manufacturing Scenario ... 39

4.2 Agent Interfaces ... 41

4.3 Process Plans .. 44

4.4 Configuration Tool .. 46

4.5 Agent Communication .. 49

5 Conclusions .. 51

6 Summary of Appended Papers 53

7 References .. 55

xvii

Table of Contents

Acknowledgements ... iii
Populärvetenskaplig Sammanfattning .. v

Abstract .. vi
Acronyms .. vii
Nomenclature ... ix

List of Figures ... xi
List of Tables .. xiii
Appended Publications ... xiv

1 Introduction .. 1

1.1 Background .. 1

1.2 Research Questions .. 4

1.3 Research Methodology .. 5

1.4 Contributions .. 6

1.5 Scope and Limitation ... 6

2 Preliminaries ... 7

2.1 Plug & Produce .. 7

2.1.1 Implementation ... 8

2.2 Multi-Agent Systems .. 9

2.2.1 Multi-Agent Frameworks ... 11

2.2.2 Agent Communication .. 12

2.3 Automated Planning and Scheduling 14

2.3.1 Computation Time .. 15

2.3.2 Path Planning ... 16

2.3.3 Pathfinding ... 17

2.3.1 Scheduling ... 19

3 Proposed Plug & Produce Framework 21

3.1 Agent Definition.. 21

3.2 Agent Types ... 23

xviii

3.2.1 Part Agent Strategy .. 23

3.2.2 Resource Agent Strategy.. 24

3.3 Agent Interfaces ... 25

3.4 Process Plans .. 26

3.4.1 Example 1 .. 27

3.5 Configuring the System .. 28

3.5.1 Example 2 .. 30

3.6 Translation of Locations ... 31

3.6.1 Example 3 .. 31

3.7 Agent Communication .. 31

3.8 Agent Handling System .. 33

3.9 Configuration Tool .. 35

3.10 Agent Planning .. 36

3.10.1 Scheduling of Process Plans .. 36

3.10.2 Pathfinding for Part Transfer ... 38

4 Evaluation ... 39

4.1 Manufacturing Scenario ... 39

4.2 Agent Interfaces ... 41

4.3 Process Plans .. 44

4.4 Configuration Tool .. 46

4.5 Agent Communication .. 49

5 Conclusions .. 51

6 Summary of Appended Papers 53

7 References .. 55

xix

Appended Publications

Paper A. Goal-Oriented Process Plans in a Multiagent System for
Plug & Produce

Paper B. Identification of resources and parts in a Plug and Produce
system using OPC UA

Paper C. A conceptual model for multi-agent communication

applied on a Plug & Produce system

Paper D. A Method for Configuring Agents in Plug & Produce
Systems

Paper E. Part Oriented Planning for Unpredictable Events in Plug &

Produce

Paper F. Online Generation of Graphs used for Pathfinding in Plug
& Produce Systems

1

1 Introduction

This chapter introduces the thesis by giving the background information followed
by the research question, methodology, contribution, and scope.

1.1 Background

When dedicated manufacturing (DM) was introduced to the industry more than
one hundred years ago, it replaced manual workshops. To optimize product flows,
products were standardized. This vastly reduced production costs and increased
production volume. The drawback was that it became expensive to change the
product design. This became a problem since new models of various products are
constantly developed to compete with their competitors. This results in a
continuously increasing demand for customized production and low-volume
production. For example, some products are expected to have new models enter
the market frequently. This puts high requirements on the factories that
manufacture these products. Today it is difficult and expensive to adapt
manufacturing systems to new product designs [1], [2]. Both the changeover time
and the related cost for personnel involved in the change are high. This makes it
difficult today to automate customized, and low-volume production. Because of
that, many factories still use human workers since they are flexible. The result is
that factories move to countries with lower wages. A trend that has emerged in
research is to develop flexible systems that adapt to new product designs with
minimal effort [3]. However, most flexible systems use a static customization
framework, where customers can choose a combination of static options [4]. The
product is customized and unique, but the options are not unique, only the
combination. This makes it expensive to adapt the manufacturing to new models
if they involve new options. The reason is that there is still a lack of flexible and
reconfigurable manufacturing systems that can easily add new options for a
customer if it involves significant product modifications [5].

Reconfigurability and flexibility have been the focus of research for many years
to make manufacturing systems better at adapting fast to new product types [6].
Flexible Manufacturing Systems (FMS) was first introduced in the 1980s [7]. Later
in the 1990s, Reconfigurable Manufacturing Systems (RMS) was introduced [8].
Both FMS and RMS aim at being able to handle products with short life cycles.
Today, automation in industries typically includes several resources, such as
Computer Numerical Control (CNC), industrial robots, sensors, transportation
devices and Human Machine Interfaces (HMI). These are typically connected via

xix

Appended Publications

Paper A. Goal-Oriented Process Plans in a Multiagent System for
Plug & Produce

Paper B. Identification of resources and parts in a Plug and Produce
system using OPC UA

Paper C. A conceptual model for multi-agent communication

applied on a Plug & Produce system

Paper D. A Method for Configuring Agents in Plug & Produce
Systems

Paper E. Part Oriented Planning for Unpredictable Events in Plug &

Produce

Paper F. Online Generation of Graphs used for Pathfinding in Plug
& Produce Systems

1

1 Introduction

This chapter introduces the thesis by giving the background information followed
by the research question, methodology, contribution, and scope.

1.1 Background

When dedicated manufacturing (DM) was introduced to the industry more than
one hundred years ago, it replaced manual workshops. To optimize product flows,
products were standardized. This vastly reduced production costs and increased
production volume. The drawback was that it became expensive to change the
product design. This became a problem since new models of various products are
constantly developed to compete with their competitors. This results in a
continuously increasing demand for customized production and low-volume
production. For example, some products are expected to have new models enter
the market frequently. This puts high requirements on the factories that
manufacture these products. Today it is difficult and expensive to adapt
manufacturing systems to new product designs [1], [2]. Both the changeover time
and the related cost for personnel involved in the change are high. This makes it
difficult today to automate customized, and low-volume production. Because of
that, many factories still use human workers since they are flexible. The result is
that factories move to countries with lower wages. A trend that has emerged in
research is to develop flexible systems that adapt to new product designs with
minimal effort [3]. However, most flexible systems use a static customization
framework, where customers can choose a combination of static options [4]. The
product is customized and unique, but the options are not unique, only the
combination. This makes it expensive to adapt the manufacturing to new models
if they involve new options. The reason is that there is still a lack of flexible and
reconfigurable manufacturing systems that can easily add new options for a
customer if it involves significant product modifications [5].

Reconfigurability and flexibility have been the focus of research for many years
to make manufacturing systems better at adapting fast to new product types [6].
Flexible Manufacturing Systems (FMS) was first introduced in the 1980s [7]. Later
in the 1990s, Reconfigurable Manufacturing Systems (RMS) was introduced [8].
Both FMS and RMS aim at being able to handle products with short life cycles.
Today, automation in industries typically includes several resources, such as
Computer Numerical Control (CNC), industrial robots, sensors, transportation
devices and Human Machine Interfaces (HMI). These are typically connected via

2

a central controller such as a Programmable Logic Controller (PLC). Adjusting
such systems to manage new product types commonly includes reprogramming
and physical changes. Thus, each new product or modified product design,
introduced to the system, generates costs related to reprogramming and physical
changes. The physical flexibility can be solved by standardizing process modules
that are connected to the system similarly to Plug & Play on computers. Ribeiro
da Silva e al. [2] writes about a similar concept with a robot resource contained in
a module that can be shared by moving it between stations. S. Hjorth et al. [9]
describe a concept where modules are moved around and placed in locations that
are marked areas defined on Plug & Produced enabled stations. Making resources
integrated into the ongoing production requires the system to understand when
and how to use the new process modules. This typically requires extensive
reprogramming in PLCs that can take several months. The reason is that when
making changes to these systems, personnel are forced to understand most of the
code in the manufacturing system, due to strong dependencies between the logic
controlling each resource and product part [10]. This makes it almost impossible
today to automate customized production and low-volume production, even
when the physical system is standardized and flexible [11]. Thus, it is important
to develop new control strategies that can handle various products and resources
with a low amount of reprogramming [12]. One measurement of this is to
consider the software time needed for adapting a manufacturing system for new
products and resources. The time for preparing a system for new products and
resources can be divided into hardware installation time (hardware time) and the
time spent on programming and configuring the system (software time). The
hardware time can be solved by using standardly sized process modules and
connectors, which are described in other work as increasing the mechatronic
compatibility [13], [14]. Modular approaches for manufacturing systems have
been implemented in other works such as [15]. To decrease the software time, it
is important to look at limiting the time consumed on configuring the system and
time for programming resources [16].

One approach for managing flexible systems is to divide the controller into agents
representing parts and agents representing resources. The agents can be placed
physically on the object it represents, but they can also be placed anywhere
remotely, such as in a cloud service. Agents that communicate with each other
form a multi-agent system. Such systems are not new, and an example is the one
that Krothapalli et al. [17] presented in the year 1999. Using a distributed approach
removes the need for a central controller such as a PLC used in traditional
automation. The resource agents present services called skills, that are used to
reach the manufacturing goals, defined for the parts. In this way, no single agent
has a central role in the system. Hence, it is possible to design agents without
knowing the code of other agents, only the interfaces need to be known, for

3

example: what skills and variables another agent has. Manufacturing goals can also
be defined to run in parallel to make manufacturing more efficient, as described
by Nilsson et al. [18].

Today, examples of multi-agent systems running in the industry are not common
[19], [20]. The main reason seems to be that there are no simple configuration
tools for the manufacturing industry, which hides the complexity of the agent
technology [19], [21]. According to Pulikottil et al. [22] there is a lack of scheduling
methodologies, standard architectures, and frameworks that targets general
manufacturing environments. A configuration tool for Plug & Produce should
provide the functionality to prepare a manufacturing system for production by
defining its behaviour on a high level. This will replace the traditional rewriting of
programming code for each new situation that arises in the manufacturing system.
Also, automating functions such as path planning, pathfinding, and conflict
avoidance can further simplify the adaption of manufacturing systems to new
product designs. Then the system would be able to act autonomously, taking new
orders without human intervention. It is also important to design a Plug &
Produce framework that can be used with already existing resources in the
industry [23], [24]. This will make the transition to these new systems smoother.

In this thesis, various methods are presented for designing a framework for Plug
& Produce that aims at limiting the software time. The overall approach has been
to work with a concept called Configurable Multi-Agent System (C-MAS) for
designing the framework. The presented Plug & Produce framework is used to
design Plug & Produce systems and to adapt them for changes such as new
product designs and changes in the demanded production volume. Each agent
can be configured by using a configuration tool, to let it know what it represents.
This includes specifying what goals, skills, interfaces, and variables it has. In this
work, skills and process plans for reaching goals can be defined with structured
text (ST) code, based on the standard IEC 61131-3. The agents also contain
multiple functions for planning, which makes the coding in each agent and related
object simpler since planning is completely standardized and reused. Resources'
internal logic becomes isolated by the nature of multi-agent systems, making them
loosely coupled and easy to add, remove and move. This clear separation between
resources simplifies the work of designing them. In C-MAS, agents always interact
through clearly defined interfaces that must be compatible to connect and
collaborate. Once the interfaces are defined and local behaviours created the
communication and collaboration among agents are automatically solved by
algorithms in the Plug & Produce framework. By using the methods presented in
this thesis, manufacturing system resources can be installed and removed in terms
of minutes, rather than days or weeks in traditional approaches. Changes in
product design will many times require no programming or changes to the

2

a central controller such as a Programmable Logic Controller (PLC). Adjusting
such systems to manage new product types commonly includes reprogramming
and physical changes. Thus, each new product or modified product design,
introduced to the system, generates costs related to reprogramming and physical
changes. The physical flexibility can be solved by standardizing process modules
that are connected to the system similarly to Plug & Play on computers. Ribeiro
da Silva e al. [2] writes about a similar concept with a robot resource contained in
a module that can be shared by moving it between stations. S. Hjorth et al. [9]
describe a concept where modules are moved around and placed in locations that
are marked areas defined on Plug & Produced enabled stations. Making resources
integrated into the ongoing production requires the system to understand when
and how to use the new process modules. This typically requires extensive
reprogramming in PLCs that can take several months. The reason is that when
making changes to these systems, personnel are forced to understand most of the
code in the manufacturing system, due to strong dependencies between the logic
controlling each resource and product part [10]. This makes it almost impossible
today to automate customized production and low-volume production, even
when the physical system is standardized and flexible [11]. Thus, it is important
to develop new control strategies that can handle various products and resources
with a low amount of reprogramming [12]. One measurement of this is to
consider the software time needed for adapting a manufacturing system for new
products and resources. The time for preparing a system for new products and
resources can be divided into hardware installation time (hardware time) and the
time spent on programming and configuring the system (software time). The
hardware time can be solved by using standardly sized process modules and
connectors, which are described in other work as increasing the mechatronic
compatibility [13], [14]. Modular approaches for manufacturing systems have
been implemented in other works such as [15]. To decrease the software time, it
is important to look at limiting the time consumed on configuring the system and
time for programming resources [16].

One approach for managing flexible systems is to divide the controller into agents
representing parts and agents representing resources. The agents can be placed
physically on the object it represents, but they can also be placed anywhere
remotely, such as in a cloud service. Agents that communicate with each other
form a multi-agent system. Such systems are not new, and an example is the one
that Krothapalli et al. [17] presented in the year 1999. Using a distributed approach
removes the need for a central controller such as a PLC used in traditional
automation. The resource agents present services called skills, that are used to
reach the manufacturing goals, defined for the parts. In this way, no single agent
has a central role in the system. Hence, it is possible to design agents without
knowing the code of other agents, only the interfaces need to be known, for

3

example: what skills and variables another agent has. Manufacturing goals can also
be defined to run in parallel to make manufacturing more efficient, as described
by Nilsson et al. [18].

Today, examples of multi-agent systems running in the industry are not common
[19], [20]. The main reason seems to be that there are no simple configuration
tools for the manufacturing industry, which hides the complexity of the agent
technology [19], [21]. According to Pulikottil et al. [22] there is a lack of scheduling
methodologies, standard architectures, and frameworks that targets general
manufacturing environments. A configuration tool for Plug & Produce should
provide the functionality to prepare a manufacturing system for production by
defining its behaviour on a high level. This will replace the traditional rewriting of
programming code for each new situation that arises in the manufacturing system.
Also, automating functions such as path planning, pathfinding, and conflict
avoidance can further simplify the adaption of manufacturing systems to new
product designs. Then the system would be able to act autonomously, taking new
orders without human intervention. It is also important to design a Plug &
Produce framework that can be used with already existing resources in the
industry [23], [24]. This will make the transition to these new systems smoother.

In this thesis, various methods are presented for designing a framework for Plug
& Produce that aims at limiting the software time. The overall approach has been
to work with a concept called Configurable Multi-Agent System (C-MAS) for
designing the framework. The presented Plug & Produce framework is used to
design Plug & Produce systems and to adapt them for changes such as new
product designs and changes in the demanded production volume. Each agent
can be configured by using a configuration tool, to let it know what it represents.
This includes specifying what goals, skills, interfaces, and variables it has. In this
work, skills and process plans for reaching goals can be defined with structured
text (ST) code, based on the standard IEC 61131-3. The agents also contain
multiple functions for planning, which makes the coding in each agent and related
object simpler since planning is completely standardized and reused. Resources'
internal logic becomes isolated by the nature of multi-agent systems, making them
loosely coupled and easy to add, remove and move. This clear separation between
resources simplifies the work of designing them. In C-MAS, agents always interact
through clearly defined interfaces that must be compatible to connect and
collaborate. Once the interfaces are defined and local behaviours created the
communication and collaboration among agents are automatically solved by
algorithms in the Plug & Produce framework. By using the methods presented in
this thesis, manufacturing system resources can be installed and removed in terms
of minutes, rather than days or weeks in traditional approaches. Changes in
product design will many times require no programming or changes to the

4

manufacturing system. Instead, a new process plan is simply designed and
deployed to the system.

1.2 Research Questions

To create the Plug & Produce framework described earlier in this introduction,
three research questions have been formulated. The first research questions
(RQ1) consider how multi-agent systems can be designed to quickly adapt to new
products and resources introduced to the system. The second research question
(RQ2) asks how agents can be designed to reduce manual reprogramming. The
aim is that the system should instead be configured on a high level, where
descriptions are simplified, thus easier to understand and faster to modify. The
third research question (RQ3) looks at online dynamic planning and scheduling
that will increase the systems' online flexibility, adaptable to new situations and
handling unpredictable events. It also decreases the software development time,
since these functions can be used for any configuration, thus reducing the need
for implementing this for each agent.

The research questions are:

RQ1. How can a multi-agent system be designed, to decrease the software
development time in a Plug & Produce system?

RQ2. When introducing new products and resources, how can functionality for
agent collaboration and reasoning be reused to decrease reprogramming time?

RQ3. How can dynamic planning and scheduling in configurable multi-agent
systems be designed for Plug & Produce, which can handle unpredictable
events?

5

1.3 Research Methodology

In this section, the method for each research question is listed with explanations
about each step needed to reach the contributions of this paper.

Research question 1 (RQ1) is solved by contribution C1 which was achieved by
the following steps:

• Investigate current approaches for Plug & Produce.

• Explore existing multi-agent systems.

• Identify what is missing in those approaches.

• Give design suggestions.

Research question 2 (RQ2) is solved by contributions C2 and C3 that were
achieved by the following steps:

• Design a configurable multi-agent system.

• Present a conceptual model showing how multi-agent system
communication for Plug & Produce could be designed.

• Show how physical devices can be connected to corresponding agents.

• Build and evaluate the designed system.

Research question 3 (RQ3) is solved by contribution C4 which was achieved by
the following steps:

• Explore existing planning approaches for multi-agent systems.

• Present methods showing how multi-agent system online dynamic
planning and scheduling for Plug & Produce could be designed.

4

manufacturing system. Instead, a new process plan is simply designed and
deployed to the system.

1.2 Research Questions

To create the Plug & Produce framework described earlier in this introduction,
three research questions have been formulated. The first research questions
(RQ1) consider how multi-agent systems can be designed to quickly adapt to new
products and resources introduced to the system. The second research question
(RQ2) asks how agents can be designed to reduce manual reprogramming. The
aim is that the system should instead be configured on a high level, where
descriptions are simplified, thus easier to understand and faster to modify. The
third research question (RQ3) looks at online dynamic planning and scheduling
that will increase the systems' online flexibility, adaptable to new situations and
handling unpredictable events. It also decreases the software development time,
since these functions can be used for any configuration, thus reducing the need
for implementing this for each agent.

The research questions are:

RQ1. How can a multi-agent system be designed, to decrease the software
development time in a Plug & Produce system?

RQ2. When introducing new products and resources, how can functionality for
agent collaboration and reasoning be reused to decrease reprogramming time?

RQ3. How can dynamic planning and scheduling in configurable multi-agent
systems be designed for Plug & Produce, which can handle unpredictable
events?

5

1.3 Research Methodology

In this section, the method for each research question is listed with explanations
about each step needed to reach the contributions of this paper.

Research question 1 (RQ1) is solved by contribution C1 which was achieved by
the following steps:

• Investigate current approaches for Plug & Produce.

• Explore existing multi-agent systems.

• Identify what is missing in those approaches.

• Give design suggestions.

Research question 2 (RQ2) is solved by contributions C2 and C3 that were
achieved by the following steps:

• Design a configurable multi-agent system.

• Present a conceptual model showing how multi-agent system
communication for Plug & Produce could be designed.

• Show how physical devices can be connected to corresponding agents.

• Build and evaluate the designed system.

Research question 3 (RQ3) is solved by contribution C4 which was achieved by
the following steps:

• Explore existing planning approaches for multi-agent systems.

• Present methods showing how multi-agent system online dynamic
planning and scheduling for Plug & Produce could be designed.

6

1.4 Contributions

The contributions are:

C1. Give design suggestions for Plug & Produce that can help to decrease the
adaption time for preparing a system for new products and resources. This is
presented in the appended Paper A.

C2. Develop and evaluate a reconfigurable Plug & Produce system based on
multi-agent technology and show how physical devices are connected to the
agents and their configuration. This is presented in Paper B and Paper D.

C3. Formulate a conceptual model that describes how configurable multi-agent
systems for Plug & Produce can communicate. This is presented in Paper C.

C4. Design methods that describe online dynamic planning and scheduling in
configurable multi-agent systems for Plug & Produce. This is presented in Paper
E and Paper F.

1.5 Scope and Limitation

Requirements for hard real-time communication between agents are not
investigated. It is instead assumed that scenarios requiring hard real-time
communication are considered as a whole agent instead of dividing it into several
resources.

The Plug & Produce framework presented in this thesis is general and can be used
for many types of systems. However, the focus of this work is limited to
manufacturing systems.

This thesis is organized as follows: In Section 2, the preliminaries are presented,
including an introduction to Plug & Produce, Multi-Agent systems, and
Automated Planning and Scheduling. Section 3 presents the proposed framework.
Section 4 goes through the evaluations of the proposed framework. Section 5
gives the conclusions. Section 6 gives a summary of the appended papers.

7

2 Preliminaries

An introduction to the knowledge required for understanding the designed Plug
& Produce framework is given in this chapter.

2.1 Plug & Produce

Plug & Produce was first introduced in [25] by Arai et al. It aims at dividing a
manufacturing system into process modules that can be connected while
production is continuing. The idea is to be able to reconfigure a manufacturing
cell in minutes rather than days in traditional approaches. A common approach
in research is to use standardly-sized process modules and standard connectors.
This has been done previously in [13], [14], [15]. However, to reach actual Plug &
Produce the system also needs to detect each connected module and integrate
them into the ongoing production. This can be compared with a conventional
computational cluster, where computer nodes are added simply by connecting
them with power and ethernet. Software and settings are then automatically
downloaded to each detected node, this includes installing the complete operating
system on them. Thus, any standard computer connected to the network is
converted to a computational node that starts to receive tasks and replies with the
calculated results. A similar approach is required in Plug & Produce systems. To
design such a flexible manufacturing system there is a huge requirement for
defining standardized communication interfaces for each process module in the
system.

The concept of Plug & Produce can also be compared to the concept of Plug and
Play, where connected resources are matched with a driver stored in the host
computer. Similarly, the proposed Plug & Produce framework detects process
modules using an Agent Handling System (AHS) and selects a correct agent
configuration from a centrally stored database. The configuration is chosen based
on the information given by the connected module. This is similar to the approach
of selecting a driver when connecting a plug and play device such as a USB
keyboard to a computer. The main difference is that Plug & Play only connects
the device, making it available to the system. In Plug & Produce, the device instead
becomes integrated into the ongoing production. The Plug & Produce framework
is in this thesis used to achieve this integration.

6

1.4 Contributions

The contributions are:

C1. Give design suggestions for Plug & Produce that can help to decrease the
adaption time for preparing a system for new products and resources. This is
presented in the appended Paper A.

C2. Develop and evaluate a reconfigurable Plug & Produce system based on
multi-agent technology and show how physical devices are connected to the
agents and their configuration. This is presented in Paper B and Paper D.

C3. Formulate a conceptual model that describes how configurable multi-agent
systems for Plug & Produce can communicate. This is presented in Paper C.

C4. Design methods that describe online dynamic planning and scheduling in
configurable multi-agent systems for Plug & Produce. This is presented in Paper
E and Paper F.

1.5 Scope and Limitation

Requirements for hard real-time communication between agents are not
investigated. It is instead assumed that scenarios requiring hard real-time
communication are considered as a whole agent instead of dividing it into several
resources.

The Plug & Produce framework presented in this thesis is general and can be used
for many types of systems. However, the focus of this work is limited to
manufacturing systems.

This thesis is organized as follows: In Section 2, the preliminaries are presented,
including an introduction to Plug & Produce, Multi-Agent systems, and
Automated Planning and Scheduling. Section 3 presents the proposed framework.
Section 4 goes through the evaluations of the proposed framework. Section 5
gives the conclusions. Section 6 gives a summary of the appended papers.

7

2 Preliminaries

An introduction to the knowledge required for understanding the designed Plug
& Produce framework is given in this chapter.

2.1 Plug & Produce

Plug & Produce was first introduced in [25] by Arai et al. It aims at dividing a
manufacturing system into process modules that can be connected while
production is continuing. The idea is to be able to reconfigure a manufacturing
cell in minutes rather than days in traditional approaches. A common approach
in research is to use standardly-sized process modules and standard connectors.
This has been done previously in [13], [14], [15]. However, to reach actual Plug &
Produce the system also needs to detect each connected module and integrate
them into the ongoing production. This can be compared with a conventional
computational cluster, where computer nodes are added simply by connecting
them with power and ethernet. Software and settings are then automatically
downloaded to each detected node, this includes installing the complete operating
system on them. Thus, any standard computer connected to the network is
converted to a computational node that starts to receive tasks and replies with the
calculated results. A similar approach is required in Plug & Produce systems. To
design such a flexible manufacturing system there is a huge requirement for
defining standardized communication interfaces for each process module in the
system.

The concept of Plug & Produce can also be compared to the concept of Plug and
Play, where connected resources are matched with a driver stored in the host
computer. Similarly, the proposed Plug & Produce framework detects process
modules using an Agent Handling System (AHS) and selects a correct agent
configuration from a centrally stored database. The configuration is chosen based
on the information given by the connected module. This is similar to the approach
of selecting a driver when connecting a plug and play device such as a USB
keyboard to a computer. The main difference is that Plug & Play only connects
the device, making it available to the system. In Plug & Produce, the device instead
becomes integrated into the ongoing production. The Plug & Produce framework
is in this thesis used to achieve this integration.

8

In a Plug & Produce system the processes modules and products are assumed to
be changed over time, making it difficult to use a central static control approach.
Thus, a multi-agent system approach has been used for the Plug & Produce
framework presented in this thesis.

2.1.1 Implementation

A physical Plug & Produce system was considered when developing the
framework presented in this thesis, see Figure 1. This system was also used for
the experiments conducted in some of the appended papers. The system was built
and located at the research laboratory at University West in Trollhättan, Sweden.

Figure 1. A Plug & Produce system located in the research laboratory at University
West in Trollhättan, Sweden.

The manufacturing cell is divided into several process modules, that can be
connected fast without affecting other resources. These modules are connected
in a manufacturing cell with 10 different slots for connection, as shown in Figure
2. An industrial robot is placed in the centre of the cell, to be able to reach all
process modules and assist with transportation. The colours in Figure 2 identify
the different types of modules currently connected. Slots 1, 3, and 9 are type 1.
Slots 2, 8, and 10 are type 2. Slots 4, and 6 are type 3. Slots 5, and 7 are type 4.

9

Figure 2: Plug & Produce system considered in this thesis, where the colours
represent the different types of modules.

Each module is connected to the slots by standardized connectors including
power air and ethernet. To handle safety, laser scanners are installed that can
detect humans as they get close to the cell. It was designed to make the robot slow
down when a human is close to the cell and stops if you they are inside. However,
if the robot is working on the opposite side and cannot harm you, then it
continues to work. In theory, this makes it possible to change a process module
while the system is running.

Process modules can be given a Programmable Logic Controller (PLC), running
an OPC UA (OPC Unified Architecture) server, that presents all sensor values
and control signals to the network. This can be used by the cyber components
(agents) to communicate with the process modules.

2.2 Multi-Agent Systems

Agents can be instructed on a high level instead of writing low-level programs for
defining the behaviours of the system [26]. Sometimes, goals are defined for
agents, that they want to reach. The agents then communicate with each other to
reach those goals. Agents can be physical like a robot [27] or logical like services
for path planning. Agents are commonly thought of as pieces of autonomous
software [28]. Wooldridge et al. [29] described in 1995 that agency can be
described with weak or strong notation. According to the weak notation agents
have the following properties:

• Autonomy: agents handle their decisions without being directly
controlled by other external programs or humans.

• Reactivity: agents react to the environment.

3

1

2

10

9

8

10

9

8

1

2

3
Robot

4

5 6

7

8

In a Plug & Produce system the processes modules and products are assumed to
be changed over time, making it difficult to use a central static control approach.
Thus, a multi-agent system approach has been used for the Plug & Produce
framework presented in this thesis.

2.1.1 Implementation

A physical Plug & Produce system was considered when developing the
framework presented in this thesis, see Figure 1. This system was also used for
the experiments conducted in some of the appended papers. The system was built
and located at the research laboratory at University West in Trollhättan, Sweden.

Figure 1. A Plug & Produce system located in the research laboratory at University
West in Trollhättan, Sweden.

The manufacturing cell is divided into several process modules, that can be
connected fast without affecting other resources. These modules are connected
in a manufacturing cell with 10 different slots for connection, as shown in Figure
2. An industrial robot is placed in the centre of the cell, to be able to reach all
process modules and assist with transportation. The colours in Figure 2 identify
the different types of modules currently connected. Slots 1, 3, and 9 are type 1.
Slots 2, 8, and 10 are type 2. Slots 4, and 6 are type 3. Slots 5, and 7 are type 4.

9

Figure 2: Plug & Produce system considered in this thesis, where the colours
represent the different types of modules.

Each module is connected to the slots by standardized connectors including
power air and ethernet. To handle safety, laser scanners are installed that can
detect humans as they get close to the cell. It was designed to make the robot slow
down when a human is close to the cell and stops if you they are inside. However,
if the robot is working on the opposite side and cannot harm you, then it
continues to work. In theory, this makes it possible to change a process module
while the system is running.

Process modules can be given a Programmable Logic Controller (PLC), running
an OPC UA (OPC Unified Architecture) server, that presents all sensor values
and control signals to the network. This can be used by the cyber components
(agents) to communicate with the process modules.

2.2 Multi-Agent Systems

Agents can be instructed on a high level instead of writing low-level programs for
defining the behaviours of the system [26]. Sometimes, goals are defined for
agents, that they want to reach. The agents then communicate with each other to
reach those goals. Agents can be physical like a robot [27] or logical like services
for path planning. Agents are commonly thought of as pieces of autonomous
software [28]. Wooldridge et al. [29] described in 1995 that agency can be
described with weak or strong notation. According to the weak notation agents
have the following properties:

• Autonomy: agents handle their decisions without being directly
controlled by other external programs or humans.

• Reactivity: agents react to the environment.

3

1

2

10

9

8

10

9

8

1

2

3
Robot

4

5 6

7

10

• Pro-activeness: agents take the initiatives to reach their goals.
• Social ability: agents can interact with each other using an agent

communication language.

The strong notation of agency also includes cognitive behaviours with beliefs,
desires, and intentions [30].

It is common to divide agents into two types: reactive agents and planning agents
[31]. Reactive agents perceive their environment and take action to change it. This
can be implemented by defining a finite-state machine [32]. Planning agents take
more advanced decisions. For planning, it is possible to use the Belief-Desire-
Intention (BDI) model first proposed in [33]. Beliefs are the knowledge that an
agent has about the world. This knowledge is not necessarily true according to
other agents; thus it’s called beliefs. Desires are, for example, goals that the agent
wants to reach. Intentions can, for example, be plans defining sequences of
actions in the format of recipes rather than complex code.

A multi-agent system is a collection of multiple agents. Each agent is a program
that runs independently and perceives its environment using its inputs and reacts
to it through its outputs. This is shown in Figure 3. Agents commonly have their
own goals, such as getting soft edges or changing colour to blue, implying that
some machining and painting must be performed.

Figure 3: An agent sensing and reacting to its environment.

When several agents are connected, they form a multi-agent system as shown in
Figure 4. In such a system, all agents collaborate using an agent communication
language to reach manufacturing goals.

Reacting

Sensing

Agent World

11

Figure 4: When multiple agents connect in a network, they form a multi-agent system.

When designing multi-agent systems for manufacturing, one approach is to create
a part agent for each physical part to be produced in the system [34]. These part
agents contain product design knowledge based on the customer specifications.
Also, each resource in the system can have a related resource agent defined to
control it. Then all these parts and resources communicate and plan the
production.

In 1997 the Foundation for Intelligent Physical Agents (FIPA) presented an agent
specification including the Agent Management Specification [35]. This was later
updated to the current version in 2002 [36]. These specifications from FIPA
describe how an agent network should be designed, including communication
protocols and agent languages. It also includes specifications on how agents
should be designed. FIPA is today one of the most used agent standards. It
defines an Agent Platform (AP), where an Agent Management System (AMS),
Message Transport Service (MTS) and a Directory Facilitator (DF) can be used
[36]. The AMS registers agents, making them available for communication in the
agent network. The MTS takes care of the message transportation between agents
[37]. The DF is a “yellow pages” service where agents publish their skills. Agents
can search the DF to find out which agent has the skills needed to reach a goal.
According to FIPA, the DF is not mandatory, agents are permitted to contact
each other directly.

In this thesis, the Plug & Produce framework was developed specifically for
manufacturing systems. This includes an Agent Handling System (AHS), similar
to the AMS but with some differences in the design.

2.2.1 Multi-Agent Frameworks

Agents can be implemented directly in any programming language. However,
using an agent framework will drastically reduce the time to develop a new agent
system. Agent frameworks commonly connect all agents through a

Receive message

Send message

Agent Agent
network

10

• Pro-activeness: agents take the initiatives to reach their goals.
• Social ability: agents can interact with each other using an agent

communication language.

The strong notation of agency also includes cognitive behaviours with beliefs,
desires, and intentions [30].

It is common to divide agents into two types: reactive agents and planning agents
[31]. Reactive agents perceive their environment and take action to change it. This
can be implemented by defining a finite-state machine [32]. Planning agents take
more advanced decisions. For planning, it is possible to use the Belief-Desire-
Intention (BDI) model first proposed in [33]. Beliefs are the knowledge that an
agent has about the world. This knowledge is not necessarily true according to
other agents; thus it’s called beliefs. Desires are, for example, goals that the agent
wants to reach. Intentions can, for example, be plans defining sequences of
actions in the format of recipes rather than complex code.

A multi-agent system is a collection of multiple agents. Each agent is a program
that runs independently and perceives its environment using its inputs and reacts
to it through its outputs. This is shown in Figure 3. Agents commonly have their
own goals, such as getting soft edges or changing colour to blue, implying that
some machining and painting must be performed.

Figure 3: An agent sensing and reacting to its environment.

When several agents are connected, they form a multi-agent system as shown in
Figure 4. In such a system, all agents collaborate using an agent communication
language to reach manufacturing goals.

Reacting

Sensing

Agent World

11

Figure 4: When multiple agents connect in a network, they form a multi-agent system.

When designing multi-agent systems for manufacturing, one approach is to create
a part agent for each physical part to be produced in the system [34]. These part
agents contain product design knowledge based on the customer specifications.
Also, each resource in the system can have a related resource agent defined to
control it. Then all these parts and resources communicate and plan the
production.

In 1997 the Foundation for Intelligent Physical Agents (FIPA) presented an agent
specification including the Agent Management Specification [35]. This was later
updated to the current version in 2002 [36]. These specifications from FIPA
describe how an agent network should be designed, including communication
protocols and agent languages. It also includes specifications on how agents
should be designed. FIPA is today one of the most used agent standards. It
defines an Agent Platform (AP), where an Agent Management System (AMS),
Message Transport Service (MTS) and a Directory Facilitator (DF) can be used
[36]. The AMS registers agents, making them available for communication in the
agent network. The MTS takes care of the message transportation between agents
[37]. The DF is a “yellow pages” service where agents publish their skills. Agents
can search the DF to find out which agent has the skills needed to reach a goal.
According to FIPA, the DF is not mandatory, agents are permitted to contact
each other directly.

In this thesis, the Plug & Produce framework was developed specifically for
manufacturing systems. This includes an Agent Handling System (AHS), similar
to the AMS but with some differences in the design.

2.2.1 Multi-Agent Frameworks

Agents can be implemented directly in any programming language. However,
using an agent framework will drastically reduce the time to develop a new agent
system. Agent frameworks commonly connect all agents through a

Receive message

Send message

Agent Agent
network

12

communication channel and handle the publishing of agent skills, making them
visible to other agents.

There exist many agent frameworks, such as the Smart Python Agent
Development Environment (SPADE) [38], the Cognitive Agent Architecture
(Cougaar) [39], the Magentix platform [40], and the Java Agent Development
Framework (JADE) [41].

The most used agent framework that implements the FIPA standards is JADE
[41]. This framework has built-in support to create containers in separate
computers, where agents can be instantiated. These containers are connected with
a communication channel, making it possible for agents on different computers
to communicate without knowing the addresses of each other. There must exist
one main container that hosts the AMS and DF. When instantiating a new agent,
it must know the address of the main container. In JADE, the agents are mainly
written in Java code by defining behaviours such as cyclic and one-shot
behaviours. Since JADE is a general framework for agents, it is not adapted for
manufacturing systems and lacks supporting tools for such scenarios. Thus,
JADE still requires experienced designers and skilled programmers with high
knowledge of the agent technology used.

The Plug & Produce framework presented in this thesis was instead developed
specifically for manufacturing systems and includes supporting configuration
tools, communication, and negotiation to decrease the amount of time spent on
programming.

2.2.2 Agent Communication

Agents need to communicate with each other. This can be implemented through
a standardised communication language. Two existing languages for agent
communication are the Knowledge Query Manipulation Language (KQML) and
the Agent Communication Language (ACL). KQML was developed in the early
1990s as part of the DARPA Knowledge Sharing Effort [42]. ACL was developed
by the Foundation for Intelligent Physical Agents (FIPA), which is an IEEE
organization, that develops standards for multi-agent systems [43]. In 1997 a
collection of specifications was published named FIPA97 which includes the
FIPA ACL. In 2002 an updated version was published including an updated ACL
[44].

Both KQML and ACL are speech act based. Speech acts are expressions by
individual agents that involve an action taking place. For example, if one agent
asks another agent to perform something, then this is considered a speech act.

13

In Table 1, the ACL message structure for FIPA ACL is shown, consisting of 13
different parameters. As described in [45], the performative is the speech act
name, the language is the language to express the content of the message, the
ontology is the ontology name and gives meaning to the symbols of the
expression, and the content is the actual message.

Table 1. FIPA ACL message acts in FIPA 2002.

Parameter Description

performative The type of communicative act (speech act)

sender The sender of the message

receiver The receiver of the message

reply-to Receiver of replies

content Message content

language Language of the content

encoding Encoding of the content

ontology Used to understand the meaning of the message

protocol Interaction protocol

conversation-id Id of the conversation.

reply-with Used for the In-reply-to message

in-reply-to Replies with a reply-with content

reply-by Deadline for reply

The FIPA standard from 2002 defines a Contract Net protocol [46], [47] as a
definition of how two agents communicate. This protocol is also presented by
Smith et al. [47] in 1980. It describes how an “initiator” can make a call to a
“participant”, asking it to give a proposal. The participant replies with a refusal or
proposal. The initiator then rejects or accepts the proposal response. Finally, the
participant informs the initiator of what has been achieved.

In FIPA 2002, speech acts are referred to as communicative acts and are
presented in their Communicative Act Library (CAL). It includes 22 different
communicative acts shown in Table 2. Note that these describe general
communication without any specific considerations for manufacturing systems.

12

communication channel and handle the publishing of agent skills, making them
visible to other agents.

There exist many agent frameworks, such as the Smart Python Agent
Development Environment (SPADE) [38], the Cognitive Agent Architecture
(Cougaar) [39], the Magentix platform [40], and the Java Agent Development
Framework (JADE) [41].

The most used agent framework that implements the FIPA standards is JADE
[41]. This framework has built-in support to create containers in separate
computers, where agents can be instantiated. These containers are connected with
a communication channel, making it possible for agents on different computers
to communicate without knowing the addresses of each other. There must exist
one main container that hosts the AMS and DF. When instantiating a new agent,
it must know the address of the main container. In JADE, the agents are mainly
written in Java code by defining behaviours such as cyclic and one-shot
behaviours. Since JADE is a general framework for agents, it is not adapted for
manufacturing systems and lacks supporting tools for such scenarios. Thus,
JADE still requires experienced designers and skilled programmers with high
knowledge of the agent technology used.

The Plug & Produce framework presented in this thesis was instead developed
specifically for manufacturing systems and includes supporting configuration
tools, communication, and negotiation to decrease the amount of time spent on
programming.

2.2.2 Agent Communication

Agents need to communicate with each other. This can be implemented through
a standardised communication language. Two existing languages for agent
communication are the Knowledge Query Manipulation Language (KQML) and
the Agent Communication Language (ACL). KQML was developed in the early
1990s as part of the DARPA Knowledge Sharing Effort [42]. ACL was developed
by the Foundation for Intelligent Physical Agents (FIPA), which is an IEEE
organization, that develops standards for multi-agent systems [43]. In 1997 a
collection of specifications was published named FIPA97 which includes the
FIPA ACL. In 2002 an updated version was published including an updated ACL
[44].

Both KQML and ACL are speech act based. Speech acts are expressions by
individual agents that involve an action taking place. For example, if one agent
asks another agent to perform something, then this is considered a speech act.

13

In Table 1, the ACL message structure for FIPA ACL is shown, consisting of 13
different parameters. As described in [45], the performative is the speech act
name, the language is the language to express the content of the message, the
ontology is the ontology name and gives meaning to the symbols of the
expression, and the content is the actual message.

Table 1. FIPA ACL message acts in FIPA 2002.

Parameter Description

performative The type of communicative act (speech act)

sender The sender of the message

receiver The receiver of the message

reply-to Receiver of replies

content Message content

language Language of the content

encoding Encoding of the content

ontology Used to understand the meaning of the message

protocol Interaction protocol

conversation-id Id of the conversation.

reply-with Used for the In-reply-to message

in-reply-to Replies with a reply-with content

reply-by Deadline for reply

The FIPA standard from 2002 defines a Contract Net protocol [46], [47] as a
definition of how two agents communicate. This protocol is also presented by
Smith et al. [47] in 1980. It describes how an “initiator” can make a call to a
“participant”, asking it to give a proposal. The participant replies with a refusal or
proposal. The initiator then rejects or accepts the proposal response. Finally, the
participant informs the initiator of what has been achieved.

In FIPA 2002, speech acts are referred to as communicative acts and are
presented in their Communicative Act Library (CAL). It includes 22 different
communicative acts shown in Table 2. Note that these describe general
communication without any specific considerations for manufacturing systems.

14

Table 2. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for the value of the expression

Not Understood Did not understand the message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask the agent to act as a proxy

Query If Ask the agent if the proposition is true

Query Ref Ask for an object

Refuse Refuse to perform the action

Reject Proposal Rejecting a given proposal

Request Request agent to perform an action

Request When Request when the proposition is true

Request Whenever Always run when the proposition is true

Subscribe Let the other agent send updated data

Hence, the FIPA standards are general for any kind of agent system, giving no
help for the specific problems in manufacturing systems.

2.3 Automated Planning and Scheduling

In multi-agent systems, planning is important. Three different types of planning
activities are considered in this thesis: (1) Process planning, including scheduling
of resources, (2) pathfinding algorithms that can find the shortest path through a
manufacturing system, and (3) path planning that generates collision-free paths
for industrial robots. These are all important tools for making a Plug & Produce
system since they give the possibility to automate additional steps that would
otherwise be performed manually. Process plans are written on a high level and
defined manually by humans, but automatically deployed by selecting resources
to be used and scheduling them. Pathfinding algorithms help to automatically find

15

and optimize product paths through the system. Paths for robots would have to
be developed and tested manually if not using automated path planning.

2.3.1 Computation Time

Something that also can take considerable time is the computations of the
manufacturing system, especially for optimal solutions. The complexity and
flexibility are affecting each other and a function can be defined that gives a total
computational time value

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹).

This value defines how much computation time is used for the manufacturing
system due to planning for the agents in the system. In Figure 5, this is illustrated
with five points that are given where systems of different types are pinpointed.
Point number five is the type of system proposed throughout this thesis. The
advantage of point five is that it has less computation time than point four while
still maintaining high enough online flexibility and optimality for the scenarios
considered in this thesis. Heuristic planning and scheduling are approaches used
to achieve this. This thesis focuses on Plug & Produce to implement such a system
as given by point five.

Figure 5. This figure shows that the computational time, due to planning in a
manufacturing system is a function of computational complexity and online flexibility.
The highest computation time is type 4 and the lowest is type 2, noted with Max and

Min.

12

3 4

5

Co
m

pu
ta

tio
na

lc
om

pl
ex

ity

Online Flexibility

Min

Max

14

Table 2. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for the value of the expression

Not Understood Did not understand the message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask the agent to act as a proxy

Query If Ask the agent if the proposition is true

Query Ref Ask for an object

Refuse Refuse to perform the action

Reject Proposal Rejecting a given proposal

Request Request agent to perform an action

Request When Request when the proposition is true

Request Whenever Always run when the proposition is true

Subscribe Let the other agent send updated data

Hence, the FIPA standards are general for any kind of agent system, giving no
help for the specific problems in manufacturing systems.

2.3 Automated Planning and Scheduling

In multi-agent systems, planning is important. Three different types of planning
activities are considered in this thesis: (1) Process planning, including scheduling
of resources, (2) pathfinding algorithms that can find the shortest path through a
manufacturing system, and (3) path planning that generates collision-free paths
for industrial robots. These are all important tools for making a Plug & Produce
system since they give the possibility to automate additional steps that would
otherwise be performed manually. Process plans are written on a high level and
defined manually by humans, but automatically deployed by selecting resources
to be used and scheduling them. Pathfinding algorithms help to automatically find

15

and optimize product paths through the system. Paths for robots would have to
be developed and tested manually if not using automated path planning.

2.3.1 Computation Time

Something that also can take considerable time is the computations of the
manufacturing system, especially for optimal solutions. The complexity and
flexibility are affecting each other and a function can be defined that gives a total
computational time value

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹).

This value defines how much computation time is used for the manufacturing
system due to planning for the agents in the system. In Figure 5, this is illustrated
with five points that are given where systems of different types are pinpointed.
Point number five is the type of system proposed throughout this thesis. The
advantage of point five is that it has less computation time than point four while
still maintaining high enough online flexibility and optimality for the scenarios
considered in this thesis. Heuristic planning and scheduling are approaches used
to achieve this. This thesis focuses on Plug & Produce to implement such a system
as given by point five.

Figure 5. This figure shows that the computational time, due to planning in a
manufacturing system is a function of computational complexity and online flexibility.
The highest computation time is type 4 and the lowest is type 2, noted with Max and

Min.

12

3 4

5

Co
m

pu
ta

tio
na

lc
om

pl
ex

ity

Online Flexibility

Min

Max

16

2.3.2 Path Planning

The Plug & Produce framework cannot solve everything by itself since it is only
a platform for developing agent systems. All required data such as geometries,
positions and process plans must be given to the agents. For example, an
industrial robot, i.e. 6-axis arm based, need to have a collision-free path for
moving in robot cells as shown in [48]. If a robot is supposed to be autonomous
and without the need for manual reprogramming, it must be possible for the robot
to find paths on demand automatically. Otherwise, these must be pre-
programmed manually for each possible scenario. One approach is to use a path
planner that can be used online when the manufacturing system is running.
Example of suitable planers is RRT and RRT-connect [49] due to their ability to
efficiently find solutions. An improved planner called RRT* has also been
developed that tends to find shorter paths than RRT.

A rapidly exploring random tree (RRT) is used for finding a collision-free path
through a space with obstacles, such as a robot cell [50]. It searches a space by
building a random tree from the start point until it reaches its target point. RRT-
connect is based on RRT and is instead using a bidirectional search, starting in
both the start and target positions. It then generates random points until the two
threes meet. Using these types of path planners, industrial robots in
manufacturing systems can become completely autonomous. This will enable
them to handle new types of products instantaneously. However, it puts a
requirement on having a completely accurate simulation of the robot cell with
computer-aided design (CAD) objects that are accurate enough. The planner
algorithms need this simulation to make the paths collision-free. One famous
library that has implemented RRT-Connect and many other planners is the Open
Motion Planning Library (OMPL). This library is not containing any collision
detection since it has no 3D representation of the world. One software that adds
that layer is the MoveIt software which is a part of the Robot Operating System
(ROS), that uses OMPL.

The problem with such simulation software is that their simulations typically are
updated manually by humans. This includes designing CAD models in external
software, importing them, and setting their positions in the simulation. It is
acceptable that CAD models need to be designed by humans, to make sure that
they are accurate enough. However, the positioning of the CAD models in the
simulation should be based on the actual state of the online robot cell and that is
difficult for humans to do in a Plug & Produce system where modules are moving
around constantly, see Figure 6, where the robot should move between positions
𝑝𝑝1 and 𝑝𝑝2. This is just too costly for humans to perform in terms of working
hours. Additionally, some dynamic obstacles such as operators moving inside the

17

robot cell and tools forgotten inside can’t be created manually in CAD software,
due to the random nature of these objects. Thus, the cell could instead be scanned
using a vision system to find these obstacles. These can be automatically added to
the simulation by generating many small cubes to approximate the shape of the
real obstacles. Hence, two approaches are needed to work concurrently for
automatically updating the obstacles in the simulation: 1) Automatically placing
existing CAD objects and 2) generating approximated shapes based on online
sensor data.

Figure 6: Top view of a Plug & Produce robot cell, containing one industrial robot
in the centre, surrounded by ten process modules. The robot should move

between the start position 𝑝𝑝1 and target position 𝑝𝑝2.

2.3.3 Pathfinding

Pathfinding refers to finding the shortest path from one node to another in a set
of nodes. This is relevant when each part agent plans its transfer through the
manufacturing system. Dijkstra defined an algorithm already in 1959 [51], where
the shortest path between two nodes can be found. Since that time, extensions
have been created such as the A* algorithm. In Figure 7, the shortest path is found
between a start node 𝐴𝐴 and a target node 𝐸𝐸. This shortest path is marked with
blue colour and a thick line. Each line has an integer cost for travelling.

When multiple agents should find collision-free paths, conflicts could be
introduced when running A* [52]. Such planning is often regarded as multi-agent
pathfinding (MAPF) [53]. There is often also a focus on minimizing a cost
function such as the length of the path of all agents or the total makespan. Li et
al. explain that MAPF typically does not include the agents’ physical shape when
planning, thus collisions could exist between geometrical shapes if they are not
considered when planning [54]. Sartoretti et al. [55] state that MAPF is relying on

Robot

16

2.3.2 Path Planning

The Plug & Produce framework cannot solve everything by itself since it is only
a platform for developing agent systems. All required data such as geometries,
positions and process plans must be given to the agents. For example, an
industrial robot, i.e. 6-axis arm based, need to have a collision-free path for
moving in robot cells as shown in [48]. If a robot is supposed to be autonomous
and without the need for manual reprogramming, it must be possible for the robot
to find paths on demand automatically. Otherwise, these must be pre-
programmed manually for each possible scenario. One approach is to use a path
planner that can be used online when the manufacturing system is running.
Example of suitable planers is RRT and RRT-connect [49] due to their ability to
efficiently find solutions. An improved planner called RRT* has also been
developed that tends to find shorter paths than RRT.

A rapidly exploring random tree (RRT) is used for finding a collision-free path
through a space with obstacles, such as a robot cell [50]. It searches a space by
building a random tree from the start point until it reaches its target point. RRT-
connect is based on RRT and is instead using a bidirectional search, starting in
both the start and target positions. It then generates random points until the two
threes meet. Using these types of path planners, industrial robots in
manufacturing systems can become completely autonomous. This will enable
them to handle new types of products instantaneously. However, it puts a
requirement on having a completely accurate simulation of the robot cell with
computer-aided design (CAD) objects that are accurate enough. The planner
algorithms need this simulation to make the paths collision-free. One famous
library that has implemented RRT-Connect and many other planners is the Open
Motion Planning Library (OMPL). This library is not containing any collision
detection since it has no 3D representation of the world. One software that adds
that layer is the MoveIt software which is a part of the Robot Operating System
(ROS), that uses OMPL.

The problem with such simulation software is that their simulations typically are
updated manually by humans. This includes designing CAD models in external
software, importing them, and setting their positions in the simulation. It is
acceptable that CAD models need to be designed by humans, to make sure that
they are accurate enough. However, the positioning of the CAD models in the
simulation should be based on the actual state of the online robot cell and that is
difficult for humans to do in a Plug & Produce system where modules are moving
around constantly, see Figure 6, where the robot should move between positions
𝑝𝑝1 and 𝑝𝑝2. This is just too costly for humans to perform in terms of working
hours. Additionally, some dynamic obstacles such as operators moving inside the

17

robot cell and tools forgotten inside can’t be created manually in CAD software,
due to the random nature of these objects. Thus, the cell could instead be scanned
using a vision system to find these obstacles. These can be automatically added to
the simulation by generating many small cubes to approximate the shape of the
real obstacles. Hence, two approaches are needed to work concurrently for
automatically updating the obstacles in the simulation: 1) Automatically placing
existing CAD objects and 2) generating approximated shapes based on online
sensor data.

Figure 6: Top view of a Plug & Produce robot cell, containing one industrial robot
in the centre, surrounded by ten process modules. The robot should move

between the start position 𝑝𝑝1 and target position 𝑝𝑝2.

2.3.3 Pathfinding

Pathfinding refers to finding the shortest path from one node to another in a set
of nodes. This is relevant when each part agent plans its transfer through the
manufacturing system. Dijkstra defined an algorithm already in 1959 [51], where
the shortest path between two nodes can be found. Since that time, extensions
have been created such as the A* algorithm. In Figure 7, the shortest path is found
between a start node 𝐴𝐴 and a target node 𝐸𝐸. This shortest path is marked with
blue colour and a thick line. Each line has an integer cost for travelling.

When multiple agents should find collision-free paths, conflicts could be
introduced when running A* [52]. Such planning is often regarded as multi-agent
pathfinding (MAPF) [53]. There is often also a focus on minimizing a cost
function such as the length of the path of all agents or the total makespan. Li et
al. explain that MAPF typically does not include the agents’ physical shape when
planning, thus collisions could exist between geometrical shapes if they are not
considered when planning [54]. Sartoretti et al. [55] state that MAPF is relying on

Robot

18

central planning and not scaling well beyond a few hundred agents since the paths
are recomputed online when things change. Two classes of MAPF are described
by Sharon et al. [56]: (1) decoupled approaches where paths are found individually
for each agent relatively fast but with no guarantee for a globally optimal solution.
and (2) coupled approaches that can reach optimal solutions but takes more time
for calculations. One example of decoupled planning is the cooperative A*,
described by Silver et al. [57].

Figure 7: Dijkstra's algorithm, where the blue marked line is the shortest path between
the start and target positions.

For an agent to use such an algorithm it requires knowledge about its
environment. It needs to know each node, i.e., resource buffer and what the
travelling costs are. This can be done by letting the agents ask other agents about
their location and reachability. For transportation, an industrial robot might need
to first run a short simulation before answering. In Figure 8, this is illustrated with
two robots, each having its reachability areas, noted by A and B. However, since
obstacles exist in the robot cell, zone B is not correct, and C becomes the actual
zone after collision detection has been performed. This shows us that it is not
possible to know in a Plug & Produce system if the robots can reach a certain
point without doing some path planning and collision detection.

Robot

C

D

5
Start

Target

Robot

1

2

1 1

19

Figure 8: Industrial robots' reachability example for checking if they can reach the
point 𝑝𝑝1 and 𝑝𝑝2 marked in the figure.

This is time-consuming and can take several seconds up to minutes to perform.
Thus, it is desirable to store these simulations for later use if the same types of
parts are going to ask the same questions again. Additionally, the agent can store
the successful paths through the system, trying to use them for the next part that
enters the system. In this way, the system will be slow at the beginning and speed
up after some parts have gone through the system. It is also possible to do this in
simulation first to let the agents find each other before deploying them to the
online environment in the physical manufacturing system. Then the agents already
will be trained before entering the online manufacturing system.

2.3.1 Scheduling

When multiple part agents share a set of resources in the system, scheduling is
needed for avoiding conflicts. Things to consider include generating schedules,
storing schedules, and optimization. Schedules can be generated by considering
all part agents at the same time for reaching a global optimal schedule, or they can
be generated locally for each part, with no guarantee of reaching a globally optimal
solution. The software for generating schedules can be distributed to agents or it
could be contained in a central software, that performs the calculations. The
storage of the schedules can either be centrally located or they can be distributed
among the resources to be scheduled so that each resource knows locally about
its schedule. Then other agents can ask those resources for their schedules. When
working with Plug & Produce the environment is dynamic since changes happen
online. There are multiple approaches for dynamic scheduling and rescheduling
[58]. One approach is to add new schedules to the end of the set of all already
scheduled tasks, requiring no rescheduling [59]. If the system runs into a problem,

Robot

Robot

A

B

C

18

central planning and not scaling well beyond a few hundred agents since the paths
are recomputed online when things change. Two classes of MAPF are described
by Sharon et al. [56]: (1) decoupled approaches where paths are found individually
for each agent relatively fast but with no guarantee for a globally optimal solution.
and (2) coupled approaches that can reach optimal solutions but takes more time
for calculations. One example of decoupled planning is the cooperative A*,
described by Silver et al. [57].

Figure 7: Dijkstra's algorithm, where the blue marked line is the shortest path between
the start and target positions.

For an agent to use such an algorithm it requires knowledge about its
environment. It needs to know each node, i.e., resource buffer and what the
travelling costs are. This can be done by letting the agents ask other agents about
their location and reachability. For transportation, an industrial robot might need
to first run a short simulation before answering. In Figure 8, this is illustrated with
two robots, each having its reachability areas, noted by A and B. However, since
obstacles exist in the robot cell, zone B is not correct, and C becomes the actual
zone after collision detection has been performed. This shows us that it is not
possible to know in a Plug & Produce system if the robots can reach a certain
point without doing some path planning and collision detection.

Robot

C

D

5
Start

Target

Robot

1

2

1 1

19

Figure 8: Industrial robots' reachability example for checking if they can reach the
point 𝑝𝑝1 and 𝑝𝑝2 marked in the figure.

This is time-consuming and can take several seconds up to minutes to perform.
Thus, it is desirable to store these simulations for later use if the same types of
parts are going to ask the same questions again. Additionally, the agent can store
the successful paths through the system, trying to use them for the next part that
enters the system. In this way, the system will be slow at the beginning and speed
up after some parts have gone through the system. It is also possible to do this in
simulation first to let the agents find each other before deploying them to the
online environment in the physical manufacturing system. Then the agents already
will be trained before entering the online manufacturing system.

2.3.1 Scheduling

When multiple part agents share a set of resources in the system, scheduling is
needed for avoiding conflicts. Things to consider include generating schedules,
storing schedules, and optimization. Schedules can be generated by considering
all part agents at the same time for reaching a global optimal schedule, or they can
be generated locally for each part, with no guarantee of reaching a globally optimal
solution. The software for generating schedules can be distributed to agents or it
could be contained in a central software, that performs the calculations. The
storage of the schedules can either be centrally located or they can be distributed
among the resources to be scheduled so that each resource knows locally about
its schedule. Then other agents can ask those resources for their schedules. When
working with Plug & Produce the environment is dynamic since changes happen
online. There are multiple approaches for dynamic scheduling and rescheduling
[58]. One approach is to add new schedules to the end of the set of all already
scheduled tasks, requiring no rescheduling [59]. If the system runs into a problem,

Robot

Robot

A

B

C

20

it needs to rerun a sequence of skills. Then that is not necessarily possible if that
sequence is in the middle of all scheduled tasks. According to Viera et al. solutions
for job insertion include right shift, partial rescheduling, and regeneration [60].

21

3 Proposed Plug & Produce Framework

This chapter presents the Plug & Produce framework that has been developed in
this work to reduce software time. It goes through the agent interfaces, process
plans, and agent configurations. Then, the translation of locations is described to
show how to manage local coordinates when moving process modules around in
the system. Agent communication is described to show how the agents interact.
Then the agent handling system is described to give a view of the agent life cycle
management. Next, a configuration tool, that is used for defining the ontology is
presented. Finally, the planning is described, and divided into scheduling and
pathfinding.

3.1 Agent Definition

Agents can be seen as components of a cyber-physical system. Each agent is a
cyber component running in cyberspace such as in a cloud service and is
connected to a related physical or logical component in the real world.

Figure 9. Class diagram showing the ontology used when configuring one agent.

20

it needs to rerun a sequence of skills. Then that is not necessarily possible if that
sequence is in the middle of all scheduled tasks. According to Viera et al. solutions
for job insertion include right shift, partial rescheduling, and regeneration [60].

21

3 Proposed Plug & Produce Framework

This chapter presents the Plug & Produce framework that has been developed in
this work to reduce software time. It goes through the agent interfaces, process
plans, and agent configurations. Then, the translation of locations is described to
show how to manage local coordinates when moving process modules around in
the system. Agent communication is described to show how the agents interact.
Then the agent handling system is described to give a view of the agent life cycle
management. Next, a configuration tool, that is used for defining the ontology is
presented. Finally, the planning is described, and divided into scheduling and
pathfinding.

3.1 Agent Definition

Agents can be seen as components of a cyber-physical system. Each agent is a
cyber component running in cyberspace such as in a cloud service and is
connected to a related physical or logical component in the real world.

Figure 9. Class diagram showing the ontology used when configuring one agent.

22

In C-MAS, all agents use the same basic classes and are given their behaviours
through a configuration called the global configuration. In Figure 9, a detailed
description of this ontology is shown.

When an agent is instantiated, it becomes an individual object in the cloud and is
also given a local configuration. The local configuration contains all the unique
parameters that are not shared with other agents of the same type, i.e., that are
using the same global configuration. Two types of agents exist, parts and
resources. The difference is that parts have goals that they want to reach in the
manufacturing system using available resources. To reach a goal, process plans
are defined as recipes rather than programs. To run a process plan, several
variables and skills are required to exist in the agent network. These requirements
are in this thesis noted as demands. Agents interact by connecting through
interfaces. An agent can have multiple interfaces that define its compatibility with
other agents. Skills are always presented to other agents through interfaces. This
is done to determine if their interfaces are compatible. Agents have variables that
are accessible from all interfaces within the agent. Variables can also be local on
individual interfaces. Skills describe functionalities that an agent can perform and
are executed by running a process plan specifically written for that skill. Process
plans might generate further demands for additional agents (including required
skills and variables). This creates a chain of connected collaborating agents. An
example of a chain is a gripper that transports a part where the gripper is
connected to an industrial robot. These three physical components can be
controlled by separate agents, connected in a chain of interfaces when interacting.
Compatibility is checked by comparing the generated demands with the interfaces
in the agent network, to find a compatible agent.

In the multi-agent system, a single agent 𝑎𝑎, belongs to the set of all agents 𝐴𝐴, i.e.,
𝑎𝑎 ∈ 𝐴𝐴. Typical agents in manufacturing systems represent physical components
such as grippers, parts, buffers, and robots. The set of agents 𝐴𝐴 contains all parts
𝑃𝑃 and resources 𝑅𝑅, where 𝐴𝐴 = 𝑅𝑅 ∪ 𝑃𝑃. A single part is noted as 𝑝𝑝 ∈ 𝑃𝑃 and a single
resource is noted as 𝑟𝑟 ∈ 𝑅𝑅. The parts and resources can be described as:

𝑝𝑝 = 〈𝐺𝐺𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝, 𝑉𝑉𝑝𝑝〉

𝑟𝑟 = 〈𝐼𝐼𝐼𝐼𝑟𝑟 , V𝑟𝑟〉

Where 𝐺𝐺𝑝𝑝 is the set of goals for part 𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝 is the set of interfaces 𝑖𝑖𝑖𝑖 that the agent
𝑝𝑝 has, and 𝑉𝑉𝑝𝑝 is the set of all variables that 𝑝𝑝 has. A single variable is noted as 𝑣𝑣
and belongs to an interface or an agent. A variable can, for instance, be a path for
grinding or a coordinate for picking up a part. Also, goals can have variables
related to them for giving parameters for the goal.

23

Parts and resources have different behaviours called strategies. Parts are active
with goals that they try to reach, while resources are more passive and wait for
parts to give them requests for running skills. However, once a resource gets a
job to perform, they will gather information about their surroundings and take
the initiative to request further assistance from other resources. A goal for parts
can, for instance, be to get soft edges. Goals can be described with attached
arguments such as speed or size, making small changes to the consequence of
reaching the goal. One goal is defined by the following tuple:

𝑔𝑔 =< 𝑛𝑛𝑔𝑔, 𝑉𝑉𝑔𝑔, 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 >

where 𝑛𝑛𝑔𝑔 is the name of the goal that should be matched with the name of a
process plan 𝜋𝜋𝑔𝑔 in Π𝑔𝑔, 𝑉𝑉𝑔𝑔 is the set of all variables for the goal, and 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 is the
set of goals that must be fulfilled before this goal can be assigned. The set 𝐺𝐺𝑝𝑝
contains all goals 𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝 for one part 𝑝𝑝. A part can have several goals, and each
of them describes some manufacturing result that the part desires to reach.
Variables can also be stored on an agent by storing them in 𝑉𝑉𝑝𝑝 or 𝑉𝑉𝑟𝑟 depending
on the agent type. A single skill is noted as 𝑠𝑠 ∈ 𝑆𝑆, where 𝑆𝑆 contains all skills in the
global configuration. A skill is defined as:

𝑠𝑠 = 〈𝑛𝑛𝑠𝑠 , 𝜋𝜋𝑠𝑠〉

where the 𝑛𝑛𝑠𝑠 is the variable name and 𝜋𝜋𝑠𝑠 is a specific process plan written for
executing that specific skill.

3.2 Agent Types

Each agent type in the framework has its strategy that defines its behaviour. The
defined types in this work are the part agents and the resource agents. However,
other types can exist such as material agents that are similar to part agents but
with no goals.

3.2.1 Part Agent Strategy

Part agents have goals and reach them by executing process plans for those goals.
To make a process plans executable, multiple communications have to be done
with other agents and skills scheduled before the plans can be executed. In Figure
10, a simplified overview of the part agent strategy is shown. The part agent first
loads its configuration telling it that it is a part agent and loading the set of goals
together with any other configured values. Next, all goals are scheduled, followed
by going into a loop of starting skills on resources until all goals are reached.
Finally, the part agent is shut down if no goals remain unfulfilled.

22

In C-MAS, all agents use the same basic classes and are given their behaviours
through a configuration called the global configuration. In Figure 9, a detailed
description of this ontology is shown.

When an agent is instantiated, it becomes an individual object in the cloud and is
also given a local configuration. The local configuration contains all the unique
parameters that are not shared with other agents of the same type, i.e., that are
using the same global configuration. Two types of agents exist, parts and
resources. The difference is that parts have goals that they want to reach in the
manufacturing system using available resources. To reach a goal, process plans
are defined as recipes rather than programs. To run a process plan, several
variables and skills are required to exist in the agent network. These requirements
are in this thesis noted as demands. Agents interact by connecting through
interfaces. An agent can have multiple interfaces that define its compatibility with
other agents. Skills are always presented to other agents through interfaces. This
is done to determine if their interfaces are compatible. Agents have variables that
are accessible from all interfaces within the agent. Variables can also be local on
individual interfaces. Skills describe functionalities that an agent can perform and
are executed by running a process plan specifically written for that skill. Process
plans might generate further demands for additional agents (including required
skills and variables). This creates a chain of connected collaborating agents. An
example of a chain is a gripper that transports a part where the gripper is
connected to an industrial robot. These three physical components can be
controlled by separate agents, connected in a chain of interfaces when interacting.
Compatibility is checked by comparing the generated demands with the interfaces
in the agent network, to find a compatible agent.

In the multi-agent system, a single agent 𝑎𝑎, belongs to the set of all agents 𝐴𝐴, i.e.,
𝑎𝑎 ∈ 𝐴𝐴. Typical agents in manufacturing systems represent physical components
such as grippers, parts, buffers, and robots. The set of agents 𝐴𝐴 contains all parts
𝑃𝑃 and resources 𝑅𝑅, where 𝐴𝐴 = 𝑅𝑅 ∪ 𝑃𝑃. A single part is noted as 𝑝𝑝 ∈ 𝑃𝑃 and a single
resource is noted as 𝑟𝑟 ∈ 𝑅𝑅. The parts and resources can be described as:

𝑝𝑝 = 〈𝐺𝐺𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝, 𝑉𝑉𝑝𝑝〉

𝑟𝑟 = 〈𝐼𝐼𝐼𝐼𝑟𝑟 , V𝑟𝑟〉

Where 𝐺𝐺𝑝𝑝 is the set of goals for part 𝑝𝑝, 𝐼𝐼𝐼𝐼𝑝𝑝 is the set of interfaces 𝑖𝑖𝑖𝑖 that the agent
𝑝𝑝 has, and 𝑉𝑉𝑝𝑝 is the set of all variables that 𝑝𝑝 has. A single variable is noted as 𝑣𝑣
and belongs to an interface or an agent. A variable can, for instance, be a path for
grinding or a coordinate for picking up a part. Also, goals can have variables
related to them for giving parameters for the goal.

23

Parts and resources have different behaviours called strategies. Parts are active
with goals that they try to reach, while resources are more passive and wait for
parts to give them requests for running skills. However, once a resource gets a
job to perform, they will gather information about their surroundings and take
the initiative to request further assistance from other resources. A goal for parts
can, for instance, be to get soft edges. Goals can be described with attached
arguments such as speed or size, making small changes to the consequence of
reaching the goal. One goal is defined by the following tuple:

𝑔𝑔 =< 𝑛𝑛𝑔𝑔, 𝑉𝑉𝑔𝑔, 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 >

where 𝑛𝑛𝑔𝑔 is the name of the goal that should be matched with the name of a
process plan 𝜋𝜋𝑔𝑔 in Π𝑔𝑔, 𝑉𝑉𝑔𝑔 is the set of all variables for the goal, and 𝑝𝑝𝑝𝑝𝑒𝑒𝑔𝑔 is the
set of goals that must be fulfilled before this goal can be assigned. The set 𝐺𝐺𝑝𝑝
contains all goals 𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝 for one part 𝑝𝑝. A part can have several goals, and each
of them describes some manufacturing result that the part desires to reach.
Variables can also be stored on an agent by storing them in 𝑉𝑉𝑝𝑝 or 𝑉𝑉𝑟𝑟 depending
on the agent type. A single skill is noted as 𝑠𝑠 ∈ 𝑆𝑆, where 𝑆𝑆 contains all skills in the
global configuration. A skill is defined as:

𝑠𝑠 = 〈𝑛𝑛𝑠𝑠 , 𝜋𝜋𝑠𝑠〉

where the 𝑛𝑛𝑠𝑠 is the variable name and 𝜋𝜋𝑠𝑠 is a specific process plan written for
executing that specific skill.

3.2 Agent Types

Each agent type in the framework has its strategy that defines its behaviour. The
defined types in this work are the part agents and the resource agents. However,
other types can exist such as material agents that are similar to part agents but
with no goals.

3.2.1 Part Agent Strategy

Part agents have goals and reach them by executing process plans for those goals.
To make a process plans executable, multiple communications have to be done
with other agents and skills scheduled before the plans can be executed. In Figure
10, a simplified overview of the part agent strategy is shown. The part agent first
loads its configuration telling it that it is a part agent and loading the set of goals
together with any other configured values. Next, all goals are scheduled, followed
by going into a loop of starting skills on resources until all goals are reached.
Finally, the part agent is shut down if no goals remain unfulfilled.

24

Figure 10. Flowchart showing a simplified part agent strategy where the detailed steps
are hidden.

3.2.2 Resource Agent Strategy

Resources have skills that can be triggered to execute based on events. One event
is that another agent requests the skill to execute. This requires that the skill has
been correctly booked before the request. Another event is timers, which can be
used to run a skill as a cyclic behaviour, meaning that it will execute at a certain
frequency. Further, events based on variables are useful and can be based on user
input. For example, when a button is pressed, a skill could be executed. In Figure
11, a flowchart is shown that describes the detailed behaviour of the resource
strategy. The resource starts and loads its agent configuration, then it starts to
receive messages and manages them based on the communicative acts used for
each message. The function setData(), sets some data on the resource agent,
requestData() returns some data from the resource agent, runSkillNow() executes a
specific skill on the resource agent, checkDemand() checks if the resource agent
fulfils a specified demand for the resource to have certain skills and variables,
bookInterface() books an interface on the resource agent unBookInterface() unbooks
an interface on the resource agent.

Schedule all goals

Select skills to execute
and request them to start

Load agent configuration

All goals
reached?

Shut down agent

No

Yes

25

Figure 11. Flowchart showing the strategy of a resource agent, that receives
messages and manages them based on communicative acts.

3.3 Agent Interfaces

Interfaces must match to connect. Agents have multiple interfaces, and interfaces
have multiple skills. Each interface has defined inputs that describe needed
variables to execute any of the presented skills on that interface. Some interfaces
have variables that can be accessed by other agents by requesting their current
value. One interface is noted as 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, i.e., 𝐼𝐼𝐼𝐼 is the set of all interfaces in the
global configuration. An interface is defined by the tuple:

𝑖𝑖𝑖𝑖 = 〈𝑆𝑆𝑖𝑖𝑖𝑖, 𝑉𝑉𝑖𝑖𝑖𝑖〉

where all skills 𝑠𝑠 on that interface are placed in 𝑆𝑆𝑖𝑖𝑖𝑖, and all variables on the
interface are placed in 𝑉𝑉𝑖𝑖𝑖𝑖

Available resources are not known at the planning stage when process plans are
created. Instead, the needed resources are defined by declaring an abstract
interface, noted as:

𝑢𝑢 ∈ 𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛𝑢𝑢}

Each abstract interface 𝑢𝑢 declared in a process plan is mapped to a real resource
interface 𝑖𝑖𝑖𝑖 at runtime before a process plan can be executed. This is done by an
interface mapping algorithm, presented in Paper A. This algorithm generates
demands 𝑑𝑑𝑢𝑢 = {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛𝑑𝑑}, where 𝑑𝑑𝑢𝑢 is defined as:

𝑑𝑑𝑢𝑢 =< 𝑆𝑆𝑢𝑢, 𝑉𝑉𝑢𝑢 >

Load agent configuration

requestData () runSkillNow ()setData () checkDemand () bookInterface () unbookInterface()

Receive
Messages

CoActSetData

CoActRequestData

CoActRunSkillNow CoActCheckDemand

CoActBookInterface

CoActUnbookInterface

24

Figure 10. Flowchart showing a simplified part agent strategy where the detailed steps
are hidden.

3.2.2 Resource Agent Strategy

Resources have skills that can be triggered to execute based on events. One event
is that another agent requests the skill to execute. This requires that the skill has
been correctly booked before the request. Another event is timers, which can be
used to run a skill as a cyclic behaviour, meaning that it will execute at a certain
frequency. Further, events based on variables are useful and can be based on user
input. For example, when a button is pressed, a skill could be executed. In Figure
11, a flowchart is shown that describes the detailed behaviour of the resource
strategy. The resource starts and loads its agent configuration, then it starts to
receive messages and manages them based on the communicative acts used for
each message. The function setData(), sets some data on the resource agent,
requestData() returns some data from the resource agent, runSkillNow() executes a
specific skill on the resource agent, checkDemand() checks if the resource agent
fulfils a specified demand for the resource to have certain skills and variables,
bookInterface() books an interface on the resource agent unBookInterface() unbooks
an interface on the resource agent.

Schedule all goals

Select skills to execute
and request them to start

Load agent configuration

All goals
reached?

Shut down agent

No

Yes

25

Figure 11. Flowchart showing the strategy of a resource agent, that receives
messages and manages them based on communicative acts.

3.3 Agent Interfaces

Interfaces must match to connect. Agents have multiple interfaces, and interfaces
have multiple skills. Each interface has defined inputs that describe needed
variables to execute any of the presented skills on that interface. Some interfaces
have variables that can be accessed by other agents by requesting their current
value. One interface is noted as 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, i.e., 𝐼𝐼𝐼𝐼 is the set of all interfaces in the
global configuration. An interface is defined by the tuple:

𝑖𝑖𝑖𝑖 = 〈𝑆𝑆𝑖𝑖𝑖𝑖, 𝑉𝑉𝑖𝑖𝑖𝑖〉

where all skills 𝑠𝑠 on that interface are placed in 𝑆𝑆𝑖𝑖𝑖𝑖, and all variables on the
interface are placed in 𝑉𝑉𝑖𝑖𝑖𝑖

Available resources are not known at the planning stage when process plans are
created. Instead, the needed resources are defined by declaring an abstract
interface, noted as:

𝑢𝑢 ∈ 𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛𝑢𝑢}

Each abstract interface 𝑢𝑢 declared in a process plan is mapped to a real resource
interface 𝑖𝑖𝑖𝑖 at runtime before a process plan can be executed. This is done by an
interface mapping algorithm, presented in Paper A. This algorithm generates
demands 𝑑𝑑𝑢𝑢 = {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛𝑑𝑑}, where 𝑑𝑑𝑢𝑢 is defined as:

𝑑𝑑𝑢𝑢 =< 𝑆𝑆𝑢𝑢, 𝑉𝑉𝑢𝑢 >

Load agent configuration

requestData () runSkillNow ()setData () checkDemand () bookInterface () unbookInterface()

Receive
Messages

CoActSetData

CoActRequestData

CoActRunSkillNow CoActCheckDemand

CoActBookInterface

CoActUnbookInterface

26

Hence, the demand 𝑑𝑑𝑢𝑢 defines the requirements that one agent has for another
agent’s interface. Each 𝑢𝑢 represents an abstract interface. Note that both 𝑑𝑑𝑢𝑢 and
𝑖𝑖𝑖𝑖 defines skills and variables. Thus, 𝑖𝑖𝑖𝑖 must have all skills and variables that are
defined in 𝑑𝑑𝑢𝑢 to be compatible. The agent that uses the process plan will look in
the agent network to find one interface that can be used.

3.4 Process Plans

To reach a goal, a process plan is needed. A process plan defines at a high level
how to reach a specific goal. This description is written like a recipe, rather than
low-level code. A process plan translates one goal into a sequence of skills that
can be executed on resources in the agent network. When a part agent is given a
goal, it must find a suitable process plan that is available. Hence, it will go through
all process plans in the global configuration until one is found where all demands
are fulfilled, i.e., all needed resources are available with compatible interfaces. It
is also possible to compare all process plans and select the one with the lowest
cost, based on the currently installed resources as described in Paper A. Process
plans can either be automatically generated or manually designed by a human. It
is difficult, if not impossible today, for computer software to know how to design
a successful process. This knowledge is today based on human experience [61],
[62]. If a system would have to try repeatedly it might find a solution by using
tools such as machine learning. However, this is today difficult to achieve on a
high-level process plan and is more suitable for specific problems. A single
process plan for reaching a goal is noted as:

𝜋𝜋𝑔𝑔 ∈ 𝛱𝛱𝑔𝑔

and a process plan for executing a skill is noted as 𝜋𝜋𝑠𝑠. A process plan must be
turned into an executable process plan 𝜋𝜋𝑔𝑔

𝑒𝑒 ∈ Π𝑔𝑔
𝑒𝑒, or 𝜋𝜋𝑠𝑠

𝑒𝑒 ∈ Π𝑠𝑠
𝑒𝑒. The set

Π𝐺𝐺 contains all process plans for reaching all goals for all parts that are stored in
𝐺𝐺. A single process plan 𝜋𝜋𝑔𝑔 solves the goal 𝑔𝑔 that can exist on any part 𝑝𝑝. On the
other hand, the process plan 𝜋𝜋𝑠𝑠 is only written for a specific skill 𝑠𝑠 existing on a
specific resource type that has that skill. A process plan defines a sequence of
skills (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝜋𝜋). Figure 12 shows the states for a process plan with five skills
1-5, where the initial state is 𝑞𝑞0 and the final state is 𝑞𝑞𝑓𝑓.

Figure 12: Process plan with five skills, where the initial state is 𝑞𝑞0 and final state is
𝑞𝑞𝑓𝑓.

27

3.4.1 Example 1

An example of a process plan 𝜋𝜋𝑔𝑔 to reach goal 𝑔𝑔 is: 𝑢𝑢1. 𝑠𝑠1(), 𝑢𝑢2. 𝑠𝑠2(). In 𝜋𝜋𝑔𝑔 two
skills are used: 𝑠𝑠1 and 𝑠𝑠2. The letters 𝑢𝑢1 and 𝑢𝑢2 in front of these skills are the
abstract interfaces, used to show that these skills need to run on different
resources. The letters are called abstract interfaces since they represent undefined
interfaces needed on some resources in the manufacturing system. If the letter 𝑎𝑎
would be used for both skills, that would mean that we are looking for an agent
having an interface with both 𝑠𝑠1 and 𝑠𝑠2. Process plans exist for both reaching
goals, and for executing skills. Thus, the connections between process plans create
a tree of connected interfaces. An example of a tree of connected interfaces is
shown in Figure 13. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑢𝑢1 for an interface 𝑢𝑢1 in the agent network
and finds the matching interface 𝑖𝑖𝑓𝑓𝑏𝑏 on 𝑟𝑟1. Additionally, interface 𝑢𝑢2 described in
𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑢𝑢2. Thus, the part finds the resource 𝑟𝑟2 with interface
𝑖𝑖𝑓𝑓𝑒𝑒. Resource 𝑟𝑟1 has a process plan 𝜋𝜋𝑠𝑠1 with further demands 𝑑𝑑𝑢𝑢3 and finds 𝑟𝑟3
on 𝑖𝑖𝑓𝑓𝑑𝑑.

Figure 13: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.

The detailed interactions are shown in Figure 14, where each step is shown. The
demand 𝑑𝑑𝑢𝑢1 is broadcasted to each resource in the current system, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3.
Then 𝑟𝑟2 and 𝑟𝑟3 rejects the request since they do not fulfil the demand. The
resource 𝑟𝑟1 has the demanded skill but demands further skills from other
resources and broadcasts that to the agent network in this example sent to 𝑟𝑟2
and 𝑟𝑟3. Resource 𝑟𝑟3 accept the request and returns information about the interface
𝑖𝑖𝑓𝑓𝑑𝑑 that was compatible. Then, 𝑟𝑟1 can accept the demand from 𝑝𝑝 by returning
information about its compatible interface 𝑖𝑖𝑖𝑖𝑏𝑏. After that the second demand 𝑑𝑑𝑢𝑢2
is broadcasted and rejected by 𝑟𝑟1 and 𝑟𝑟3, but accepted by 𝑟𝑟2 that returns
information about the compatible interface 𝑖𝑖𝑓𝑓𝑒𝑒.

26

Hence, the demand 𝑑𝑑𝑢𝑢 defines the requirements that one agent has for another
agent’s interface. Each 𝑢𝑢 represents an abstract interface. Note that both 𝑑𝑑𝑢𝑢 and
𝑖𝑖𝑖𝑖 defines skills and variables. Thus, 𝑖𝑖𝑖𝑖 must have all skills and variables that are
defined in 𝑑𝑑𝑢𝑢 to be compatible. The agent that uses the process plan will look in
the agent network to find one interface that can be used.

3.4 Process Plans

To reach a goal, a process plan is needed. A process plan defines at a high level
how to reach a specific goal. This description is written like a recipe, rather than
low-level code. A process plan translates one goal into a sequence of skills that
can be executed on resources in the agent network. When a part agent is given a
goal, it must find a suitable process plan that is available. Hence, it will go through
all process plans in the global configuration until one is found where all demands
are fulfilled, i.e., all needed resources are available with compatible interfaces. It
is also possible to compare all process plans and select the one with the lowest
cost, based on the currently installed resources as described in Paper A. Process
plans can either be automatically generated or manually designed by a human. It
is difficult, if not impossible today, for computer software to know how to design
a successful process. This knowledge is today based on human experience [61],
[62]. If a system would have to try repeatedly it might find a solution by using
tools such as machine learning. However, this is today difficult to achieve on a
high-level process plan and is more suitable for specific problems. A single
process plan for reaching a goal is noted as:

𝜋𝜋𝑔𝑔 ∈ 𝛱𝛱𝑔𝑔

and a process plan for executing a skill is noted as 𝜋𝜋𝑠𝑠. A process plan must be
turned into an executable process plan 𝜋𝜋𝑔𝑔

𝑒𝑒 ∈ Π𝑔𝑔
𝑒𝑒, or 𝜋𝜋𝑠𝑠

𝑒𝑒 ∈ Π𝑠𝑠
𝑒𝑒. The set

Π𝐺𝐺 contains all process plans for reaching all goals for all parts that are stored in
𝐺𝐺. A single process plan 𝜋𝜋𝑔𝑔 solves the goal 𝑔𝑔 that can exist on any part 𝑝𝑝. On the
other hand, the process plan 𝜋𝜋𝑠𝑠 is only written for a specific skill 𝑠𝑠 existing on a
specific resource type that has that skill. A process plan defines a sequence of
skills (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝜋𝜋). Figure 12 shows the states for a process plan with five skills
1-5, where the initial state is 𝑞𝑞0 and the final state is 𝑞𝑞𝑓𝑓.

Figure 12: Process plan with five skills, where the initial state is 𝑞𝑞0 and final state is
𝑞𝑞𝑓𝑓.

27

3.4.1 Example 1

An example of a process plan 𝜋𝜋𝑔𝑔 to reach goal 𝑔𝑔 is: 𝑢𝑢1. 𝑠𝑠1(), 𝑢𝑢2. 𝑠𝑠2(). In 𝜋𝜋𝑔𝑔 two
skills are used: 𝑠𝑠1 and 𝑠𝑠2. The letters 𝑢𝑢1 and 𝑢𝑢2 in front of these skills are the
abstract interfaces, used to show that these skills need to run on different
resources. The letters are called abstract interfaces since they represent undefined
interfaces needed on some resources in the manufacturing system. If the letter 𝑎𝑎
would be used for both skills, that would mean that we are looking for an agent
having an interface with both 𝑠𝑠1 and 𝑠𝑠2. Process plans exist for both reaching
goals, and for executing skills. Thus, the connections between process plans create
a tree of connected interfaces. An example of a tree of connected interfaces is
shown in Figure 13. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑢𝑢1 for an interface 𝑢𝑢1 in the agent network
and finds the matching interface 𝑖𝑖𝑓𝑓𝑏𝑏 on 𝑟𝑟1. Additionally, interface 𝑢𝑢2 described in
𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑢𝑢2. Thus, the part finds the resource 𝑟𝑟2 with interface
𝑖𝑖𝑓𝑓𝑒𝑒. Resource 𝑟𝑟1 has a process plan 𝜋𝜋𝑠𝑠1 with further demands 𝑑𝑑𝑢𝑢3 and finds 𝑟𝑟3
on 𝑖𝑖𝑓𝑓𝑑𝑑.

Figure 13: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.

The detailed interactions are shown in Figure 14, where each step is shown. The
demand 𝑑𝑑𝑢𝑢1 is broadcasted to each resource in the current system, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3.
Then 𝑟𝑟2 and 𝑟𝑟3 rejects the request since they do not fulfil the demand. The
resource 𝑟𝑟1 has the demanded skill but demands further skills from other
resources and broadcasts that to the agent network in this example sent to 𝑟𝑟2
and 𝑟𝑟3. Resource 𝑟𝑟3 accept the request and returns information about the interface
𝑖𝑖𝑓𝑓𝑑𝑑 that was compatible. Then, 𝑟𝑟1 can accept the demand from 𝑝𝑝 by returning
information about its compatible interface 𝑖𝑖𝑖𝑖𝑏𝑏. After that the second demand 𝑑𝑑𝑢𝑢2
is broadcasted and rejected by 𝑟𝑟1 and 𝑟𝑟3, but accepted by 𝑟𝑟2 that returns
information about the compatible interface 𝑖𝑖𝑓𝑓𝑒𝑒.

28

Figure 14. Example of one part interacting with three resources.

3.5 Configuring the System

As described earlier, all agents use the same basic code and are given their
behaviours through a configuration called global configuration. When instantiated
the agent is also given a local configuration that is based on the actual values of
input data to the agent, such as sensor data from its physical component or
information from other agents. All configurations for one agent (local and global)
are arranged according to the configuration classes presented in Figure 15.

D

Agent

D

D

Accept on

Reject
Reject

Accept on

D

Reject
D

D

D
D

Accept on

Reject

Reject

29

Figure 15: Entity-Relationship model (ER model), showing a simplified view of the
ontology used for configuring the agents. For further simplicity, the attributes are not

included.

The idea is to create a standardized agent code where only two types of agents
exist, the part and the resource. This code never changes and is general for most
manufacturing scenarios. Specific hardware codes will still exist, such as the
controller for an industrial robot or a PLC for reading a sensor. The agents handle
all communication among resources and parts of the system. It represents the
hardware or in some cases software. To do this, the agent needs to know what
services, i.e., skills it offers and what goals it has. Together with this, all variable
data and interfaces must be defined. The configuration should contain enough
information for the agent to know how it should behave. Global configurations
are written offline in a user-friendly configuration tool. They are later uploaded
to a configuration database, where all agents’ global configurations are stored.
Many users can log in and work simultaneously with the configurations. Further,
configurations can automatically be deployed to an online manufacturing system.
This is done by copying the developed configurations to another configuration
database existing in the manufacturing system, used online. Next time a resource
or part gets an agent instantiated, they will use the updated global configuration.

Agent

Process plan

11

N

1N

1

N

1

N

Have
1

1

Need

Process plans

Interfaces

Have

Goals

Have

N

1

Skills

Have
N

1 Have

Have

N
Have

Variables

28

Figure 14. Example of one part interacting with three resources.

3.5 Configuring the System

As described earlier, all agents use the same basic code and are given their
behaviours through a configuration called global configuration. When instantiated
the agent is also given a local configuration that is based on the actual values of
input data to the agent, such as sensor data from its physical component or
information from other agents. All configurations for one agent (local and global)
are arranged according to the configuration classes presented in Figure 15.

D

Agent

D

D

Accept on

Reject
Reject

Accept on

D

Reject
D

D

D
D

Accept on

Reject

Reject

29

Figure 15: Entity-Relationship model (ER model), showing a simplified view of the
ontology used for configuring the agents. For further simplicity, the attributes are not

included.

The idea is to create a standardized agent code where only two types of agents
exist, the part and the resource. This code never changes and is general for most
manufacturing scenarios. Specific hardware codes will still exist, such as the
controller for an industrial robot or a PLC for reading a sensor. The agents handle
all communication among resources and parts of the system. It represents the
hardware or in some cases software. To do this, the agent needs to know what
services, i.e., skills it offers and what goals it has. Together with this, all variable
data and interfaces must be defined. The configuration should contain enough
information for the agent to know how it should behave. Global configurations
are written offline in a user-friendly configuration tool. They are later uploaded
to a configuration database, where all agents’ global configurations are stored.
Many users can log in and work simultaneously with the configurations. Further,
configurations can automatically be deployed to an online manufacturing system.
This is done by copying the developed configurations to another configuration
database existing in the manufacturing system, used online. Next time a resource
or part gets an agent instantiated, they will use the updated global configuration.

Agent

Process plan

11

N

1N

1

N

1

N

Have
1

1

Need

Process plans

Interfaces

Have

Goals

Have

N

1

Skills

Have
N

1 Have

Have

N
Have

Variables

30

By separating the offline and online configuration databases, it is possible to test
the new configurations together with a simulated manufacturing cell before
deploying them to the online manufacturing system.

3.5.1 Example 2

In Figure 16, an example is shown of how one part agent 𝑝𝑝 tries to reach a goal
𝑔𝑔. The goal is solved by process plan 𝜋𝜋𝑔𝑔 that demands an interface with a specific
skill, and finds 𝑠𝑠1 on 𝑖𝑖𝑓𝑓1. The skill 𝑠𝑠1 executes its plan 𝜋𝜋𝑠𝑠1, that demands a further
skill and finds 𝑠𝑠2 on 𝑖𝑖𝑓𝑓2. Finally, skill 𝑠𝑠2 executes its plan 𝜋𝜋𝑠𝑠2. After this the chain
is disconnected and the goal 𝑔𝑔 reached.

Figure 16: A combined model, showing a partial view of the internal ontology of three
agents 𝑝𝑝, 𝑟𝑟1, and 𝑟𝑟2. In this example, the part agent 𝑝𝑝 is requesting a resource 𝑟𝑟1 to run
a skill, and that resource is requesting a second resource 𝑟𝑟2 to run an additional skill.

Part agent

1

N

1

N
Need

Process plan

Goal

Have

Resource agent

Process plan

1

N

Have
1

1

Interface

Have

N

1

Skill

Have

Demands

Demands

Resource agent

Process plan

1

N

Have
1

1

Interface

Have

N

1

Skill

Have

1

1
1

1

31

3.6 Translation of Locations

When variables are communicated between agents, they are first translated into
world coordinates. If an agent wants to give its variable to another agent, it needs
to find out where it is located in the world. Agents know that interfaces are
connected while interacting with each other. They also need to have locations
defined for those interfaces, specified in a local coordinate system for each agent.
By connecting two interfaces, it is assumed that they always are at identical
locations. However, it is not yet necessarily known where that is without further
calculations. Agents can ask the other agent that they are attached to, to give their
coordinates in world coordinates. If they are not having the world coordinate
system, then this will continue as a chain of requests down to the agent that is in
world coordinates, most commonly the items placed on the floor, such as a
docking slot in the manufacturing cell. Each agent has this functionality to
translate coordinates. The idea is that everything needs to be attached to some
common physical component, like the manufacturing cell. This information can
then be used by resources such as an industrial robot for transporting items
around in the system.

3.6.1 Example 3

See Figure 17 for an example of a part asking the buffer that it is placed on for its
world coordinate. This is then used to inform a transporter agent where to pick
up the part.

Figure 17. A part agent, placed on a buffer, requests a transporter to move the part
from the buffer. This requires the part to first ask the buffer for the world coordinate

that the part is placed on.

3.7 Agent Communication

Agents need to share a common language for communication, such as the FIPA
ACL introduced earlier. FIPA describes a set of communicative acts (co-acts),
such as Inform, Request and Agree. However, as described earlier, these are

Send coordinate

Part Transporter Buffer

Request translate
Return coordinate

30

By separating the offline and online configuration databases, it is possible to test
the new configurations together with a simulated manufacturing cell before
deploying them to the online manufacturing system.

3.5.1 Example 2

In Figure 16, an example is shown of how one part agent 𝑝𝑝 tries to reach a goal
𝑔𝑔. The goal is solved by process plan 𝜋𝜋𝑔𝑔 that demands an interface with a specific
skill, and finds 𝑠𝑠1 on 𝑖𝑖𝑓𝑓1. The skill 𝑠𝑠1 executes its plan 𝜋𝜋𝑠𝑠1, that demands a further
skill and finds 𝑠𝑠2 on 𝑖𝑖𝑓𝑓2. Finally, skill 𝑠𝑠2 executes its plan 𝜋𝜋𝑠𝑠2. After this the chain
is disconnected and the goal 𝑔𝑔 reached.

Figure 16: A combined model, showing a partial view of the internal ontology of three
agents 𝑝𝑝, 𝑟𝑟1, and 𝑟𝑟2. In this example, the part agent 𝑝𝑝 is requesting a resource 𝑟𝑟1 to run
a skill, and that resource is requesting a second resource 𝑟𝑟2 to run an additional skill.

Part agent

1

N

1

N
Need

Process plan

Goal

Have

Resource agent

Process plan

1

N

Have
1

1

Interface

Have

N

1

Skill

Have

Demands

Demands

Resource agent

Process plan

1

N

Have
1

1

Interface

Have

N

1

Skill

Have

1

1
1

1

31

3.6 Translation of Locations

When variables are communicated between agents, they are first translated into
world coordinates. If an agent wants to give its variable to another agent, it needs
to find out where it is located in the world. Agents know that interfaces are
connected while interacting with each other. They also need to have locations
defined for those interfaces, specified in a local coordinate system for each agent.
By connecting two interfaces, it is assumed that they always are at identical
locations. However, it is not yet necessarily known where that is without further
calculations. Agents can ask the other agent that they are attached to, to give their
coordinates in world coordinates. If they are not having the world coordinate
system, then this will continue as a chain of requests down to the agent that is in
world coordinates, most commonly the items placed on the floor, such as a
docking slot in the manufacturing cell. Each agent has this functionality to
translate coordinates. The idea is that everything needs to be attached to some
common physical component, like the manufacturing cell. This information can
then be used by resources such as an industrial robot for transporting items
around in the system.

3.6.1 Example 3

See Figure 17 for an example of a part asking the buffer that it is placed on for its
world coordinate. This is then used to inform a transporter agent where to pick
up the part.

Figure 17. A part agent, placed on a buffer, requests a transporter to move the part
from the buffer. This requires the part to first ask the buffer for the world coordinate

that the part is placed on.

3.7 Agent Communication

Agents need to share a common language for communication, such as the FIPA
ACL introduced earlier. FIPA describes a set of communicative acts (co-acts),
such as Inform, Request and Agree. However, as described earlier, these are

Send coordinate

Part Transporter Buffer

Request translate
Return coordinate

32

designed generally for all types of systems and lack specific support for
manufacturing systems, such as booking resources and starting a process. Thus,
it was found in Paper C that it is possible to define another layer with specialized
co-acts designed for the specific type of scenario considered.

The naming of configuration values such as skills, variables, and interfaces must
be standardized in the global configuration among the several agents. Two agents
must share a common understanding of what these values are used for. For
example, two variables Pick and Place both have the same data type, but different
meanings. This must be understood by all agents using these variables. To manage
this, it is desirable to have a configuration tool that guides the user and gives
warnings in case of problems. If resources share common semantics for global
configuration values, then it is possible to move a resource to another
manufacturing cell or even to another company, assuming they are using the same
semantic standard.

In Paper C a conceptual model was defined with four layers 1-4, see Figure 18. It
describes different layers of communication that can exist in a multi-agent system.
Layers one and two already exist in agent frameworks such as JADE, where layer
two could be FIPA ACL. However, other agent communication languages could
fit into this layer.

Figure 18: Conceptual model for agent communication.

The first layer (1) describes the basic communication protocol and the setup of
the agent network. Layer two (2) describes the general communication
functionalities between agents. Layer three (3) describes the special
communication. In this thesis scenario, it is specialized for manufacturing
systems. Layer four (4) is the reconfigurable layer where the global configurations
are created. The idea is that most manual work is done in layer four where no
programming is needed.

4

3

2

1

Reconfigurable layer

Specialized co-acts layer

General co-acts layer

Network layer

33

3.8 Agent Handling System

Agents are considered to be cyber-components while the physical resources or
parts are the physical components. Some agents can also represent software, and
other agents can exist without representing anything, acting only as a cyber
component. Many times, agents need to be connected to the object it is
controlling by a communication channel. This can be done using many protocols,
but the implementation in this work was done using the OPC UA protocol over
Ethernet. OPC UA is a platform-independent communication protocol that was
developed by the OPC Foundation to be used in industrial automation [63]. In
Figure 19, a data hub is shown, that communicates with the agents in the system
on the left, and connects them with the object they represent on the right, using
for example OPC UA. This means that industrial communication protocols can
be added without changing the agent design. Agent 1 in Figure 19, is completely
connected with object 1 and communication can be done in both directions.
Agent 2, is connected to the data hub, but not to the object 2 that it represents.
This can be the case when having objects that do not have any electronics on
them, such as a part to be produced. In that case, the agent knows that the objects
exist but only affects them indirectly by calling other agents on the left side to let
them manipulate object 2. Agent 3 is a completely in the cyber-space, not having
any object in the world or software to control. The use of this can be to add
functionality that is only used for control of other agents.

Figure 19: The data hub for synchronizing data between agents and their related
objects in the world.

The data hub is part of the Agent Handling System (AHS), developed and
presented in Paper B. The AHS is illustrated in Figure 20 and includes four parts:
the Agent Creator, the DHCP server (Dynamic Host Configuration Protocol),
the Agent Detector, and the Data HUB. DHCP stands for Dynamic Host
Configuration Protocol. It is used to automatically detect devices in networks and
to give them an Internet Protocol address (IP address).

Data hub

Agent 1

Agent 2

Object 1

Object 2

Agent 3

32

designed generally for all types of systems and lack specific support for
manufacturing systems, such as booking resources and starting a process. Thus,
it was found in Paper C that it is possible to define another layer with specialized
co-acts designed for the specific type of scenario considered.

The naming of configuration values such as skills, variables, and interfaces must
be standardized in the global configuration among the several agents. Two agents
must share a common understanding of what these values are used for. For
example, two variables Pick and Place both have the same data type, but different
meanings. This must be understood by all agents using these variables. To manage
this, it is desirable to have a configuration tool that guides the user and gives
warnings in case of problems. If resources share common semantics for global
configuration values, then it is possible to move a resource to another
manufacturing cell or even to another company, assuming they are using the same
semantic standard.

In Paper C a conceptual model was defined with four layers 1-4, see Figure 18. It
describes different layers of communication that can exist in a multi-agent system.
Layers one and two already exist in agent frameworks such as JADE, where layer
two could be FIPA ACL. However, other agent communication languages could
fit into this layer.

Figure 18: Conceptual model for agent communication.

The first layer (1) describes the basic communication protocol and the setup of
the agent network. Layer two (2) describes the general communication
functionalities between agents. Layer three (3) describes the special
communication. In this thesis scenario, it is specialized for manufacturing
systems. Layer four (4) is the reconfigurable layer where the global configurations
are created. The idea is that most manual work is done in layer four where no
programming is needed.

4

3

2

1

Reconfigurable layer

Specialized co-acts layer

General co-acts layer

Network layer

33

3.8 Agent Handling System

Agents are considered to be cyber-components while the physical resources or
parts are the physical components. Some agents can also represent software, and
other agents can exist without representing anything, acting only as a cyber
component. Many times, agents need to be connected to the object it is
controlling by a communication channel. This can be done using many protocols,
but the implementation in this work was done using the OPC UA protocol over
Ethernet. OPC UA is a platform-independent communication protocol that was
developed by the OPC Foundation to be used in industrial automation [63]. In
Figure 19, a data hub is shown, that communicates with the agents in the system
on the left, and connects them with the object they represent on the right, using
for example OPC UA. This means that industrial communication protocols can
be added without changing the agent design. Agent 1 in Figure 19, is completely
connected with object 1 and communication can be done in both directions.
Agent 2, is connected to the data hub, but not to the object 2 that it represents.
This can be the case when having objects that do not have any electronics on
them, such as a part to be produced. In that case, the agent knows that the objects
exist but only affects them indirectly by calling other agents on the left side to let
them manipulate object 2. Agent 3 is a completely in the cyber-space, not having
any object in the world or software to control. The use of this can be to add
functionality that is only used for control of other agents.

Figure 19: The data hub for synchronizing data between agents and their related
objects in the world.

The data hub is part of the Agent Handling System (AHS), developed and
presented in Paper B. The AHS is illustrated in Figure 20 and includes four parts:
the Agent Creator, the DHCP server (Dynamic Host Configuration Protocol),
the Agent Detector, and the Data HUB. DHCP stands for Dynamic Host
Configuration Protocol. It is used to automatically detect devices in networks and
to give them an Internet Protocol address (IP address).

Data hub

Agent 1

Agent 2

Object 1

Object 2

Agent 3

34

Figure 20: This figure shows the Agent Handling System connected to two devices on
the right side that are controlled by the two agents on the left side.

In Figure 21, the behaviour of the AHS is described in more detail. It can be
divided into six different steps:

1) Detect new devices in the network:
A unique IP address is assigned to each new device detected in the
network by the DHCP server. Each address is stored in the AHS.

2) Establish a connection to the new devices:
Each IP address is used by the AHS to establish an OPC UA
connection between the Data hub and the detected device

3) Identify possible agents:
The Agent Detector searches the OPC UA server on each detected
device, to gather information about what agent type it has.

4) Get global configuration:
Based on the agent types detected in step 3, the AHS fetches the
corresponding global configurations required for instantiating the
needed agents.

5) Get local configuration:
Each local configuration value is fetched by the AHS from the
physical device and stored.

6) Instantiate new agent program:
The Agent Creator instantiates a new agent using the selected global
and local configurations for each detected device.

Agent Handling System

Agent
Creator DHCP Agent

Detector

Data HUB

Profile 1 Profile 2

Device 1

Device 2

Agent 1

Agent 2

Global Configurations

35

After these steps are performed, the data hub sets up the synchronization between
the cyber and physical components as shown in Figure 21.

Figure 21: Method for registering new devices added to the Plug & Produce system.

3.9 Configuration Tool

In Paper D, a configuration tool was presented that is used to manually create
global configurations. The configuration tool presents several different views to
the user as defined in the following list:

Main view:
In the main view, agents can be added, removed and edited. Changes to the
agents are done in the agent view. Additionally, the process plans can be
added, removed and edited, by opening the process plan view.

Agent view:

In the agent view, we can set the agent name and choose if the agent is a
resource or part. Variables can be added, removed and edited; this opens the
variable view. Interfaces can be added, removed and edited; this opens the
interface view. Goals can be added, removed and edited; this opens the goal
view.

Register

AHS Device Config DB Agent

Connect

Identify

Give global

Give local

Instantiate new agent

Send data

Send data

Loop:

Request config

34

Figure 20: This figure shows the Agent Handling System connected to two devices on
the right side that are controlled by the two agents on the left side.

In Figure 21, the behaviour of the AHS is described in more detail. It can be
divided into six different steps:

1) Detect new devices in the network:
A unique IP address is assigned to each new device detected in the
network by the DHCP server. Each address is stored in the AHS.

2) Establish a connection to the new devices:
Each IP address is used by the AHS to establish an OPC UA
connection between the Data hub and the detected device

3) Identify possible agents:
The Agent Detector searches the OPC UA server on each detected
device, to gather information about what agent type it has.

4) Get global configuration:
Based on the agent types detected in step 3, the AHS fetches the
corresponding global configurations required for instantiating the
needed agents.

5) Get local configuration:
Each local configuration value is fetched by the AHS from the
physical device and stored.

6) Instantiate new agent program:
The Agent Creator instantiates a new agent using the selected global
and local configurations for each detected device.

Agent Handling System

Agent
Creator DHCP Agent

Detector

Data HUB

Profile 1 Profile 2

Device 1

Device 2

Agent 1

Agent 2

Global Configurations

35

After these steps are performed, the data hub sets up the synchronization between
the cyber and physical components as shown in Figure 21.

Figure 21: Method for registering new devices added to the Plug & Produce system.

3.9 Configuration Tool

In Paper D, a configuration tool was presented that is used to manually create
global configurations. The configuration tool presents several different views to
the user as defined in the following list:

Main view:
In the main view, agents can be added, removed and edited. Changes to the
agents are done in the agent view. Additionally, the process plans can be
added, removed and edited, by opening the process plan view.

Agent view:

In the agent view, we can set the agent name and choose if the agent is a
resource or part. Variables can be added, removed and edited; this opens the
variable view. Interfaces can be added, removed and edited; this opens the
interface view. Goals can be added, removed and edited; this opens the goal
view.

Register

AHS Device Config DB Agent

Connect

Identify

Give global

Give local

Instantiate new agent

Send data

Send data

Loop:

Request config

36

Interface view:
In the interface view, we can set the interface type. Variables can be added,
removed and edited; this opens the variable view. Skills can be added, removed
and edited; this opens the skill view.

Goal view:

The goal view is used to set the goal name.

Process plan view:

The process plan view has the functions to set a plan name, define a goal and
write the actual process plan.

Skill view:

In the skill view, we can set the skill type and write the process plan for the
skill.

Variable view:

 In the variable view, we can set the variable name and its data.

3.10 Agent Planning

An agent needs to perform planning to adapt to new situations. This thesis has
aimed to perform this online and with as few disturbances as possible to the
manufacturing system. This means that they had to use some heuristic approaches
to speed up the computations. This chapter presents the scheduling of process
plans and an approach to pathfinding that coordinates multiple agents to find the
shortest path with no conflicts with other agents' paths. The two concepts
support each other since the scheduler presented is used by the pathfinding
algorithm to solve conflicts, including the deadlock problem.

3.10.1 Scheduling of Process Plans

In Paper E, a new planning method is introduced, and an algorithm for scheduling
is defined for our multi-agent system. The idea is that each part agent plans their
production by planning all goals directly when added to the system. That means
that each goal gets a process plan selected and scheduled. There is no central
system where the schedule is stored, instead, each resource agent holds its
schedules locally. When a part agent is looking for skills, the compatible agents
will return their schedule to the part agent so that it can consider any conflicts.
The part can decide by coordinating among its goals so that it can plan a way to
go through the system. Then it communicates this plan to each resource so they
can add it to their schedules. Since all goals are planned for at the beginning, the

37

plan and schedule cannot be changed if something happens later that was not
considered. Thus, all alternatives must be scheduled. This was solved for
unpredictable events so that it can rerun a goal if it would fail. In Figure 22, two
sets of parallel sequences 𝐺𝐺𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐺𝐺𝑏𝑏

𝑝𝑝𝑝𝑝 are shown. There are a total of four
sequences of goals 𝐺𝐺𝑎𝑎1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑎𝑎2
𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏2
𝑠𝑠𝑠𝑠. In those sequences there are a total of five

goals 𝑔𝑔1ℎ, 𝑔𝑔2ℎ, 𝑔𝑔3ℎ, 𝑔𝑔4ℎ, 𝑔𝑔5ℎ, containing the skills 𝑠𝑠1ℎ, 𝑠𝑠2ℎ, 𝑠𝑠3ℎ, 𝑠𝑠4ℎ, 𝑠𝑠5ℎ, 𝑠𝑠6ℎ. The goal 𝑔𝑔3ℎ
can rerun if the result from its skills is not acceptable. Each of the sets 𝐺𝐺𝑝𝑝𝑝𝑝 must
wait for all arrows that are pointing to 𝐺𝐺𝑝𝑝𝑝𝑝 for it to start executing any of its skills.
Meaning that the skill that the arrow is pointing from must be successfully
executed with an acceptable result.

Figure 22. This illustrates an example of goal sequences 𝐺𝐺𝑠𝑠𝑠𝑠 running in parallel 𝐺𝐺𝑝𝑝𝑝𝑝,
with goals 𝑔𝑔ℎ having skills 𝑠𝑠ℎ to be scheduled. Each 𝐺𝐺𝑝𝑝𝑝𝑝 must wait for each arrow

pointing to it to be done for 𝐺𝐺𝑝𝑝𝑝𝑝 to start executing any of its skills.

To make the schedule distributed the resource tuple was defined as the following

𝑟𝑟 =< 𝑛𝑛𝑟𝑟, 𝐼𝐼𝐼𝐼𝑟𝑟, 𝑉𝑉𝑟𝑟, 𝑆𝑆𝐶𝐶𝑟𝑟, 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 >

where, 𝑛𝑛𝑟𝑟 is the name of the resource, 𝐼𝐼𝐼𝐼𝑟𝑟 is the set of interfaces, 𝑉𝑉𝑟𝑟 is the set of
variables, 𝑆𝑆𝐶𝐶𝑟𝑟 is the set of all schedules for each interface in 𝐼𝐼𝐼𝐼𝑟𝑟, and 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 is the
set of dependencies between interfaces. One dependency is defined as

36

Interface view:
In the interface view, we can set the interface type. Variables can be added,
removed and edited; this opens the variable view. Skills can be added, removed
and edited; this opens the skill view.

Goal view:

The goal view is used to set the goal name.

Process plan view:

The process plan view has the functions to set a plan name, define a goal and
write the actual process plan.

Skill view:

In the skill view, we can set the skill type and write the process plan for the
skill.

Variable view:

 In the variable view, we can set the variable name and its data.

3.10 Agent Planning

An agent needs to perform planning to adapt to new situations. This thesis has
aimed to perform this online and with as few disturbances as possible to the
manufacturing system. This means that they had to use some heuristic approaches
to speed up the computations. This chapter presents the scheduling of process
plans and an approach to pathfinding that coordinates multiple agents to find the
shortest path with no conflicts with other agents' paths. The two concepts
support each other since the scheduler presented is used by the pathfinding
algorithm to solve conflicts, including the deadlock problem.

3.10.1 Scheduling of Process Plans

In Paper E, a new planning method is introduced, and an algorithm for scheduling
is defined for our multi-agent system. The idea is that each part agent plans their
production by planning all goals directly when added to the system. That means
that each goal gets a process plan selected and scheduled. There is no central
system where the schedule is stored, instead, each resource agent holds its
schedules locally. When a part agent is looking for skills, the compatible agents
will return their schedule to the part agent so that it can consider any conflicts.
The part can decide by coordinating among its goals so that it can plan a way to
go through the system. Then it communicates this plan to each resource so they
can add it to their schedules. Since all goals are planned for at the beginning, the

37

plan and schedule cannot be changed if something happens later that was not
considered. Thus, all alternatives must be scheduled. This was solved for
unpredictable events so that it can rerun a goal if it would fail. In Figure 22, two
sets of parallel sequences 𝐺𝐺𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐺𝐺𝑏𝑏

𝑝𝑝𝑝𝑝 are shown. There are a total of four
sequences of goals 𝐺𝐺𝑎𝑎1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑎𝑎2
𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏1

𝑠𝑠𝑠𝑠, 𝐺𝐺𝑏𝑏2
𝑠𝑠𝑠𝑠. In those sequences there are a total of five

goals 𝑔𝑔1ℎ, 𝑔𝑔2ℎ, 𝑔𝑔3ℎ, 𝑔𝑔4ℎ, 𝑔𝑔5ℎ, containing the skills 𝑠𝑠1ℎ, 𝑠𝑠2ℎ, 𝑠𝑠3ℎ, 𝑠𝑠4ℎ, 𝑠𝑠5ℎ, 𝑠𝑠6ℎ. The goal 𝑔𝑔3ℎ
can rerun if the result from its skills is not acceptable. Each of the sets 𝐺𝐺𝑝𝑝𝑝𝑝 must
wait for all arrows that are pointing to 𝐺𝐺𝑝𝑝𝑝𝑝 for it to start executing any of its skills.
Meaning that the skill that the arrow is pointing from must be successfully
executed with an acceptable result.

Figure 22. This illustrates an example of goal sequences 𝐺𝐺𝑠𝑠𝑠𝑠 running in parallel 𝐺𝐺𝑝𝑝𝑝𝑝,
with goals 𝑔𝑔ℎ having skills 𝑠𝑠ℎ to be scheduled. Each 𝐺𝐺𝑝𝑝𝑝𝑝 must wait for each arrow

pointing to it to be done for 𝐺𝐺𝑝𝑝𝑝𝑝 to start executing any of its skills.

To make the schedule distributed the resource tuple was defined as the following

𝑟𝑟 =< 𝑛𝑛𝑟𝑟, 𝐼𝐼𝐼𝐼𝑟𝑟, 𝑉𝑉𝑟𝑟, 𝑆𝑆𝐶𝐶𝑟𝑟, 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 >

where, 𝑛𝑛𝑟𝑟 is the name of the resource, 𝐼𝐼𝐼𝐼𝑟𝑟 is the set of interfaces, 𝑉𝑉𝑟𝑟 is the set of
variables, 𝑆𝑆𝐶𝐶𝑟𝑟 is the set of all schedules for each interface in 𝐼𝐼𝐼𝐼𝑟𝑟, and 𝐼𝐼𝐹𝐹𝑟𝑟𝑑𝑑𝑑𝑑 is the
set of dependencies between interfaces. One dependency is defined as

38

𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 =< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 >

Where if the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 all interfaces in 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 will also be booked if 𝑖𝑖𝑖𝑖,

is booked. This is useful when two interfaces are related and booking one might
make the other unusable. Each interface 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑟𝑟 has a local schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖, stored
in 𝑆𝑆𝐶𝐶𝑟𝑟. The schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 contains each scheduled skill

𝑠𝑠ℎ =< 𝑛𝑛𝑠𝑠, 𝑛𝑛𝑢𝑢, 𝑔𝑔, 𝑠𝑠𝑡𝑡𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠
𝑙𝑙𝑜𝑜, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟, 𝑆𝑆𝑠𝑠
ℎ >

Where 𝑛𝑛𝑠𝑠 is the name of the skill 𝑠𝑠, 𝑛𝑛𝑢𝑢 is the name of the abstract interface 𝑢𝑢 that
generates the demand for the skill 𝑠𝑠, 𝑠𝑠𝑡𝑡𝑠𝑠 is the state that the interface having skill
𝑠𝑠 should be in to run, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑙𝑙𝑙𝑙 is the interface used on the agent running the scheduler
to connect to 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟 that is the interface having the skill that is scheduled, and 𝑆𝑆𝑠𝑠
ℎ

is the set of other skills needed for executing 𝑠𝑠. For example, if a gripper tool
should move a part, then that tool might need a robot to execute a skill to move
the gripper tool.

3.10.2 Pathfinding for Part Transfer

In Paper F, pathfinding is defined for our multi-agent system. This is used to
simplify the manually created process plans so that they do not need to include
all transfer steps in a manufacturing system. It also increases flexibility, since the
system can dynamically plan based on changes introduced when resources are
moved, added or removed. Each part agent first broadcasts to all agents asking
them for compatible buffers in the system. When it receives proposals for buffers,
it stores them as nodes locally on a graph 𝛾𝛾. Later a pathfinder is applied to this
graph to find the shortest path through the system. By using a shared schedule,
conflicts are avoided among the agents. Thus, each part agent 𝑝𝑝 builds their local
graphs 𝛾𝛾, defined by:

𝛾𝛾 =< 𝐼𝐼𝐹𝐹𝛾𝛾, Τ𝛾𝛾 >

Where 𝐼𝐼𝐹𝐹𝛾𝛾 is the set of interfaces 𝑖𝑖𝑖𝑖 that can be used as nodes in the graph for
holding the part, and Τ𝛾𝛾 is the set of transfers 𝜏𝜏 between those nodes. A transfer
is defined by the following tuple:

𝜏𝜏 =< 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑛𝑛𝑠𝑠, 𝑐𝑐𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠 >

where 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 is the interface that the part is attached to before transferring it, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
is the interface that the part is attached to after transferring it, 𝑛𝑛𝑠𝑠 is the name of
the skill 𝑠𝑠 that will transfer the part, 𝑐𝑐𝑠𝑠 is the cost of executing the skill 𝑠𝑠 , 𝑖𝑖𝑓𝑓𝑠𝑠 is
the address to the interface of the skill where 𝑠𝑠 is defined.

39

4 Evaluation

The evaluation is done by using an industrial scenario and showing how the
system would handle various aspects of that scenario.

4.1 Manufacturing Scenario

This scenario describes how a part 𝑝𝑝 is transported from a buffer 𝑟𝑟1 to a paint
station 𝑟𝑟2. This is done by using a gripper 𝑟𝑟3 that is attached to a robot 𝑟𝑟4, see
Figure 23. Similar scenarios have been presented in the appended papers.
However, note that the scenario presented in this section has slightly different
configuration parameters. This scenario will be used throughout this chapter to
make examples.

Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station 𝑟𝑟2,
using gripper 𝑟𝑟3, and robot 𝑟𝑟4.

In Table 3, the configuration values for the scenario are shown, where the column:
Agent refers to the agent that the configuration value belongs, the Interface is the
interface to which the configuration value belongs, and the data type describes
what format the data is in and the Name is the name of the configuration value.
The part has one goal 𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, that can be solved by the process plan
𝜋𝜋𝑔𝑔. The description “Input:” in the table is noting that a variable is not
configurated with any value on the startup of the system. Instead, this is an input
signal on an interface, that will get data from another agent.

38

𝑖𝑖𝑓𝑓𝑑𝑑𝑑𝑑 =< 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 >

Where if the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 all interfaces in 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 will also be booked if 𝑖𝑖𝑖𝑖,

is booked. This is useful when two interfaces are related and booking one might
make the other unusable. Each interface 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑟𝑟 has a local schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖, stored
in 𝑆𝑆𝐶𝐶𝑟𝑟. The schedule 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 contains each scheduled skill

𝑠𝑠ℎ =< 𝑛𝑛𝑠𝑠, 𝑛𝑛𝑢𝑢, 𝑔𝑔, 𝑠𝑠𝑡𝑡𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠
𝑙𝑙𝑜𝑜, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟, 𝑆𝑆𝑠𝑠
ℎ >

Where 𝑛𝑛𝑠𝑠 is the name of the skill 𝑠𝑠, 𝑛𝑛𝑢𝑢 is the name of the abstract interface 𝑢𝑢 that
generates the demand for the skill 𝑠𝑠, 𝑠𝑠𝑡𝑡𝑠𝑠 is the state that the interface having skill
𝑠𝑠 should be in to run, 𝑖𝑖𝑓𝑓𝑠𝑠

𝑙𝑙𝑙𝑙 is the interface used on the agent running the scheduler
to connect to 𝑖𝑖𝑓𝑓𝑠𝑠

𝑟𝑟𝑟𝑟 that is the interface having the skill that is scheduled, and 𝑆𝑆𝑠𝑠
ℎ

is the set of other skills needed for executing 𝑠𝑠. For example, if a gripper tool
should move a part, then that tool might need a robot to execute a skill to move
the gripper tool.

3.10.2 Pathfinding for Part Transfer

In Paper F, pathfinding is defined for our multi-agent system. This is used to
simplify the manually created process plans so that they do not need to include
all transfer steps in a manufacturing system. It also increases flexibility, since the
system can dynamically plan based on changes introduced when resources are
moved, added or removed. Each part agent first broadcasts to all agents asking
them for compatible buffers in the system. When it receives proposals for buffers,
it stores them as nodes locally on a graph 𝛾𝛾. Later a pathfinder is applied to this
graph to find the shortest path through the system. By using a shared schedule,
conflicts are avoided among the agents. Thus, each part agent 𝑝𝑝 builds their local
graphs 𝛾𝛾, defined by:

𝛾𝛾 =< 𝐼𝐼𝐹𝐹𝛾𝛾, Τ𝛾𝛾 >

Where 𝐼𝐼𝐹𝐹𝛾𝛾 is the set of interfaces 𝑖𝑖𝑖𝑖 that can be used as nodes in the graph for
holding the part, and Τ𝛾𝛾 is the set of transfers 𝜏𝜏 between those nodes. A transfer
is defined by the following tuple:

𝜏𝜏 =< 𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑛𝑛𝑠𝑠, 𝑐𝑐𝑠𝑠, 𝑖𝑖𝑓𝑓𝑠𝑠 >

where 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 is the interface that the part is attached to before transferring it, 𝑖𝑖𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
is the interface that the part is attached to after transferring it, 𝑛𝑛𝑠𝑠 is the name of
the skill 𝑠𝑠 that will transfer the part, 𝑐𝑐𝑠𝑠 is the cost of executing the skill 𝑠𝑠 , 𝑖𝑖𝑓𝑓𝑠𝑠 is
the address to the interface of the skill where 𝑠𝑠 is defined.

39

4 Evaluation

The evaluation is done by using an industrial scenario and showing how the
system would handle various aspects of that scenario.

4.1 Manufacturing Scenario

This scenario describes how a part 𝑝𝑝 is transported from a buffer 𝑟𝑟1 to a paint
station 𝑟𝑟2. This is done by using a gripper 𝑟𝑟3 that is attached to a robot 𝑟𝑟4, see
Figure 23. Similar scenarios have been presented in the appended papers.
However, note that the scenario presented in this section has slightly different
configuration parameters. This scenario will be used throughout this chapter to
make examples.

Figure 23: Scenario for transporting a part 𝑝𝑝 from buffer 𝑟𝑟1 to a painting station 𝑟𝑟2,
using gripper 𝑟𝑟3, and robot 𝑟𝑟4.

In Table 3, the configuration values for the scenario are shown, where the column:
Agent refers to the agent that the configuration value belongs, the Interface is the
interface to which the configuration value belongs, and the data type describes
what format the data is in and the Name is the name of the configuration value.
The part has one goal 𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, that can be solved by the process plan
𝜋𝜋𝑔𝑔. The description “Input:” in the table is noting that a variable is not
configurated with any value on the startup of the system. Instead, this is an input
signal on an interface, that will get data from another agent.

40

Table 3. Configuration values for the scenario.

Agent Name Description Data type Interface

 𝜋𝜋𝑔𝑔 Solves PaintBlue Process Plan
𝑝𝑝 𝑖𝑖𝑓𝑓3 BufferInterface Interface
𝑝𝑝 𝑣𝑣3 BaseLocation Variable 𝑖𝑖𝑓𝑓3
𝑝𝑝 𝑖𝑖𝑓𝑓4 GripInterface Interface
𝑝𝑝 𝑣𝑣4 GripLocation Variable 𝑖𝑖𝑓𝑓4
𝑝𝑝 𝑔𝑔 PaintBlue Goal
𝑟𝑟1 𝑖𝑖𝑓𝑓1 BufferInterface Interface
𝑟𝑟1 𝑣𝑣1 BufferLocation Variable 𝑖𝑖𝑓𝑓1
𝑟𝑟1 𝑠𝑠1 Buffer Skill 𝑖𝑖𝑓𝑓1
𝑟𝑟2 𝑖𝑖𝑓𝑓2 BufferInterface Interface
𝑟𝑟2 𝑣𝑣2 BufferLocation Variable 𝑖𝑖𝑓𝑓2
𝑟𝑟2 𝑠𝑠2 Paint Skill 𝑖𝑖𝑓𝑓2
𝑟𝑟3 𝑖𝑖𝑓𝑓5 GripInterface Interface
𝑟𝑟3 𝑠𝑠3 Transport Skill 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣7 Input: PickAt Variable 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣8 Input: PlaceAt Variable 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣5 ToolData Variable 𝑖𝑖𝑓𝑓6
𝑟𝑟3 𝑖𝑖𝑓𝑓6 ToolInterface Interface
𝑟𝑟3 𝑣𝑣6 BaseLocation Variable 𝑖𝑖𝑓𝑓6
𝑟𝑟4 𝑖𝑖𝑓𝑓7 ToolInterface Interface
𝑟𝑟4 𝑠𝑠4 MoveTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑠𝑠5 CloseTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑠𝑠6 OpenTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑣𝑣10 Input: To Variable 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑣𝑣11 Input: Tool Variable 𝑖𝑖𝑓𝑓7

In Figure 24, the variables for locations 1-4 are shown, as defined in Table 3.
These are needed for the agents to know where the interfaces are located. The
variables are defined relative to the local agent’s coordinate system and are
translated into a common reference frame (world coordinates) when
communicated from one agent to another.

41

Figure 24: Variables for locations 1-4.

Figure 25 shows interfaces 1-7 defined in Table 3. The lines show how interfaces
can be connected.

Figure 25: Interface connections are shown with lines for interfaces 1-7.

4.2 Agent Interfaces

When variables are communicated between agents they are first translated into
world coordinates. If 𝑝𝑝 wants to give its variable 𝑣𝑣4 to 𝑟𝑟3 it needs to find out
where it is located in the world. Since 𝑝𝑝 knows that 𝑖𝑖𝑓𝑓3 and 𝑖𝑖𝑓𝑓1 are connected (see
Figure 25) it is known that 𝑣𝑣3 and 𝑣𝑣1 are located in the same world coordinate
(see Figure 24). Thus, 𝑝𝑝 asks 𝑟𝑟1 to give its 𝑣𝑣1 in world coordinates to 𝑝𝑝. Each
agent has this functionality to translate coordinates. If 𝑟𝑟1 is connected to further
agents this will continue in a chain of connected agents translating down to a
common reference frame. The idea is that everything needs to be attached to
some common physical component, like the manufacturing cell. In this scenario
𝑟𝑟4 and 𝑟𝑟1 are attached to the same manufacturing cell and their world positions
are defined as variables of the respective agents. When 𝑝𝑝 gets the world position
of 𝑣𝑣3 it will have enough data to find the world position of 𝑣𝑣4. This is then
communicatied to 𝑟𝑟3. Since the robot 𝑟𝑟4 is attached to the same manufacturing
cell it has a common reference shared with 𝑟𝑟1 and 𝑟𝑟2. To simplify the scenarios
global configuration, the resource 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟4 are not attached to anything.
Instead, they have their variables 𝑣𝑣1, 𝑣𝑣2 described in the robots coordinate system.
However, let's go through how it would look if the modules were removable. In

40

Table 3. Configuration values for the scenario.

Agent Name Description Data type Interface

 𝜋𝜋𝑔𝑔 Solves PaintBlue Process Plan
𝑝𝑝 𝑖𝑖𝑓𝑓3 BufferInterface Interface
𝑝𝑝 𝑣𝑣3 BaseLocation Variable 𝑖𝑖𝑓𝑓3
𝑝𝑝 𝑖𝑖𝑓𝑓4 GripInterface Interface
𝑝𝑝 𝑣𝑣4 GripLocation Variable 𝑖𝑖𝑓𝑓4
𝑝𝑝 𝑔𝑔 PaintBlue Goal
𝑟𝑟1 𝑖𝑖𝑓𝑓1 BufferInterface Interface
𝑟𝑟1 𝑣𝑣1 BufferLocation Variable 𝑖𝑖𝑓𝑓1
𝑟𝑟1 𝑠𝑠1 Buffer Skill 𝑖𝑖𝑓𝑓1
𝑟𝑟2 𝑖𝑖𝑓𝑓2 BufferInterface Interface
𝑟𝑟2 𝑣𝑣2 BufferLocation Variable 𝑖𝑖𝑓𝑓2
𝑟𝑟2 𝑠𝑠2 Paint Skill 𝑖𝑖𝑓𝑓2
𝑟𝑟3 𝑖𝑖𝑓𝑓5 GripInterface Interface
𝑟𝑟3 𝑠𝑠3 Transport Skill 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣7 Input: PickAt Variable 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣8 Input: PlaceAt Variable 𝑖𝑖𝑓𝑓5
𝑟𝑟3 𝑣𝑣5 ToolData Variable 𝑖𝑖𝑓𝑓6
𝑟𝑟3 𝑖𝑖𝑓𝑓6 ToolInterface Interface
𝑟𝑟3 𝑣𝑣6 BaseLocation Variable 𝑖𝑖𝑓𝑓6
𝑟𝑟4 𝑖𝑖𝑓𝑓7 ToolInterface Interface
𝑟𝑟4 𝑠𝑠4 MoveTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑠𝑠5 CloseTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑠𝑠6 OpenTool Skill 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑣𝑣10 Input: To Variable 𝑖𝑖𝑓𝑓7
𝑟𝑟4 𝑣𝑣11 Input: Tool Variable 𝑖𝑖𝑓𝑓7

In Figure 24, the variables for locations 1-4 are shown, as defined in Table 3.
These are needed for the agents to know where the interfaces are located. The
variables are defined relative to the local agent’s coordinate system and are
translated into a common reference frame (world coordinates) when
communicated from one agent to another.

41

Figure 24: Variables for locations 1-4.

Figure 25 shows interfaces 1-7 defined in Table 3. The lines show how interfaces
can be connected.

Figure 25: Interface connections are shown with lines for interfaces 1-7.

4.2 Agent Interfaces

When variables are communicated between agents they are first translated into
world coordinates. If 𝑝𝑝 wants to give its variable 𝑣𝑣4 to 𝑟𝑟3 it needs to find out
where it is located in the world. Since 𝑝𝑝 knows that 𝑖𝑖𝑓𝑓3 and 𝑖𝑖𝑓𝑓1 are connected (see
Figure 25) it is known that 𝑣𝑣3 and 𝑣𝑣1 are located in the same world coordinate
(see Figure 24). Thus, 𝑝𝑝 asks 𝑟𝑟1 to give its 𝑣𝑣1 in world coordinates to 𝑝𝑝. Each
agent has this functionality to translate coordinates. If 𝑟𝑟1 is connected to further
agents this will continue in a chain of connected agents translating down to a
common reference frame. The idea is that everything needs to be attached to
some common physical component, like the manufacturing cell. In this scenario
𝑟𝑟4 and 𝑟𝑟1 are attached to the same manufacturing cell and their world positions
are defined as variables of the respective agents. When 𝑝𝑝 gets the world position
of 𝑣𝑣3 it will have enough data to find the world position of 𝑣𝑣4. This is then
communicatied to 𝑟𝑟3. Since the robot 𝑟𝑟4 is attached to the same manufacturing
cell it has a common reference shared with 𝑟𝑟1 and 𝑟𝑟2. To simplify the scenarios
global configuration, the resource 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟4 are not attached to anything.
Instead, they have their variables 𝑣𝑣1, 𝑣𝑣2 described in the robots coordinate system.
However, let's go through how it would look if the modules were removable. In

42

case the module and robot were removable they might be configured with
interfaces as shown in Figure 26, where each of the ten dots represents an
interface.

Figure 26: Example of two process modules: one with a part placed on top of it, and
another with a robot that can interact with its neighbouring modules.

Here the process modules are connected to a manufacturing cell. The part can tell
the robot where it is in world coordinates since it is attached to a buffer that is
connected to the same manufacturing cell that the robot is connected to. The
robot and the part can figure out where they are in the cells' coordinate system,
i.e., world positions by asking the agents that they are attached to for a translation
of coordinates. This works in a chain of attached agents so that they translate until
they reach a common coordinate system, in this case, the manufacturing cells
coordinate system.

Interfaces must match to connect. As described earlier, agents have multiple
interfaces, and interfaces have multiple skills. Each interface has defined inputs
that describe needed variables to execute any of the presented skills on that
interface. The interfaces explained in this section are defined in Table 3. In Figure
27, the part and the gripper have compatible interfaces, since the outputs from
the part match the inputs on the gripper, the required skill: Transport exists on
the gripper interface and there were no required variables. Additionally, we can
see that they are physically compatible since they both share the same interface
type.

Manufacturing cell

Buffer

Robot

Part

Gripper

43

Figure 27: Example, with part and gripper having compatible interfaces since signals
and skills are matching.

Some interfaces have variables that can be accessed by other agents by requesting
their current value. In Figure 28, the part checks its compatibility against a paint
station. There are no required input or output signals, the skill paint is existing on
the paint station and the BufferLocation that the part needs for transportation is
publicly available on the paint station.

Figure 28: Example, with a part and paint station having compatible interfaces.

In Figure 29, the interface connection between the gripper and the robot is
shown. The gripper presents two output signals: To, which is the destination for
travel and Tool, which is the tool data for the gripper. Three skills are required
and found on the robot ToolInterface 𝑖𝑖𝑓𝑓7.

Figure 29: Gripper and robot connecting through an interface.

In the global configuration, there exist nothing called output signals, required
skills, or required variables. These are generated automatically from the process
plans like 𝜋𝜋𝑔𝑔 or 𝜋𝜋𝑠𝑠3. This is done to further decrease the number of manual
configurations that have to be created. It would, of course, be possible to

GripperPart

Demand
Interface type: GripInterface
Outputs: PickAt, PlaceAt
Required skills: Transport
Required variables:

Interface type: GripInterface
Inputs: PickAt , PlaceAt
Skills: Transport
Public variables:

Paint StationPart

Demand
Interface type: BufferInterface
Outputs:
Required skills: Paint
Required variables: BufferLocation

Interface type: BufferInterface
Inputs:
Skills: Paint
Public variables: BufferLocation

RobotGripper

Demand
Interface type: ToolInterface
Outputs: To, Tool
Required skills: OpenTool,
MoveTool
Required variables:

Interface type: ToolInterface
Inputs: To , T
Skills: OpenTool ,
MoveTool
Public variables:

42

case the module and robot were removable they might be configured with
interfaces as shown in Figure 26, where each of the ten dots represents an
interface.

Figure 26: Example of two process modules: one with a part placed on top of it, and
another with a robot that can interact with its neighbouring modules.

Here the process modules are connected to a manufacturing cell. The part can tell
the robot where it is in world coordinates since it is attached to a buffer that is
connected to the same manufacturing cell that the robot is connected to. The
robot and the part can figure out where they are in the cells' coordinate system,
i.e., world positions by asking the agents that they are attached to for a translation
of coordinates. This works in a chain of attached agents so that they translate until
they reach a common coordinate system, in this case, the manufacturing cells
coordinate system.

Interfaces must match to connect. As described earlier, agents have multiple
interfaces, and interfaces have multiple skills. Each interface has defined inputs
that describe needed variables to execute any of the presented skills on that
interface. The interfaces explained in this section are defined in Table 3. In Figure
27, the part and the gripper have compatible interfaces, since the outputs from
the part match the inputs on the gripper, the required skill: Transport exists on
the gripper interface and there were no required variables. Additionally, we can
see that they are physically compatible since they both share the same interface
type.

Manufacturing cell

Buffer

Robot

Part

Gripper

43

Figure 27: Example, with part and gripper having compatible interfaces since signals
and skills are matching.

Some interfaces have variables that can be accessed by other agents by requesting
their current value. In Figure 28, the part checks its compatibility against a paint
station. There are no required input or output signals, the skill paint is existing on
the paint station and the BufferLocation that the part needs for transportation is
publicly available on the paint station.

Figure 28: Example, with a part and paint station having compatible interfaces.

In Figure 29, the interface connection between the gripper and the robot is
shown. The gripper presents two output signals: To, which is the destination for
travel and Tool, which is the tool data for the gripper. Three skills are required
and found on the robot ToolInterface 𝑖𝑖𝑓𝑓7.

Figure 29: Gripper and robot connecting through an interface.

In the global configuration, there exist nothing called output signals, required
skills, or required variables. These are generated automatically from the process
plans like 𝜋𝜋𝑔𝑔 or 𝜋𝜋𝑠𝑠3. This is done to further decrease the number of manual
configurations that have to be created. It would, of course, be possible to

GripperPart

Demand
Interface type: GripInterface
Outputs: PickAt, PlaceAt
Required skills: Transport
Required variables:

Interface type: GripInterface
Inputs: PickAt , PlaceAt
Skills: Transport
Public variables:

Paint StationPart

Demand
Interface type: BufferInterface
Outputs:
Required skills: Paint
Required variables: BufferLocation

Interface type: BufferInterface
Inputs:
Skills: Paint
Public variables: BufferLocation

RobotGripper

Demand
Interface type: ToolInterface
Outputs: To, Tool
Required skills: OpenTool,
MoveTool
Required variables:

Interface type: ToolInterface
Inputs: To , T
Skills: OpenTool ,
MoveTool
Public variables:

44

manually define these on each interface, but there is currently no need. Instead,
interfaces are only configured in the global configuration as services that other
interfaces connect to.

4.3 Process Plans

Figure 30 shows a process plan 𝜋𝜋𝑔𝑔 that uses a robot gripper and a painting station.

Figure 30: Process plan 𝜋𝜋𝑔𝑔 for solving the goal PaintBlue.

In 𝜋𝜋𝑔𝑔 two skills are used: Transport and Paint. The letters 𝑎𝑎 and 𝑏𝑏 in front of
these skills are used to show that these skills need to run on different resources.
The letters are called abstract interfaces since they represent undefined interfaces
needed on some resources in the manufacturing system. If the letter 𝑎𝑎 would be
used for both skills, that would mean that we are looking for an agent having an
interface with both Transport and Paint skills, which is not the case in this
scenario.

In Figure 31 the plan 𝜋𝜋𝑠𝑠3 for the gripper’s skill Transport 𝑠𝑠3 is shown. The gripper
has further interaction with a robot as described in the skills process plan in Figure
31.

Figure 31: A process plan 𝜋𝜋𝑠𝑠3that is written specifically to execute the skill Transport
for the gripper.

45

The skills OpenTool, MoveTool, and CloseTool exist on the industrial robot in
the same manufacturing cell. Here, the gripper carries its tool data, and forwards
the input signals PickAt and PlaceAt positions to the robot, by assigning them to
the variable: To.

The required skills and variables are declared directly in the process plan, such as
𝑏𝑏.BufferLocation in Figure 30, implies that resource 𝑏𝑏 needs to have a
BufferLocation variable presented publicly. This variable is then used to give a
value to the output signal: PlaceAt. The same concept is used for the output signal
PickAt, which takes a local variable GripLocation, that must exist on the part
executing this process plan, otherwise, it is not compatible with this plan.

The connections between process plans create a tree of connected interfaces as
shown in Figure 32. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑎𝑎 for an interface 𝑎𝑎 in the agent network and
finds the matching interface 𝑖𝑖𝑓𝑓5 on the gripper. Additionally, interface 𝑏𝑏 described
in 𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑏𝑏. Thus, the part finds the painter resource with
interface 𝑖𝑖𝑓𝑓2. The gripper has a process plan 𝜋𝜋𝑠𝑠3 with further demands 𝑑𝑑𝑐𝑐 and
finds the robot on 𝑖𝑖𝑓𝑓7.

Figure 32: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.

Part

Gripper Robot

Painter

44

manually define these on each interface, but there is currently no need. Instead,
interfaces are only configured in the global configuration as services that other
interfaces connect to.

4.3 Process Plans

Figure 30 shows a process plan 𝜋𝜋𝑔𝑔 that uses a robot gripper and a painting station.

Figure 30: Process plan 𝜋𝜋𝑔𝑔 for solving the goal PaintBlue.

In 𝜋𝜋𝑔𝑔 two skills are used: Transport and Paint. The letters 𝑎𝑎 and 𝑏𝑏 in front of
these skills are used to show that these skills need to run on different resources.
The letters are called abstract interfaces since they represent undefined interfaces
needed on some resources in the manufacturing system. If the letter 𝑎𝑎 would be
used for both skills, that would mean that we are looking for an agent having an
interface with both Transport and Paint skills, which is not the case in this
scenario.

In Figure 31 the plan 𝜋𝜋𝑠𝑠3 for the gripper’s skill Transport 𝑠𝑠3 is shown. The gripper
has further interaction with a robot as described in the skills process plan in Figure
31.

Figure 31: A process plan 𝜋𝜋𝑠𝑠3that is written specifically to execute the skill Transport
for the gripper.

45

The skills OpenTool, MoveTool, and CloseTool exist on the industrial robot in
the same manufacturing cell. Here, the gripper carries its tool data, and forwards
the input signals PickAt and PlaceAt positions to the robot, by assigning them to
the variable: To.

The required skills and variables are declared directly in the process plan, such as
𝑏𝑏.BufferLocation in Figure 30, implies that resource 𝑏𝑏 needs to have a
BufferLocation variable presented publicly. This variable is then used to give a
value to the output signal: PlaceAt. The same concept is used for the output signal
PickAt, which takes a local variable GripLocation, that must exist on the part
executing this process plan, otherwise, it is not compatible with this plan.

The connections between process plans create a tree of connected interfaces as
shown in Figure 32. Here, the Part 𝑝𝑝 has the goal 𝑔𝑔, solved by 𝜋𝜋𝑔𝑔. The process
plan 𝜋𝜋𝑔𝑔 generates certain demands 𝑑𝑑𝑎𝑎 for an interface 𝑎𝑎 in the agent network and
finds the matching interface 𝑖𝑖𝑓𝑓5 on the gripper. Additionally, interface 𝑏𝑏 described
in 𝜋𝜋𝑔𝑔 generates the demand 𝑑𝑑𝑏𝑏. Thus, the part finds the painter resource with
interface 𝑖𝑖𝑓𝑓2. The gripper has a process plan 𝜋𝜋𝑠𝑠3 with further demands 𝑑𝑑𝑐𝑐 and
finds the robot on 𝑖𝑖𝑓𝑓7.

Figure 32: A plan 𝜋𝜋𝑔𝑔 is checked for availability in the agent network.

Part

Gripper Robot

Painter

46

4.4 Configuration Tool

By defining the presented scenario in the designed configuration tool the main
view looks as shown in Figure 33, where five agents are shown together with one
process plan. In Figure 34 the agent view is shown for the part agent in the
scenario, where two interfaces are shown together with one goal. Figure 35 shows
the BufferInterface of the resource 𝑟𝑟2, that has one location variable and one skill
to paint.

Figure 33: Main view, showing five agents and one process plan.

47

Figure 34: Agent view for the part, showing variables, interfaces and goals.

46

4.4 Configuration Tool

By defining the presented scenario in the designed configuration tool the main
view looks as shown in Figure 33, where five agents are shown together with one
process plan. In Figure 34 the agent view is shown for the part agent in the
scenario, where two interfaces are shown together with one goal. Figure 35 shows
the BufferInterface of the resource 𝑟𝑟2, that has one location variable and one skill
to paint.

Figure 33: Main view, showing five agents and one process plan.

47

Figure 34: Agent view for the part, showing variables, interfaces and goals.

48

Figure 35: Interface view for the BufferInterface on the Paint station.

49

4.5 Agent Communication

In Paper C, the conceptual model was evaluated by using a manufacturing
scenario that is similar to the scenario presented earlier in this thesis. However,
there are some small differences. Paper C presents a list of each communicative
step needed for its scenario. To make it easier to follow, these steps have been
rewritten to use the configuration values presented in this thesis manufacturing
scenario. The specialized communicative acts that were identified in Paper C are
listed in Table 6.

Table 4. Specialized communicative acts.

Number Description

1 Request information

2 Give information

3 Book/Unbook skill

4 Request skill to start

5 Attach/Detach

The following list describes each communication step, from the parts'
perspectives. This is the communication needed for the manufacturing scenario
presented earlier in this thesis, based on the findings in Paper C:

• (3) 𝑝𝑝 tries to book 𝑟𝑟2 if it has a skill 𝑠𝑠2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 𝑝𝑝 is compatible
with the interfaces 𝑖𝑖𝑖𝑖2 on 𝑟𝑟2 and is therefore booked by 𝑝𝑝.

• (3) 𝑝𝑝 tries to book 𝑟𝑟3 if it has a skill 𝑠𝑠3 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The part 𝑝𝑝 is
compatible with the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3 and is therefore booked by 𝑝𝑝.

• (1) 𝑝𝑝 is attached to 𝑟𝑟1 with 𝑣𝑣3 attached to 𝑣𝑣1. Thus, 𝑝𝑝 asks 𝑟𝑟1 to give the
variable 𝑣𝑣1. Resource 𝑟𝑟1 translates 𝑣𝑣1 to world coordinates before sending it
to 𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝 asks 𝑟𝑟2 for the variable 𝑣𝑣2. Resource
𝑟𝑟2 translates 𝑣𝑣2 to world coordinates before sending it to 𝑝𝑝.

• (2) 𝑝𝑝 uses its grip location 𝑣𝑣4 to calculate the pick and place location to move
between 𝑟𝑟1 and 𝑟𝑟2. Then these are sent to the gripper 𝑟𝑟3, where they become
the input signals 𝑣𝑣7 and 𝑣𝑣8.

• (4) 𝑝𝑝 requests that 𝑟𝑟3 runs the skill 𝑠𝑠3
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖1 on 𝑟𝑟1
• (5) 𝑝𝑝 tells 𝑟𝑟2 that 𝑝𝑝 is attached to 𝑖𝑖𝑓𝑓2
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3
• (4) 𝑝𝑝 requests that 𝑟𝑟2 runs the skill 𝑠𝑠2

48

Figure 35: Interface view for the BufferInterface on the Paint station.

49

4.5 Agent Communication

In Paper C, the conceptual model was evaluated by using a manufacturing
scenario that is similar to the scenario presented earlier in this thesis. However,
there are some small differences. Paper C presents a list of each communicative
step needed for its scenario. To make it easier to follow, these steps have been
rewritten to use the configuration values presented in this thesis manufacturing
scenario. The specialized communicative acts that were identified in Paper C are
listed in Table 6.

Table 4. Specialized communicative acts.

Number Description

1 Request information

2 Give information

3 Book/Unbook skill

4 Request skill to start

5 Attach/Detach

The following list describes each communication step, from the parts'
perspectives. This is the communication needed for the manufacturing scenario
presented earlier in this thesis, based on the findings in Paper C:

• (3) 𝑝𝑝 tries to book 𝑟𝑟2 if it has a skill 𝑠𝑠2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part 𝑝𝑝 is compatible
with the interfaces 𝑖𝑖𝑖𝑖2 on 𝑟𝑟2 and is therefore booked by 𝑝𝑝.

• (3) 𝑝𝑝 tries to book 𝑟𝑟3 if it has a skill 𝑠𝑠3 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The part 𝑝𝑝 is
compatible with the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3 and is therefore booked by 𝑝𝑝.

• (1) 𝑝𝑝 is attached to 𝑟𝑟1 with 𝑣𝑣3 attached to 𝑣𝑣1. Thus, 𝑝𝑝 asks 𝑟𝑟1 to give the
variable 𝑣𝑣1. Resource 𝑟𝑟1 translates 𝑣𝑣1 to world coordinates before sending it
to 𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝 asks 𝑟𝑟2 for the variable 𝑣𝑣2. Resource
𝑟𝑟2 translates 𝑣𝑣2 to world coordinates before sending it to 𝑝𝑝.

• (2) 𝑝𝑝 uses its grip location 𝑣𝑣4 to calculate the pick and place location to move
between 𝑟𝑟1 and 𝑟𝑟2. Then these are sent to the gripper 𝑟𝑟3, where they become
the input signals 𝑣𝑣7 and 𝑣𝑣8.

• (4) 𝑝𝑝 requests that 𝑟𝑟3 runs the skill 𝑠𝑠3
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖1 on 𝑟𝑟1
• (5) 𝑝𝑝 tells 𝑟𝑟2 that 𝑝𝑝 is attached to 𝑖𝑖𝑓𝑓2
• (3) 𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖5 on 𝑟𝑟3
• (4) 𝑝𝑝 requests that 𝑟𝑟2 runs the skill 𝑠𝑠2

50

The evaluation shows that it is possible to limit the number of instructions that a
system needs to be adapted for new scenarios, by using specialized
communicative acts. The reason is that the specialized communicative acts hide
the complexity of lower layers (1 and 2) in the conceptual model.

51

5 Conclusions

Existing approaches for Plug & Produce and multi-agent systems were
investigated. It was identified that previous research has successfully created
multi-agent systems that divide control logic into several resource modules that
can be added quickly to a manufacturing system when needed. The agents are
commonly developed by manual programming. However, they are still flexible
once the code is written. The code is easier to understand than conventional
resources code, due to the low number of dependencies between agents. This
reduces the need to understand the complete system complexity when designing
each resource. On the other hand, it was also identified that those systems were
not commonly used in the industry. The work presented in this thesis has focused
on closing that gap, bringing this technology closer to the industry. The main
focus has been on decreasing the software development time that is consumed
when manually preparing a system for new product designs (changeover time).
This thesis shows a proposal for a Plug & Produce framework that addresses the
software time by simplifying the steps to adapt a manufacturing system for new
product designs. If new resources are needed to be added, removed or relocated,
based on new production requirements, the system will handle that so that
resources can be reused as much as possible. Also, the distributed concept makes
it possible to develop resources without much knowledge about other resources.

Research question RQ1. How can a multi-agent system be designed, to
decrease the software time in a Plug & Produce system?:

An agent ontology was created, defining the agent configuration classes and their
relations to each other. These classes are evaluated by an implemented
configuration tool and an implementation that runs on each agent. Agent
strategies were designed that define a general agent behaviour, thus requiring only
one single agent code to be developed. This agent code is reused for all agent
instances and given its behaviours through configuration data. A Plug & Produce
framework was designed and implemented as a configurable multi-agent system
C-MAS.

Research question RQ2. When introducing new products and resources,
how can functionality for agent collaboration and reasoning be reused to
decrease reprogramming time?:

A configuration tool was developed, that gives the user form-based views for
defining the complete manufacturing systems behaviour. Also, a method for

50

The evaluation shows that it is possible to limit the number of instructions that a
system needs to be adapted for new scenarios, by using specialized
communicative acts. The reason is that the specialized communicative acts hide
the complexity of lower layers (1 and 2) in the conceptual model.

51

5 Conclusions

Existing approaches for Plug & Produce and multi-agent systems were
investigated. It was identified that previous research has successfully created
multi-agent systems that divide control logic into several resource modules that
can be added quickly to a manufacturing system when needed. The agents are
commonly developed by manual programming. However, they are still flexible
once the code is written. The code is easier to understand than conventional
resources code, due to the low number of dependencies between agents. This
reduces the need to understand the complete system complexity when designing
each resource. On the other hand, it was also identified that those systems were
not commonly used in the industry. The work presented in this thesis has focused
on closing that gap, bringing this technology closer to the industry. The main
focus has been on decreasing the software development time that is consumed
when manually preparing a system for new product designs (changeover time).
This thesis shows a proposal for a Plug & Produce framework that addresses the
software time by simplifying the steps to adapt a manufacturing system for new
product designs. If new resources are needed to be added, removed or relocated,
based on new production requirements, the system will handle that so that
resources can be reused as much as possible. Also, the distributed concept makes
it possible to develop resources without much knowledge about other resources.

Research question RQ1. How can a multi-agent system be designed, to
decrease the software time in a Plug & Produce system?:

An agent ontology was created, defining the agent configuration classes and their
relations to each other. These classes are evaluated by an implemented
configuration tool and an implementation that runs on each agent. Agent
strategies were designed that define a general agent behaviour, thus requiring only
one single agent code to be developed. This agent code is reused for all agent
instances and given its behaviours through configuration data. A Plug & Produce
framework was designed and implemented as a configurable multi-agent system
C-MAS.

Research question RQ2. When introducing new products and resources,
how can functionality for agent collaboration and reasoning be reused to
decrease reprogramming time?:

A configuration tool was developed, that gives the user form-based views for
defining the complete manufacturing systems behaviour. Also, a method for

52

deploying configurations was designed and tested, which also makes sure that
devices are identified once connected. Communication between agents was
standardized using a conceptual model, thus, removing the requirement for
setting up the communication manually. The communication is instead based on
configuration data, given through a configuration tool.

Research question RQ3. How can dynamic planning and scheduling in
configurable multi-agent systems be designed for Plug & Produce, which
can handle unpredictable events?:

To further decrease the changeover time, methods for planning and scheduling
were designed and evaluated. This was done in two ways: by scheduling process
plans automatically while avoiding conflicts between agents and by using
pathfinding that automatically detects all locations where parts can be placed and
generates a graph with all paths between those locations.

Future work:

In future work, the system can be extended with many supporting systems. This
includes systems for learning that can be applied to the pathfinder, to enable
learning what paths are the best to take. Zone management is something that
could be of interest to work with and is strongly related to the scheduling
algorithm described in this work. A zone needs to be scheduled to avoid conflicts.
Many supporting tools, such as CAD designs could be used for defining products
and automatically deploying that to the agent system. A restart of the system at
failure, by automatically generating instructions for operators is something that
can be developed. A more advanced and mature configuration tool for developing
the agents is needed for the industry to accept the proposed system in this thesis.
The configuration tool would benefit from including advanced debugging
functionality, and templates for agent types to avoid beginning from an empty
configuration for each new agent. The method of using views for configurations
is useful, but throughout the evaluations, in this work, it has been noted that it
quickly becomes difficult to overview the project. Thus, it would be a great
improvement if this could be complimented with a way to visualise the interface
connections between agents.

53

6 Summary of Appended Papers

Paper A. Goal-Oriented Process Plans in a Multiagent System for Plug &
Produce

The paper presents a framework for implementing the automation controller for
Plug & Produce. It is a multi-agent system framework, where resources are
assigned skills and parts are given goals. The framework solves the negotiation
among agents to reach the given goals with available resources. This makes it
possible to work with configurations rather than programming when making
changes to the manufacturing system. Using the presented framework, it is
possible to configure a robot gripper and related robot separately as individual
agents and then to let them find each other by communicating and setting up
collaboration automatically.

Paper B. Identification of resources and parts in a Plug and Produce
system using OPC UA

In this paper, a method is presented and implemented, that solves automated
detection, identification and configuration of added resources and parts in a Plug
& Produce system. For each added physical device, a corresponding agent is
instantiated based on the physical device type. A corresponding agent
configuration is stored in a database, similar to a device driver in Plug & Play for
computers. All agents are instantiated in a cloud service running outside the
manufacturing system. The communication protocol OPC UA is used for
communication between agents in the cloud and the physical device that they are
controlling. This enables many industrial devices to be connected to the
developed system.

Paper C. A conceptual model for multi-agent communication applied on
a Plug & Produce system

The paper presents a new conceptual model for multi-agent communication
applied in Plug & Produce. The conceptual model is an extension of the ideas of

52

deploying configurations was designed and tested, which also makes sure that
devices are identified once connected. Communication between agents was
standardized using a conceptual model, thus, removing the requirement for
setting up the communication manually. The communication is instead based on
configuration data, given through a configuration tool.

Research question RQ3. How can dynamic planning and scheduling in
configurable multi-agent systems be designed for Plug & Produce, which
can handle unpredictable events?:

To further decrease the changeover time, methods for planning and scheduling
were designed and evaluated. This was done in two ways: by scheduling process
plans automatically while avoiding conflicts between agents and by using
pathfinding that automatically detects all locations where parts can be placed and
generates a graph with all paths between those locations.

Future work:

In future work, the system can be extended with many supporting systems. This
includes systems for learning that can be applied to the pathfinder, to enable
learning what paths are the best to take. Zone management is something that
could be of interest to work with and is strongly related to the scheduling
algorithm described in this work. A zone needs to be scheduled to avoid conflicts.
Many supporting tools, such as CAD designs could be used for defining products
and automatically deploying that to the agent system. A restart of the system at
failure, by automatically generating instructions for operators is something that
can be developed. A more advanced and mature configuration tool for developing
the agents is needed for the industry to accept the proposed system in this thesis.
The configuration tool would benefit from including advanced debugging
functionality, and templates for agent types to avoid beginning from an empty
configuration for each new agent. The method of using views for configurations
is useful, but throughout the evaluations, in this work, it has been noted that it
quickly becomes difficult to overview the project. Thus, it would be a great
improvement if this could be complimented with a way to visualise the interface
connections between agents.

53

6 Summary of Appended Papers

Paper A. Goal-Oriented Process Plans in a Multiagent System for Plug &
Produce

The paper presents a framework for implementing the automation controller for
Plug & Produce. It is a multi-agent system framework, where resources are
assigned skills and parts are given goals. The framework solves the negotiation
among agents to reach the given goals with available resources. This makes it
possible to work with configurations rather than programming when making
changes to the manufacturing system. Using the presented framework, it is
possible to configure a robot gripper and related robot separately as individual
agents and then to let them find each other by communicating and setting up
collaboration automatically.

Paper B. Identification of resources and parts in a Plug and Produce
system using OPC UA

In this paper, a method is presented and implemented, that solves automated
detection, identification and configuration of added resources and parts in a Plug
& Produce system. For each added physical device, a corresponding agent is
instantiated based on the physical device type. A corresponding agent
configuration is stored in a database, similar to a device driver in Plug & Play for
computers. All agents are instantiated in a cloud service running outside the
manufacturing system. The communication protocol OPC UA is used for
communication between agents in the cloud and the physical device that they are
controlling. This enables many industrial devices to be connected to the
developed system.

Paper C. A conceptual model for multi-agent communication applied on
a Plug & Produce system

The paper presents a new conceptual model for multi-agent communication
applied in Plug & Produce. The conceptual model is an extension of the ideas of

54

standardized communication presented by the organization FIPA. The model
adds an abstraction layer where communicative acts designed specifically for
manufacturing systems can be added. These communicative acts are then reused
at a higher layer where the agent configurations are defined. This makes it possible
to limit the number of choices an engineer must make.

Paper D. A Method for Configuring Agents in Plug & Produce Systems

A lack of user-friendly tools that hide the complexity of multi-agent technology
in the underlying systems has been identified in previous research. Thus, this
paper presents a theory and implementation of a configuration tool for multi-
agent systems. The tool is developed as a Human Machine Interface (HMI) and
aims at being user-friendly. A manufacturing scenario is presented and tested
using the developed tool. This shows that it is possible to simplify the steps to
adapt a multi-agent system for new manufacturing scenarios.

Paper E. Part Oriented Planning for Unpredictable Events in Plug &
Produce

Planning that avoids conflicts among agents is described and tested with a
manufacturing scenario. Planning is done individually by each part agent by
scheduling each related process plan for the goals of that part. Resource agents
have schedules that can be accessed by all other agents. This makes it possible for
part agents to avoid adding items to the schedules that would introduce conflicts.

Paper F. Online Generation of Graphs used for Pathfinding in Plug &
Produce Systems

Automated pathfinding is necessary for planning the agents’ transfer when
multiple transfer steps are needed. This paper explains how a graph automatically
can be created by letting each agent find its surrounding agents through
communication. This online graph creation is what makes the pathfinder suitable
for Plug & Produce.

7 References

[1] Y. Zhang, H. Zhu, D. Tang, T. Zhou, and Y. Gui, “Dynamic job shop scheduling
based on deep reinforcement learning for multi-agent manufacturing systems,” Robot
Comput Integr Manuf, vol. 78, p. 102412, Dec. 2022, doi: 10.1016/j.rcim.2022.102412.

[2] E. Ribeiro da Silva, C. Schou, S. Hjorth, F. Tryggvason, and M. S. Sørensen, “Plug
& Produce robot assistants as shared resources: A simulation approach,” J Manuf
Syst, vol. 63, pp. 107–117, Apr. 2022, doi: 10.1016/j.jmsy.2022.03.004.

[3] S. J. Hu et al., “Assembly system design and operations for product variety,” CIRP
Annals, vol. 60, no. 2, pp. 715–733, 2011, doi: 10.1016/j.cirp.2011.05.004.

[4] S. Mayer, D. Plangger, F. Michahelles, and S. Rothfuss, “UberManufacturing,” in
Proceedings of the 6th International Conference on the Internet of Things, Nov. 2016, pp. 111–
119. doi: 10.1145/2991561.2991569.

[5] T. Blecker and N. Abdelkafi, “Mass Customization: State-of-the-Art and Challenges,”
in Mass Customization: Challenges and Solutions, Boston: Kluwer Academic Publishers,
pp. 1–25. doi: 10.1007/0-387-32224-8_1.

[6] H. A. ElMaraghy, “Flexible and reconfigurable manufacturing systems paradigms,”
International Journal of Flexible Manufacturing Systems, vol. 17, no. 4, pp. 261–276, Oct.
2005, doi: 10.1007/s10696-006-9028-7.

[7] P. Coletti and T. Aichner, “The Need for Personalisation,” in Mass Customization,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–21. doi: 10.1007/978-3-
642-18390-4_1.

[8] Y. Koren et al., “Reconfigurable Manufacturing Systems,” CIRP Annals, vol. 48, no.
2, pp. 527–540, 1999, doi: 10.1016/S0007-8506(07)63232-6.

[9] S. Hjorth, C. Schou, E. Ribeiro da Silva, F. Tryggvason, M. Sparre Sørensen, and H.
Forbech, “A Case Study of Plug and Produce Robot Assistants for Hybrid
Manufacturing Workstations,” 2022, pp. 242–249. doi: 10.1007/978-3-030-90700-
6_27.

[10] Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish, “Recent progress on
programming methods for industrial robots,” Robot Comput Integr Manuf, vol. 28, no.
2, pp. 87–94, Apr. 2012, doi: 10.1016/j.rcim.2011.08.004.

54

standardized communication presented by the organization FIPA. The model
adds an abstraction layer where communicative acts designed specifically for
manufacturing systems can be added. These communicative acts are then reused
at a higher layer where the agent configurations are defined. This makes it possible
to limit the number of choices an engineer must make.

Paper D. A Method for Configuring Agents in Plug & Produce Systems

A lack of user-friendly tools that hide the complexity of multi-agent technology
in the underlying systems has been identified in previous research. Thus, this
paper presents a theory and implementation of a configuration tool for multi-
agent systems. The tool is developed as a Human Machine Interface (HMI) and
aims at being user-friendly. A manufacturing scenario is presented and tested
using the developed tool. This shows that it is possible to simplify the steps to
adapt a multi-agent system for new manufacturing scenarios.

Paper E. Part Oriented Planning for Unpredictable Events in Plug &
Produce

Planning that avoids conflicts among agents is described and tested with a
manufacturing scenario. Planning is done individually by each part agent by
scheduling each related process plan for the goals of that part. Resource agents
have schedules that can be accessed by all other agents. This makes it possible for
part agents to avoid adding items to the schedules that would introduce conflicts.

Paper F. Online Generation of Graphs used for Pathfinding in Plug &
Produce Systems

Automated pathfinding is necessary for planning the agents’ transfer when
multiple transfer steps are needed. This paper explains how a graph automatically
can be created by letting each agent find its surrounding agents through
communication. This online graph creation is what makes the pathfinder suitable
for Plug & Produce.

7 References

[1] Y. Zhang, H. Zhu, D. Tang, T. Zhou, and Y. Gui, “Dynamic job shop scheduling
based on deep reinforcement learning for multi-agent manufacturing systems,” Robot
Comput Integr Manuf, vol. 78, p. 102412, Dec. 2022, doi: 10.1016/j.rcim.2022.102412.

[2] E. Ribeiro da Silva, C. Schou, S. Hjorth, F. Tryggvason, and M. S. Sørensen, “Plug
& Produce robot assistants as shared resources: A simulation approach,” J Manuf
Syst, vol. 63, pp. 107–117, Apr. 2022, doi: 10.1016/j.jmsy.2022.03.004.

[3] S. J. Hu et al., “Assembly system design and operations for product variety,” CIRP
Annals, vol. 60, no. 2, pp. 715–733, 2011, doi: 10.1016/j.cirp.2011.05.004.

[4] S. Mayer, D. Plangger, F. Michahelles, and S. Rothfuss, “UberManufacturing,” in
Proceedings of the 6th International Conference on the Internet of Things, Nov. 2016, pp. 111–
119. doi: 10.1145/2991561.2991569.

[5] T. Blecker and N. Abdelkafi, “Mass Customization: State-of-the-Art and Challenges,”
in Mass Customization: Challenges and Solutions, Boston: Kluwer Academic Publishers,
pp. 1–25. doi: 10.1007/0-387-32224-8_1.

[6] H. A. ElMaraghy, “Flexible and reconfigurable manufacturing systems paradigms,”
International Journal of Flexible Manufacturing Systems, vol. 17, no. 4, pp. 261–276, Oct.
2005, doi: 10.1007/s10696-006-9028-7.

[7] P. Coletti and T. Aichner, “The Need for Personalisation,” in Mass Customization,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–21. doi: 10.1007/978-3-
642-18390-4_1.

[8] Y. Koren et al., “Reconfigurable Manufacturing Systems,” CIRP Annals, vol. 48, no.
2, pp. 527–540, 1999, doi: 10.1016/S0007-8506(07)63232-6.

[9] S. Hjorth, C. Schou, E. Ribeiro da Silva, F. Tryggvason, M. Sparre Sørensen, and H.
Forbech, “A Case Study of Plug and Produce Robot Assistants for Hybrid
Manufacturing Workstations,” 2022, pp. 242–249. doi: 10.1007/978-3-030-90700-
6_27.

[10] Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish, “Recent progress on
programming methods for industrial robots,” Robot Comput Integr Manuf, vol. 28, no.
2, pp. 87–94, Apr. 2012, doi: 10.1016/j.rcim.2011.08.004.

[11] M. R. Pedersen et al., “Robot skills for manufacturing: From concept to industrial
deployment,” Robot Comput Integr Manuf, vol. 37, pp. 282–291, Feb. 2016, doi:
10.1016/j.rcim.2015.04.002.

[12] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project: plug & produce
at shop‐floor level,” Assembly Automation, vol. 32, no. 2, pp. 124–134, Apr. 2012, doi:
10.1108/01445151211212280.

[13] L. Ribeiro, J. Barata, M. Onori, and J. Hoos, “Industrial Agents for the Fast
Deployment of Evolvable Assembly Systems,” in Industrial Agents, Elsevier, 2015, pp.
301–322. doi: 10.1016/B978-0-12-800341-1.00017-6.

[14] A. Zoitl, G. Kainz, and N. Keddis, “Production Plan-Driven Flexible Assembly
Automation Architecture,” in Industrial Applications of Holonic and Multi-Agent Systems,
2013, pp. 49–58. doi: 10.1007/978-3-642-40090-2_5.

[15] M. Hvilshøj and S. Bøgh, “‘Little Helper’ — An Autonomous Industrial Mobile
Manipulator Concept,” Int J Adv Robot Syst, vol. 8, no. 2, pp. 80–90, Jun. 2011, doi:
10.5772/10579.

[16] C. Schou and O. Madsen, “A plug and produce framework for industrial collaborative
robots,” Int J Adv Robot Syst, vol. 14, no. 4, pp. 1–10, Jul. 2017, doi:
10.1177/1729881417717472.

[17] N. K. C. Krothapalli and A. V. Deshmukh, “Design of negotiation protocols for
multi-agent manufacturing systems,” Int J Prod Res, vol. 37, no. 7, pp. 1601–1624, May
1999, doi: 10.1080/002075499191157.

[18] A. Nilsson, F. Danielsson, and B. Svensson, “Customization and flexible
manufacturing capacity using a graphical method applied on a configurable multi-
agent system,” Robot Comput Integr Manuf, vol. 79, p. 102450, Feb. 2023, doi:
10.1016/j.rcim.2022.102450.

[19] P. Leitao, V. Marik, and P. Vrba, “Past, Present, and Future of Industrial Agent
Applications,” IEEE Trans Industr Inform, vol. 9, no. 4, pp. 2360–2372, Nov. 2013,
doi: 10.1109/TII.2012.2222034.

[20] P. Leitão and S. Karnouskos, “A Survey on Factors that Impact Industrial Agent
Acceptance,” in Industrial Agents, Elsevier, 2015, pp. 401–429. doi: 10.1016/B978-0-
12-800341-1.00022-X.

[21] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-art survey,”
Eng Appl Artif Intell, vol. 22, no. 7, pp. 979–991, Oct. 2009, doi:
10.1016/j.engappai.2008.09.005.

[22] T. Pulikottil, L. A. Estrada-Jimenez, H. U. Rehman, J. Barata, S. Nikghadam-Hojjati,
and L. Zarzycki, “Multi-agent based manufacturing: current trends and challenges,”
in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Sep. 2021, pp. 1–7. doi: 10.1109/ETFA45728.2021.9613555.

[23] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-based systems
in intelligent manufacturing: An updated review,” Advanced Engineering Informatics, vol.
20, no. 4, pp. 415–431, Oct. 2006, doi: 10.1016/j.aei.2006.05.004.

[24] S. Karnouskos and P. Leitao, “Key Contributing Factors to the Acceptance of Agents
in Industrial Environments,” IEEE Trans Industr Inform, vol. 13, no. 2, pp. 696–703,
Apr. 2017, doi: 10.1109/TII.2016.2607148.

[25] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile Assembly System by ‘Plug
and Produce,’” CIRP Annals, vol. 49, no. 1, pp. 1–4, 2000, doi: 10.1016/S0007-
8506(07)62883-2.

[26] V. Mařík and J. Lažanský, “Industrial applications of agent technologies,” Control Eng
Pract, vol. 15, no. 11, pp. 1364–1380, Nov. 2007, doi:
10.1016/j.conengprac.2006.10.001.

[27] L. Steels, “When are robots intelligent autonomous agents?,” Rob Auton Syst, vol. 15,
no. 1–2, pp. 3–9, Jul. 1995, doi: 10.1016/0921-8890(95)00011-4.

[28] M. Skilton and F. Hovsepian, The 4th Industrial Revolution. Cham: Springer International
Publishing, 2018. doi: 10.1007/978-3-319-62479-2.

[29] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and practice,” Knowl
Eng Rev, vol. 10, no. 2, pp. 115–152, Jun. 1995, doi: 10.1017/S0269888900008122.

[30] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanovic, “Software agents:
Languages, tools, platforms,” Computer Science and Information Systems, vol. 8, no. 2, pp.
255–298, 2011, doi: 10.2298/CSIS110214013B.

[31] M. de Weerdt and B. Clement, “Introduction to planning in multiagent systems,”
Multiagent and Grid Systems, vol. 5, no. 4, pp. 345–355, Dec. 2009, doi: 10.3233/MGS-
2009-0133.

[32] A. Shalyto, L. Naumov, and G. Korneev, “Methods of object-oriented reactive agents
implementation on the basis of finite automata,” in International Conference on Integration
of Knowledge Intensive Multi-Agent Systems, 2005., pp. 460–465. doi:
10.1109/KIMAS.2005.1427125.

[11] M. R. Pedersen et al., “Robot skills for manufacturing: From concept to industrial
deployment,” Robot Comput Integr Manuf, vol. 37, pp. 282–291, Feb. 2016, doi:
10.1016/j.rcim.2015.04.002.

[12] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project: plug & produce
at shop‐floor level,” Assembly Automation, vol. 32, no. 2, pp. 124–134, Apr. 2012, doi:
10.1108/01445151211212280.

[13] L. Ribeiro, J. Barata, M. Onori, and J. Hoos, “Industrial Agents for the Fast
Deployment of Evolvable Assembly Systems,” in Industrial Agents, Elsevier, 2015, pp.
301–322. doi: 10.1016/B978-0-12-800341-1.00017-6.

[14] A. Zoitl, G. Kainz, and N. Keddis, “Production Plan-Driven Flexible Assembly
Automation Architecture,” in Industrial Applications of Holonic and Multi-Agent Systems,
2013, pp. 49–58. doi: 10.1007/978-3-642-40090-2_5.

[15] M. Hvilshøj and S. Bøgh, “‘Little Helper’ — An Autonomous Industrial Mobile
Manipulator Concept,” Int J Adv Robot Syst, vol. 8, no. 2, pp. 80–90, Jun. 2011, doi:
10.5772/10579.

[16] C. Schou and O. Madsen, “A plug and produce framework for industrial collaborative
robots,” Int J Adv Robot Syst, vol. 14, no. 4, pp. 1–10, Jul. 2017, doi:
10.1177/1729881417717472.

[17] N. K. C. Krothapalli and A. V. Deshmukh, “Design of negotiation protocols for
multi-agent manufacturing systems,” Int J Prod Res, vol. 37, no. 7, pp. 1601–1624, May
1999, doi: 10.1080/002075499191157.

[18] A. Nilsson, F. Danielsson, and B. Svensson, “Customization and flexible
manufacturing capacity using a graphical method applied on a configurable multi-
agent system,” Robot Comput Integr Manuf, vol. 79, p. 102450, Feb. 2023, doi:
10.1016/j.rcim.2022.102450.

[19] P. Leitao, V. Marik, and P. Vrba, “Past, Present, and Future of Industrial Agent
Applications,” IEEE Trans Industr Inform, vol. 9, no. 4, pp. 2360–2372, Nov. 2013,
doi: 10.1109/TII.2012.2222034.

[20] P. Leitão and S. Karnouskos, “A Survey on Factors that Impact Industrial Agent
Acceptance,” in Industrial Agents, Elsevier, 2015, pp. 401–429. doi: 10.1016/B978-0-
12-800341-1.00022-X.

[21] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-art survey,”
Eng Appl Artif Intell, vol. 22, no. 7, pp. 979–991, Oct. 2009, doi:
10.1016/j.engappai.2008.09.005.

[22] T. Pulikottil, L. A. Estrada-Jimenez, H. U. Rehman, J. Barata, S. Nikghadam-Hojjati,
and L. Zarzycki, “Multi-agent based manufacturing: current trends and challenges,”
in 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Sep. 2021, pp. 1–7. doi: 10.1109/ETFA45728.2021.9613555.

[23] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-based systems
in intelligent manufacturing: An updated review,” Advanced Engineering Informatics, vol.
20, no. 4, pp. 415–431, Oct. 2006, doi: 10.1016/j.aei.2006.05.004.

[24] S. Karnouskos and P. Leitao, “Key Contributing Factors to the Acceptance of Agents
in Industrial Environments,” IEEE Trans Industr Inform, vol. 13, no. 2, pp. 696–703,
Apr. 2017, doi: 10.1109/TII.2016.2607148.

[25] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile Assembly System by ‘Plug
and Produce,’” CIRP Annals, vol. 49, no. 1, pp. 1–4, 2000, doi: 10.1016/S0007-
8506(07)62883-2.

[26] V. Mařík and J. Lažanský, “Industrial applications of agent technologies,” Control Eng
Pract, vol. 15, no. 11, pp. 1364–1380, Nov. 2007, doi:
10.1016/j.conengprac.2006.10.001.

[27] L. Steels, “When are robots intelligent autonomous agents?,” Rob Auton Syst, vol. 15,
no. 1–2, pp. 3–9, Jul. 1995, doi: 10.1016/0921-8890(95)00011-4.

[28] M. Skilton and F. Hovsepian, The 4th Industrial Revolution. Cham: Springer International
Publishing, 2018. doi: 10.1007/978-3-319-62479-2.

[29] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and practice,” Knowl
Eng Rev, vol. 10, no. 2, pp. 115–152, Jun. 1995, doi: 10.1017/S0269888900008122.

[30] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanovic, “Software agents:
Languages, tools, platforms,” Computer Science and Information Systems, vol. 8, no. 2, pp.
255–298, 2011, doi: 10.2298/CSIS110214013B.

[31] M. de Weerdt and B. Clement, “Introduction to planning in multiagent systems,”
Multiagent and Grid Systems, vol. 5, no. 4, pp. 345–355, Dec. 2009, doi: 10.3233/MGS-
2009-0133.

[32] A. Shalyto, L. Naumov, and G. Korneev, “Methods of object-oriented reactive agents
implementation on the basis of finite automata,” in International Conference on Integration
of Knowledge Intensive Multi-Agent Systems, 2005., pp. 460–465. doi:
10.1109/KIMAS.2005.1427125.

[33] Anand Srinivasa Rao and Michael P. Georgeff, “BDI Agents: From Theory to
Practice,” in Proceedings of the First International Conference on Multiagent Systems, 1995, pp.
312–319.

[34] I. Kovalenko, E. C. Balta, D. M. Tilbury, and K. Barton, “Cooperative Product
Agents to Improve Manufacturing System Flexibility: A Model-Based Decision
Framework,” IEEE Transactions on Automation Science and Engineering, pp. 1–18, 2022,
doi: 10.1109/TASE.2022.3156384.

[35] Foundation for intelligent physical agents, “FIPA 97 Part 1 Version 1.0: Agent
Management Specification,” FIPA. 1997.

[36] Foundation for intelligent physical agents, “FIPA Agent Management Specification,”
FIPA. Geneva, Switzerland, 2002.

[37] Foundation for intelligent physical agents, “FIPA Agent Message Transport Service
Specification,” FIPA. Geneva, Switzerland, 2002.

[38] E. Argente et al., “Supporting Agent Organizations,” in Multi-Agent Systems and
Applications V, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 236–245. doi:
10.1007/978-3-540-75254-7_24.

[39] S. Siracuse, R. Tomlinson, T. Wright, and J. Zinky, “Experience with Task/Allocation
Coordination Primitive for Building SurvivableMulti-AgentSystems,” in 2007
International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Apr. 2007,
pp. 40–45. doi: 10.1109/KIMAS.2007.369782.

[40] J. Alberola, J. Such, V. Botti, A. Espinosa, and A. García-Fornes, “A scalable
multiagent platform for large systems,” Computer Science and Information Systems, vol. 10,
no. 1, pp. 51–77, 2013, doi: 10.2298/CSIS111029039A.

[41] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood, Developing Multi-
Agent Systems with JADE. John Wiley & Sons, 2007.

[42] Ramesh Patil et al., “The DARPA Knowledge Sharing Effort: Progress Report,”
Morgan Kaufman, 1992.

[43] S. Poslad, “Specifying protocols for multi-agent systems interaction,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 2, no. 4, pp. 15:1-15:24, Nov. 2007,
doi: 10.1145/1293731.1293735.

[44] Foundation for intelligent physical agents, “FIPA ACL Message Structure
Specification,” FIPA. Geneva, Switzerland, 2002.

[45] Mehdi Dastani, Amal El Fallah Seghrouchni, Alessandro Ricci, and Michael Winikoff,
“Programming Multi-Agent Systems ,” in Fifth International Workshop, ProMAS 2007 ,
May 2007.

[46] Foundation for intelligent physical agents, “FIPA Contract Net Interaction Protocol
Specification,” FIPA. 2002.

[47] Smith, “The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver,” IEEE Transactions on Computers, vol. C–29, no. 12, pp.
1104–1113, Dec. 1980, doi: 10.1109/TC.1980.1675516.

[48] S. Ramasamy, X. Zhang, M. Bennulf, and F. Danielsson, “Automated Path Planning
for Plug & Produce in a Cutting-tool Changing Application,” in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2019,
vol. 2019-Septe, pp. 356–362. doi: 10.1109/ETFA.2019.8869398.

[49] M. Bennulf, B. Svensson, and F. Danielsson, “Verification and deployment of
automatically generated robot programs used in prefabrication of house walls,”
Procedia CIRP, vol. 72, pp. 272–276, 2018, doi: 10.1016/j.procir.2018.03.025.

[50] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query
path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000,
vol. 2, pp. 995–1001. doi: 10.1109/ROBOT.2000.844730.

[51] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer Math
(Heidelb), vol. 1, no. 1, pp. 269–271, Dec. 1959, doi: 10.1007/BF01386390.

[52] T. Standley and R. Korf, “Complete Algorithms for Cooperative Pathfinding
Problems,” Barcelona, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-118.

[53] R. Stern et al., “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,”
Proceedings of the International Symposium on Combinatorial Search, vol. 10, no. 1, pp. 151–
158, Sep. 2019, doi: 10.1609/socs.v10i1.18510.

[54] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-Agent Path
Finding for Large Agents,” Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, no. 01, pp. 7627–7634, Jul. 2019, doi: 10.1609/aaai.v33i01.33017627.

[55] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-
Agent Learning,” IEEE Robot Autom Lett, vol. 4, no. 3, pp. 2378–2385, Jul. 2019, doi:
10.1109/LRA.2019.2903261.

[33] Anand Srinivasa Rao and Michael P. Georgeff, “BDI Agents: From Theory to
Practice,” in Proceedings of the First International Conference on Multiagent Systems, 1995, pp.
312–319.

[34] I. Kovalenko, E. C. Balta, D. M. Tilbury, and K. Barton, “Cooperative Product
Agents to Improve Manufacturing System Flexibility: A Model-Based Decision
Framework,” IEEE Transactions on Automation Science and Engineering, pp. 1–18, 2022,
doi: 10.1109/TASE.2022.3156384.

[35] Foundation for intelligent physical agents, “FIPA 97 Part 1 Version 1.0: Agent
Management Specification,” FIPA. 1997.

[36] Foundation for intelligent physical agents, “FIPA Agent Management Specification,”
FIPA. Geneva, Switzerland, 2002.

[37] Foundation for intelligent physical agents, “FIPA Agent Message Transport Service
Specification,” FIPA. Geneva, Switzerland, 2002.

[38] E. Argente et al., “Supporting Agent Organizations,” in Multi-Agent Systems and
Applications V, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 236–245. doi:
10.1007/978-3-540-75254-7_24.

[39] S. Siracuse, R. Tomlinson, T. Wright, and J. Zinky, “Experience with Task/Allocation
Coordination Primitive for Building SurvivableMulti-AgentSystems,” in 2007
International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Apr. 2007,
pp. 40–45. doi: 10.1109/KIMAS.2007.369782.

[40] J. Alberola, J. Such, V. Botti, A. Espinosa, and A. García-Fornes, “A scalable
multiagent platform for large systems,” Computer Science and Information Systems, vol. 10,
no. 1, pp. 51–77, 2013, doi: 10.2298/CSIS111029039A.

[41] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood, Developing Multi-
Agent Systems with JADE. John Wiley & Sons, 2007.

[42] Ramesh Patil et al., “The DARPA Knowledge Sharing Effort: Progress Report,”
Morgan Kaufman, 1992.

[43] S. Poslad, “Specifying protocols for multi-agent systems interaction,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 2, no. 4, pp. 15:1-15:24, Nov. 2007,
doi: 10.1145/1293731.1293735.

[44] Foundation for intelligent physical agents, “FIPA ACL Message Structure
Specification,” FIPA. Geneva, Switzerland, 2002.

[45] Mehdi Dastani, Amal El Fallah Seghrouchni, Alessandro Ricci, and Michael Winikoff,
“Programming Multi-Agent Systems ,” in Fifth International Workshop, ProMAS 2007 ,
May 2007.

[46] Foundation for intelligent physical agents, “FIPA Contract Net Interaction Protocol
Specification,” FIPA. 2002.

[47] Smith, “The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver,” IEEE Transactions on Computers, vol. C–29, no. 12, pp.
1104–1113, Dec. 1980, doi: 10.1109/TC.1980.1675516.

[48] S. Ramasamy, X. Zhang, M. Bennulf, and F. Danielsson, “Automated Path Planning
for Plug & Produce in a Cutting-tool Changing Application,” in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2019,
vol. 2019-Septe, pp. 356–362. doi: 10.1109/ETFA.2019.8869398.

[49] M. Bennulf, B. Svensson, and F. Danielsson, “Verification and deployment of
automatically generated robot programs used in prefabrication of house walls,”
Procedia CIRP, vol. 72, pp. 272–276, 2018, doi: 10.1016/j.procir.2018.03.025.

[50] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query
path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000,
vol. 2, pp. 995–1001. doi: 10.1109/ROBOT.2000.844730.

[51] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer Math
(Heidelb), vol. 1, no. 1, pp. 269–271, Dec. 1959, doi: 10.1007/BF01386390.

[52] T. Standley and R. Korf, “Complete Algorithms for Cooperative Pathfinding
Problems,” Barcelona, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-118.

[53] R. Stern et al., “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,”
Proceedings of the International Symposium on Combinatorial Search, vol. 10, no. 1, pp. 151–
158, Sep. 2019, doi: 10.1609/socs.v10i1.18510.

[54] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-Agent Path
Finding for Large Agents,” Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, no. 01, pp. 7627–7634, Jul. 2019, doi: 10.1609/aaai.v33i01.33017627.

[55] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-
Agent Learning,” IEEE Robot Autom Lett, vol. 4, no. 3, pp. 2378–2385, Jul. 2019, doi:
10.1109/LRA.2019.2903261.

[45] Mehdi Dastani, Amal El Fallah Seghrouchni, Alessandro Ricci, and Michael Winikoff,
“Programming Multi-Agent Systems ,” in Fifth International Workshop, ProMAS 2007 ,
May 2007.

[46] Foundation for intelligent physical agents, “FIPA Contract Net Interaction Protocol
Specification,” FIPA. 2002.

[47] Smith, “The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver,” IEEE Transactions on Computers, vol. C–29, no. 12, pp.
1104–1113, Dec. 1980, doi: 10.1109/TC.1980.1675516.

[48] S. Ramasamy, X. Zhang, M. Bennulf, and F. Danielsson, “Automated Path Planning
for Plug & Produce in a Cutting-tool Changing Application,” in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2019,
vol. 2019-Septe, pp. 356–362. doi: 10.1109/ETFA.2019.8869398.

[49] M. Bennulf, B. Svensson, and F. Danielsson, “Verification and deployment of
automatically generated robot programs used in prefabrication of house walls,”
Procedia CIRP, vol. 72, pp. 272–276, 2018, doi: 10.1016/j.procir.2018.03.025.

[50] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query
path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000,
vol. 2, pp. 995–1001. doi: 10.1109/ROBOT.2000.844730.

[51] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer Math
(Heidelb), vol. 1, no. 1, pp. 269–271, Dec. 1959, doi: 10.1007/BF01386390.

[52] T. Standley and R. Korf, “Complete Algorithms for Cooperative Pathfinding
Problems,” Barcelona, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-118.

[53] R. Stern et al., “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,”
Proceedings of the International Symposium on Combinatorial Search, vol. 10, no. 1, pp. 151–
158, Sep. 2019, doi: 10.1609/socs.v10i1.18510.

[54] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-Agent Path
Finding for Large Agents,” Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, no. 01, pp. 7627–7634, Jul. 2019, doi: 10.1609/aaai.v33i01.33017627.

[55] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-
Agent Learning,” IEEE Robot Autom Lett, vol. 4, no. 3, pp. 2378–2385, Jul. 2019, doi:
10.1109/LRA.2019.2903261.

[56] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost tree search
for optimal multi-agent pathfinding,” Artif Intell, vol. 195, pp. 470–495, Feb. 2013,
doi: 10.1016/j.artint.2012.11.006.

[57] D. Silver, “Cooperative Pathfinding,” in Cooperative Pathfinding, 2005, pp. 117–122.
[Online]. Available: www.aaai.org

[58] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in manufacturing
systems,” Journal of Scheduling, vol. 12, no. 4, pp. 417–431, Aug. 2009, doi:
10.1007/s10951-008-0090-8.

[59] K. Z. Gao, P. N. Suganthan, M. F. Tasgetiren, Q. K. Pan, and Q. Q. Sun, “Effective
ensembles of heuristics for scheduling flexible job shop problem with new job
insertion,” Comput Ind Eng, vol. 90, pp. 107–117, Dec. 2015, doi:
10.1016/j.cie.2015.09.005.

[60] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling Manufacturing Systems: A
Framework of Strategies, Policies, and Methods,” Journal of Scheduling, vol. 6, no. 1, pp.
39–62, 2003, doi: 10.1023/A:1022235519958.

[61] D. Smale and S. Ratchev, “A Capability Model and Taxonomy for Multiple Assembly
System Reconfigurations,” IFAC Proceedings Volumes, vol. 42, no. 4, pp. 1923–1928,
2009, doi: 10.3182/20090603-3-RU-2001.0556.

[62] E. Järvenpää, M. Lanz, and R. Tuokko, “Application of a capability-based adaptation
methodology to a small-size production system,” International Journal of Manufacturing
Technology and Management, vol. 30, no. 1/2, p. 67, 2016, doi:
10.1504/IJMTM.2016.075839.

[63] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm, OPC unified
architecture. Springer Science & Business Media, 2009.

Appended Papers

[56] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost tree search
for optimal multi-agent pathfinding,” Artif Intell, vol. 195, pp. 470–495, Feb. 2013,
doi: 10.1016/j.artint.2012.11.006.

[57] D. Silver, “Cooperative Pathfinding,” in Cooperative Pathfinding, 2005, pp. 117–122.
[Online]. Available: www.aaai.org

[58] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in manufacturing
systems,” Journal of Scheduling, vol. 12, no. 4, pp. 417–431, Aug. 2009, doi:
10.1007/s10951-008-0090-8.

[59] K. Z. Gao, P. N. Suganthan, M. F. Tasgetiren, Q. K. Pan, and Q. Q. Sun, “Effective
ensembles of heuristics for scheduling flexible job shop problem with new job
insertion,” Comput Ind Eng, vol. 90, pp. 107–117, Dec. 2015, doi:
10.1016/j.cie.2015.09.005.

[60] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling Manufacturing Systems: A
Framework of Strategies, Policies, and Methods,” Journal of Scheduling, vol. 6, no. 1, pp.
39–62, 2003, doi: 10.1023/A:1022235519958.

[61] D. Smale and S. Ratchev, “A Capability Model and Taxonomy for Multiple Assembly
System Reconfigurations,” IFAC Proceedings Volumes, vol. 42, no. 4, pp. 1923–1928,
2009, doi: 10.3182/20090603-3-RU-2001.0556.

[62] E. Järvenpää, M. Lanz, and R. Tuokko, “Application of a capability-based adaptation
methodology to a small-size production system,” International Journal of Manufacturing
Technology and Management, vol. 30, no. 1/2, p. 67, 2016, doi:
10.1504/IJMTM.2016.075839.

[63] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm, OPC unified
architecture. Springer Science & Business Media, 2009.

Appended Papers

Paper A

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf, Fredrik Danielsson, Bo Svensson, Bengt Lennartson

Published in
IEEE Transactions on Industrial Informatics

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

Printed and published with permission

A

Paper A

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf, Fredrik Danielsson, Bo Svensson, Bengt Lennartson

Published in
IEEE Transactions on Industrial Informatics

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

Printed and published with permission

A

Paper A

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf, Fredrik Danielsson, Bo Svensson, Bengt Lennartson

Published in
IEEE Transactions on Industrial Informatics

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

A

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021 2411

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf , Fredrik Danielsson , Bo Svensson , and Bengt Lennartson , Fellow, IEEE

Abstract—This article presents a framework for Plug &
Produce that makes it possible to use configurations rather
than programming to adapt a manufacturing system for
new resources and parts. This is solved by defining skills
on resources, and goals for parts. To reach these goals,
process plans are defined with a sequence of skills to be
utilized without specifying specific resources. This makes
it possible to separate the physical world from the process
plans. When a process plan requires a skill, e.g., grip with a
gripper resource, then that skill may require further skills,
e.g., move with a robot resource. This creates a tree of
connected resources that are not defined in the process
plan. Physical and logical compatibility between resources
in this tree is checked by comparing several parameters de-
fined on the resources and the part. This article presents an
algorithm together with a multiagent system framework that
handles the search and matching required for selecting the
correct resources.

Index Terms—Multiagent, Plug & Produce, process plan,
robotics.

I. INTRODUCTION

S INCE late 1980s mass customization has become more
common and now aims at reaching production costs close to

dedicated manufacturing systems [1]. The life cycle for products
is becoming shorter, making traditional approaches for automa-
tion ineffective. There is a need to develop new control strategies
that can handle various changes without reprogramming, such
as production fluctuations, the addition of resources, and the
introduction of new products [2].

Conventional centralized approaches are dedicated to specific
tasks, forcing personal to understand much of the code and
logic, manually programmed in robots and programmable logic
controllers (PLCs) when changes are made to manufacturing
systems [3]. Instead, this article aims at spreading out the logic
and parameter data on agents related to each resource and part

Manuscript received January 15, 2020; revised March 24, 2020; ac-
cepted April 21, 2020. Date of publication May 28, 2020; date of current
version January 4, 2021. This work was supported by Miljö för Flexibel
och Innovativ Automation under Project no. 20201192 funded by the
Europeiska regionala utvecklingsfonden/VGR. Paper no. TII-20-0219.
(Corresponding author: Mattias Bennulf.)

Mattias Bennulf, Fredrik Danielsson, and Bo Svensson are with the
Department of Engineering Science, University West, 46132 Trollhät-
tan, Sweden (e-mail: mattias.bennulf@hv.se; fredrik.danielsson@hv.se;
bo.svensson@hv.se).

Bengt Lennartson is with the Department of Electrical Engineering,
Chalmers University of Technology, 41296 Göteborg, Sweden (e-mail:
bengt.lennartson@chalmers.se).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.2994032

in a manufacturing system. In this article, the parts are metal
pieces to be processed, and the resources are one industrial
robot surrounded by different process modules for machining
and storage. Distributing the controller on multiple agents makes
it possible to change the behaviour of a resource or part, without
considering other resources or parts. For example, if introducing
a completely new type of tool to the robot cell, our approach
requires no downtime. The tool can be calibrated in a separate
environment and data saved in its agent, before adding it to the
manufacturing system. In a traditional approach, the robot cell
commonly needs to be stopped and the robot code changed to
achieve this reconfiguration.

Manufacturing system concepts have varied over time. Ini-
tially, functional workshops were used as a norm [4]. Functional
workshop structures still exist today, due to their ability to handle
low volume products with a very diverse range of products,
but they are characterized by a low level of automation due
to their complexity [5]. The complexity of such a system can
become immense, and it is difficult to get an overview of its
flow. Moreover, if shared by many products, it will generate
complex and unpredictable flows, which are hard to balance.
It is easier to focus on resource efficiency (overall equipment
effectiveness) rather than flow efficiency in such a situation [6].

Reconfiguration and flexibility have been researched for sev-
eral decades in automation [7]. Flexible manufacturing systems
(FMSs) was developed in the 80’s [8] and reconfigurable man-
ufacturing systems (RMSs) in the 90’s [8], [9]. They both aim
at taking care of customization and short product life cycles.
Even if FMS and reconfigurable concepts are examples of exist-
ing solutions for the automation of functional workshops, and
the literature confirms the benefits of flexibility in automated
manufacturing, the industrial experience still points out several
shortcomings. FMS still have too high installation cost, due to
rigid control solutions, and RMS are still not flexible enough
to support fast reconfiguration, where machines are to be added
and removed [7]. Manufacturing systems that handle quick con-
nection and use of new devices are often regarded as Plug & Pro-
duce systems. This concept was first introduced in [10], where
multiple resources could be added, containing a local controller.

This article addresses reconfigurability by defining a new
multiagent system (MAS) framework for Plug & Produce. The
framework is general and can be applied to many manufacturing
systems, but the focus in this article is on local robotized flows
in functional workshops.

The main idea is to be agile and able to create manufacturing
systems when needed on short term notice. For Plug & Produce,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021 2411

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf , Fredrik Danielsson , Bo Svensson , and Bengt Lennartson , Fellow, IEEE

Abstract—This article presents a framework for Plug &
Produce that makes it possible to use configurations rather
than programming to adapt a manufacturing system for
new resources and parts. This is solved by defining skills
on resources, and goals for parts. To reach these goals,
process plans are defined with a sequence of skills to be
utilized without specifying specific resources. This makes
it possible to separate the physical world from the process
plans. When a process plan requires a skill, e.g., grip with a
gripper resource, then that skill may require further skills,
e.g., move with a robot resource. This creates a tree of
connected resources that are not defined in the process
plan. Physical and logical compatibility between resources
in this tree is checked by comparing several parameters de-
fined on the resources and the part. This article presents an
algorithm together with a multiagent system framework that
handles the search and matching required for selecting the
correct resources.

Index Terms—Multiagent, Plug & Produce, process plan,
robotics.

I. INTRODUCTION

S INCE late 1980s mass customization has become more
common and now aims at reaching production costs close to

dedicated manufacturing systems [1]. The life cycle for products
is becoming shorter, making traditional approaches for automa-
tion ineffective. There is a need to develop new control strategies
that can handle various changes without reprogramming, such
as production fluctuations, the addition of resources, and the
introduction of new products [2].

Conventional centralized approaches are dedicated to specific
tasks, forcing personal to understand much of the code and
logic, manually programmed in robots and programmable logic
controllers (PLCs) when changes are made to manufacturing
systems [3]. Instead, this article aims at spreading out the logic
and parameter data on agents related to each resource and part

Manuscript received January 15, 2020; revised March 24, 2020; ac-
cepted April 21, 2020. Date of publication May 28, 2020; date of current
version January 4, 2021. This work was supported by Miljö för Flexibel
och Innovativ Automation under Project no. 20201192 funded by the
Europeiska regionala utvecklingsfonden/VGR. Paper no. TII-20-0219.
(Corresponding author: Mattias Bennulf.)

Mattias Bennulf, Fredrik Danielsson, and Bo Svensson are with the
Department of Engineering Science, University West, 46132 Trollhät-
tan, Sweden (e-mail: mattias.bennulf@hv.se; fredrik.danielsson@hv.se;
bo.svensson@hv.se).

Bengt Lennartson is with the Department of Electrical Engineering,
Chalmers University of Technology, 41296 Göteborg, Sweden (e-mail:
bengt.lennartson@chalmers.se).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.2994032

in a manufacturing system. In this article, the parts are metal
pieces to be processed, and the resources are one industrial
robot surrounded by different process modules for machining
and storage. Distributing the controller on multiple agents makes
it possible to change the behaviour of a resource or part, without
considering other resources or parts. For example, if introducing
a completely new type of tool to the robot cell, our approach
requires no downtime. The tool can be calibrated in a separate
environment and data saved in its agent, before adding it to the
manufacturing system. In a traditional approach, the robot cell
commonly needs to be stopped and the robot code changed to
achieve this reconfiguration.

Manufacturing system concepts have varied over time. Ini-
tially, functional workshops were used as a norm [4]. Functional
workshop structures still exist today, due to their ability to handle
low volume products with a very diverse range of products,
but they are characterized by a low level of automation due
to their complexity [5]. The complexity of such a system can
become immense, and it is difficult to get an overview of its
flow. Moreover, if shared by many products, it will generate
complex and unpredictable flows, which are hard to balance.
It is easier to focus on resource efficiency (overall equipment
effectiveness) rather than flow efficiency in such a situation [6].

Reconfiguration and flexibility have been researched for sev-
eral decades in automation [7]. Flexible manufacturing systems
(FMSs) was developed in the 80’s [8] and reconfigurable man-
ufacturing systems (RMSs) in the 90’s [8], [9]. They both aim
at taking care of customization and short product life cycles.
Even if FMS and reconfigurable concepts are examples of exist-
ing solutions for the automation of functional workshops, and
the literature confirms the benefits of flexibility in automated
manufacturing, the industrial experience still points out several
shortcomings. FMS still have too high installation cost, due to
rigid control solutions, and RMS are still not flexible enough
to support fast reconfiguration, where machines are to be added
and removed [7]. Manufacturing systems that handle quick con-
nection and use of new devices are often regarded as Plug & Pro-
duce systems. This concept was first introduced in [10], where
multiple resources could be added, containing a local controller.

This article addresses reconfigurability by defining a new
multiagent system (MAS) framework for Plug & Produce. The
framework is general and can be applied to many manufacturing
systems, but the focus in this article is on local robotized flows
in functional workshops.

The main idea is to be agile and able to create manufacturing
systems when needed on short term notice. For Plug & Produce,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

2412 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

the time to set it up should be measured in minutes rather than
days or months as for older concepts. The setup time can be
divided into two main parts, the hardware installation time (hard-
ware time) and the time spent on programming and configuring
the system (software time). The hardware time can be handled
by using standardized connectors and standardly sized modules.
This has been described in previous work, such as [11], [12],
where it is defined as mechatronic compatibility. Modular hard-
ware architectures have been implemented and tested in other
works such as [13], [2]. Using standardized physical connectors
and modules, it is easy to move resources around to form local
setups on demand. However, for the software time , there is also
a need for reconfiguration/reprogramming of the logical system
to integrate the added components [12], [14].

The focus of this article is to formulate a solution that avoids
the time it takes to program equipment for new tasks, i.e.,
decreasing time spent on software time. The key components
are intelligent and collaborative resources. An intelligent and
collaborative resource is not programmed in a traditional way,
such as PLC and robot control code, where logic and data are
mixed in one big integrated and dedicated solution. Instead,
each resource is assigned an agent upon activation. An agent
is a standardized software package, able to communicate and
collaborate with other agents [15]. A software agent is unique
in the world by its configuration, which is loaded when it is
instantiated. The configuration mainly describes the physical
properties and skills associated with a specific resource. In this
way, each agent becomes a unique controller for a specific
resource. When several smart resources are grouped together,
they collaborate to form a local manufacturing system. Together
they can offer more aggregated and advanced skills, depending
on the resources involved.

In the same way, every part in the system, that should be pro-
cessed, has a related agent representing its physical properties.
The part agents have goals that they want to reach by using avail-
able skills of the resources. Multiple process plans can be defined
in the system, describing how to reach a goal. These plans are
written like recipes rather than programs. They describe how
skills on resources should be used without specifying specific
resources or routes through the manufacturing plant. Each skill
on a resource has its own process plan for executing the skill.
These plans might require additional skills on other resources,
forming a tree of connected agents, collaborating to solve a part
goal. This further simplifies the process plans for part goals, by
hiding the chain of skills and resources needed for a specific step
in that process plan.

The use of goals and configurations associated with parts
simplifies the process of adding new products. The goals and
configuration values are the only information needed to describe
what to be done for a specific part. The process plan separates the
skills of resources from the part goals. This makes it possible
to have several potential solutions in the system that become
available, depending on what resources currently are connected
to the system.

The main contribution of this article is a new framework for
developing MASs for Plug & Produce, where no programming

Fig. 1. Simplified example of the Plug & Produce concept.

is needed when new parts are introduced. Additionally, the time
spent on programming resources is decreased drastically. This
makes it possible to add new types of products and resources
in terms of minutes rather than days in traditional approaches.
It includes a novel approach for defining process plans that
describe how to reach a specific part goal in a manufacturing
system. A recursive search algorithm is developed that can
form the tree of connected resources needed to run a given
process plan, defined for a goal. Resources are checked for both
physical and logical compatibility before added to the tree. The
framework described in this article has been implemented and
tested in our lab, based on an industrial scenario described in this
article. The framework extends a previously developed MAS in
[16] and [17].

The rest of this article is organized as follows. Section II
introduces related work and compares it to this article. Section III
introduces the Plug & Produce framework together with an
algorithm for mapping goals to resources. Section IV presents
an experiment where the proposed algorithm is tested using
an industrial scenario. Section V gives the evaluation of the
experiments conducted, and finally, Section VI concludes this
article.

II. BACKGROUND

MASs offer a distributed approach to specifying system be-
haviours, instead of writing programs with a list of low-level
sequential instructions. An agent can be instructed what to do in
terms of more high-level goals it must fulfil and communicates
with other agents to find solutions for reaching those goals [18].
In Fig. 1, a simplified example is shown where a part has the goal
to get soft edges. The part is equipped with a strategy to find one
or more process plans for this and starts to communicate with
the other agents to find a feasible solution.

Similarly to our article, Krothapalli and Deshmukh [19]
present a multiagent manufacturing system where parts and
resources are agents with communication capabilities. Parts have
a primary objective to perform specific processing. Parts com-
municate with resources or other parts by broadcasting messages
to all agents. Parts will be processed on any machine that can
perform the required process.

However, the use of MASs in manufacturing systems is still
uncommon today [20], [21]. To change this, there is a need

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2413

for simplification of configuration tools that enable system de-
signers to configure the agents without understanding the com-
plexity of the underlying MAS [20], [22]. Instead, the system
designer should be separated from low-level communication and
negotiation strategies of the agents. It is also clear that MASs
have to be easy to integrate with already existing resources in a
manufacturing system [23], [24].

A description of agents was published in 1995 by Wooldridge
and Jennings [25]. They describe an agent as some hardware
or software, operating without human intervention. Agents per-
ceive the environment and react to it. Several agents can commu-
nicate with each other through agent-communication languages.
They can also have goals that they want to reach in the world.
MASs enable devices to adapt to new situations [26], which is of
importance in a Plug & Produce system. Examples of physical
agents could be autonomous robots [27], and software agents
could be implementations of services in a system. However, the
distinction between these two is not always clear, since robotic
systems are hardware-based, while the robot controller usually is
software-based. In this article, an agent is described as a piece of
software, representing some object. The object can be physical,
e.g., a part or a resource, or it can be a software function, e.g.,
transportation planning.

Standards for multiagent design and communication were
defined already in 1997 [28] by the foundation for intelligent
physical agents (FIPA). This is an IEEE organization that fo-
cuses on developing standards for MASs [29]. FIPA presents a
collection of several specifications. Two important specifications
defined by FIPA are the “agent management specification” [30]
that describes general guidelines on how to design an MAS,
and the “agent communication language” specification [31] that
gives guidelines on how to design agent communication. Java
agent development framework (JADE) is a library for Java used
for agent implementation that follows several standards from
FIPA [32].

However, the FIPA specification and the JADE library de-
scribe nothing about how to develop a framework for manu-
facturing systems where fast reconfiguration for new parts and
resources is needed. This is the topic of which the Plug &
Produce framework presented in this article is focused.

A. Related Work

This section presents several articles with related work and
compares them with this article.

Schou and Madsen [14] describe a Plug & Produce framework
for industrial robots. They divide devices like grippers and robots
into different agents to form an MAS. The article presents a
control framework that is supposed to handle quick and easy
exchange of hardware modules. They aim at solving this by
separating the high-level task control from the hardware.

Instead, the focus of this article is on distributing the controller
on more agents. This means that the combination of agents to
form, for instance, a robot with a gripper is performed in a
completely distributed way, where the agents for the gripper and
the robot agree on how to collaborate. This further simplifies the
adding of new devices.

Järvenpää et al. [33] describe a system where combined
capabilities/skills can be described by defining a list of capa-
bilities required for the combined capability, e.g., by combining
a robot with the capability moving and a gripper with capability
holding, the combined capability transportation could become
available in the system. Similarly, Antzoulatos et al. [34] present
an MAS developed on the JADE platform that can match the
capabilities/skills of resources with product specifications. They
give resources skills like move with a robot and grasp with a
gripper. They may also form complex capabilities combining
these capabilities to create a pick and place capability. This
is done by manually defining the required capabilities to be
performed for the complex capability.

In this article, we use a different approach. For instance, a
skill transport can be defined on the gripper. The gripper cannot
perform the skill transport alone, so it has a requirement for an
additional skill move that could exist on a robot. This connection
by requirements for further skills will form a tree of connected
agents that are working together, where the knowledge of re-
quirements is entirely distributed.

Park et al. [35] present an agent communication framework
for rapid reconfiguration of distributed manufacturing systems.
They separate physical and logical reconfigurability and identify
that both are required for a manufacturing system to be effec-
tively reconfigured. A system has been developed that is able to
perform automatic layout change detection in the manufacturing
system, using infrared sensors between modules.

In addition, our work considers the physical and logical
compatibility of resources when combining skills into complex
skills.

Agents can communicate in order to get information about
each other, or they can use a centrally stored knowledge base
about the resources in the system, to avoid broadcasting. In
[36], such a knowledge base is used for MAS planning of
manufacturing sequences.

In this article, we have avoided a central knowledge base, and
each agent instead builds up their own knowledge base.

Sutton et al. [37] describe hierarchical reinforcement learning
with options. For example, an option that describes how to open
a door consists of three components, a policy, a termination
condition, and an initiation set. The policy describes the actions
defined for reaching a final state, in this case: reaching, grasping
and turning the doorknob. The terminating condition is the
knowledge that the door has been opened and the initial state
defines the requirement that the door should be present.

The options described in [37] have similarities to the process
plans presented in this article since both describe a set of actions
to be taken in order to reach a final state. Both approaches are
used for planning the behaviour of an agent, moving around
in a physical environment. However, it should be noted that our
framework is applied and verified in an industrial manufacturing
system and that the focus in this article is not planning. Instead,
our focus is to decrease the time to add new parts and resources
to a manufacturing system.

Vallèe et al. [38] show a MAS that uses ontologies for
expressing concepts and properties of agents in the system.
This is done to ensure a common understanding between agents

2412 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

the time to set it up should be measured in minutes rather than
days or months as for older concepts. The setup time can be
divided into two main parts, the hardware installation time (hard-
ware time) and the time spent on programming and configuring
the system (software time). The hardware time can be handled
by using standardized connectors and standardly sized modules.
This has been described in previous work, such as [11], [12],
where it is defined as mechatronic compatibility. Modular hard-
ware architectures have been implemented and tested in other
works such as [13], [2]. Using standardized physical connectors
and modules, it is easy to move resources around to form local
setups on demand. However, for the software time , there is also
a need for reconfiguration/reprogramming of the logical system
to integrate the added components [12], [14].

The focus of this article is to formulate a solution that avoids
the time it takes to program equipment for new tasks, i.e.,
decreasing time spent on software time. The key components
are intelligent and collaborative resources. An intelligent and
collaborative resource is not programmed in a traditional way,
such as PLC and robot control code, where logic and data are
mixed in one big integrated and dedicated solution. Instead,
each resource is assigned an agent upon activation. An agent
is a standardized software package, able to communicate and
collaborate with other agents [15]. A software agent is unique
in the world by its configuration, which is loaded when it is
instantiated. The configuration mainly describes the physical
properties and skills associated with a specific resource. In this
way, each agent becomes a unique controller for a specific
resource. When several smart resources are grouped together,
they collaborate to form a local manufacturing system. Together
they can offer more aggregated and advanced skills, depending
on the resources involved.

In the same way, every part in the system, that should be pro-
cessed, has a related agent representing its physical properties.
The part agents have goals that they want to reach by using avail-
able skills of the resources. Multiple process plans can be defined
in the system, describing how to reach a goal. These plans are
written like recipes rather than programs. They describe how
skills on resources should be used without specifying specific
resources or routes through the manufacturing plant. Each skill
on a resource has its own process plan for executing the skill.
These plans might require additional skills on other resources,
forming a tree of connected agents, collaborating to solve a part
goal. This further simplifies the process plans for part goals, by
hiding the chain of skills and resources needed for a specific step
in that process plan.

The use of goals and configurations associated with parts
simplifies the process of adding new products. The goals and
configuration values are the only information needed to describe
what to be done for a specific part. The process plan separates the
skills of resources from the part goals. This makes it possible
to have several potential solutions in the system that become
available, depending on what resources currently are connected
to the system.

The main contribution of this article is a new framework for
developing MASs for Plug & Produce, where no programming

Fig. 1. Simplified example of the Plug & Produce concept.

is needed when new parts are introduced. Additionally, the time
spent on programming resources is decreased drastically. This
makes it possible to add new types of products and resources
in terms of minutes rather than days in traditional approaches.
It includes a novel approach for defining process plans that
describe how to reach a specific part goal in a manufacturing
system. A recursive search algorithm is developed that can
form the tree of connected resources needed to run a given
process plan, defined for a goal. Resources are checked for both
physical and logical compatibility before added to the tree. The
framework described in this article has been implemented and
tested in our lab, based on an industrial scenario described in this
article. The framework extends a previously developed MAS in
[16] and [17].

The rest of this article is organized as follows. Section II
introduces related work and compares it to this article. Section III
introduces the Plug & Produce framework together with an
algorithm for mapping goals to resources. Section IV presents
an experiment where the proposed algorithm is tested using
an industrial scenario. Section V gives the evaluation of the
experiments conducted, and finally, Section VI concludes this
article.

II. BACKGROUND

MASs offer a distributed approach to specifying system be-
haviours, instead of writing programs with a list of low-level
sequential instructions. An agent can be instructed what to do in
terms of more high-level goals it must fulfil and communicates
with other agents to find solutions for reaching those goals [18].
In Fig. 1, a simplified example is shown where a part has the goal
to get soft edges. The part is equipped with a strategy to find one
or more process plans for this and starts to communicate with
the other agents to find a feasible solution.

Similarly to our article, Krothapalli and Deshmukh [19]
present a multiagent manufacturing system where parts and
resources are agents with communication capabilities. Parts have
a primary objective to perform specific processing. Parts com-
municate with resources or other parts by broadcasting messages
to all agents. Parts will be processed on any machine that can
perform the required process.

However, the use of MASs in manufacturing systems is still
uncommon today [20], [21]. To change this, there is a need

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2413

for simplification of configuration tools that enable system de-
signers to configure the agents without understanding the com-
plexity of the underlying MAS [20], [22]. Instead, the system
designer should be separated from low-level communication and
negotiation strategies of the agents. It is also clear that MASs
have to be easy to integrate with already existing resources in a
manufacturing system [23], [24].

A description of agents was published in 1995 by Wooldridge
and Jennings [25]. They describe an agent as some hardware
or software, operating without human intervention. Agents per-
ceive the environment and react to it. Several agents can commu-
nicate with each other through agent-communication languages.
They can also have goals that they want to reach in the world.
MASs enable devices to adapt to new situations [26], which is of
importance in a Plug & Produce system. Examples of physical
agents could be autonomous robots [27], and software agents
could be implementations of services in a system. However, the
distinction between these two is not always clear, since robotic
systems are hardware-based, while the robot controller usually is
software-based. In this article, an agent is described as a piece of
software, representing some object. The object can be physical,
e.g., a part or a resource, or it can be a software function, e.g.,
transportation planning.

Standards for multiagent design and communication were
defined already in 1997 [28] by the foundation for intelligent
physical agents (FIPA). This is an IEEE organization that fo-
cuses on developing standards for MASs [29]. FIPA presents a
collection of several specifications. Two important specifications
defined by FIPA are the “agent management specification” [30]
that describes general guidelines on how to design an MAS,
and the “agent communication language” specification [31] that
gives guidelines on how to design agent communication. Java
agent development framework (JADE) is a library for Java used
for agent implementation that follows several standards from
FIPA [32].

However, the FIPA specification and the JADE library de-
scribe nothing about how to develop a framework for manu-
facturing systems where fast reconfiguration for new parts and
resources is needed. This is the topic of which the Plug &
Produce framework presented in this article is focused.

A. Related Work

This section presents several articles with related work and
compares them with this article.

Schou and Madsen [14] describe a Plug & Produce framework
for industrial robots. They divide devices like grippers and robots
into different agents to form an MAS. The article presents a
control framework that is supposed to handle quick and easy
exchange of hardware modules. They aim at solving this by
separating the high-level task control from the hardware.

Instead, the focus of this article is on distributing the controller
on more agents. This means that the combination of agents to
form, for instance, a robot with a gripper is performed in a
completely distributed way, where the agents for the gripper and
the robot agree on how to collaborate. This further simplifies the
adding of new devices.

Järvenpää et al. [33] describe a system where combined
capabilities/skills can be described by defining a list of capa-
bilities required for the combined capability, e.g., by combining
a robot with the capability moving and a gripper with capability
holding, the combined capability transportation could become
available in the system. Similarly, Antzoulatos et al. [34] present
an MAS developed on the JADE platform that can match the
capabilities/skills of resources with product specifications. They
give resources skills like move with a robot and grasp with a
gripper. They may also form complex capabilities combining
these capabilities to create a pick and place capability. This
is done by manually defining the required capabilities to be
performed for the complex capability.

In this article, we use a different approach. For instance, a
skill transport can be defined on the gripper. The gripper cannot
perform the skill transport alone, so it has a requirement for an
additional skill move that could exist on a robot. This connection
by requirements for further skills will form a tree of connected
agents that are working together, where the knowledge of re-
quirements is entirely distributed.

Park et al. [35] present an agent communication framework
for rapid reconfiguration of distributed manufacturing systems.
They separate physical and logical reconfigurability and identify
that both are required for a manufacturing system to be effec-
tively reconfigured. A system has been developed that is able to
perform automatic layout change detection in the manufacturing
system, using infrared sensors between modules.

In addition, our work considers the physical and logical
compatibility of resources when combining skills into complex
skills.

Agents can communicate in order to get information about
each other, or they can use a centrally stored knowledge base
about the resources in the system, to avoid broadcasting. In
[36], such a knowledge base is used for MAS planning of
manufacturing sequences.

In this article, we have avoided a central knowledge base, and
each agent instead builds up their own knowledge base.

Sutton et al. [37] describe hierarchical reinforcement learning
with options. For example, an option that describes how to open
a door consists of three components, a policy, a termination
condition, and an initiation set. The policy describes the actions
defined for reaching a final state, in this case: reaching, grasping
and turning the doorknob. The terminating condition is the
knowledge that the door has been opened and the initial state
defines the requirement that the door should be present.

The options described in [37] have similarities to the process
plans presented in this article since both describe a set of actions
to be taken in order to reach a final state. Both approaches are
used for planning the behaviour of an agent, moving around
in a physical environment. However, it should be noted that our
framework is applied and verified in an industrial manufacturing
system and that the focus in this article is not planning. Instead,
our focus is to decrease the time to add new parts and resources
to a manufacturing system.

Vallèe et al. [38] show a MAS that uses ontologies for
expressing concepts and properties of agents in the system.
This is done to ensure a common understanding between agents

2414 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

when communicating. This was done to avoid traditional agent
approaches where reasoning about concepts is hardcoded into
the agent’s behaviors.

In this article, agents also share a common understanding of
concepts, without any hard coding. This is part of the agent
configuration and can be changed without reprogramming.

III. PLUG & PRODUCE FRAMEWORK

To achieve physical flexibility, the system described in this
article uses self-aware and independent Plug & Produce process
modules. Several modules can be grouped together to form an
automated local manufacturing setup. To handle such a flexible
system, a controller that adapts to available resources is neces-
sary. To implement the controller, a distributed control strategy
based on a MAS framework is adopted.

A MAS consists of many single agents that can interact with
each other. Two types of agents are considered, part agents and
resource agents. Part agents have goals and use process plans
to reach them. A process plan translates design information
(goals) into a sequence of operations (skills) needed to produce
a part with the desired properties. To run a process plan on a
part agent, several skills and variables are required to exist on
resources in the agent network. In this article, this is noted as
demands. Resources also have plans that define how their skills
are executed. These plans might require additional skills to exist
on other resources in the agent network. A search algorithm
distributed on each agent is used to find this tree of connected
interfaces between agents.

Agents always interact with each other through interfaces,
meaning that a resource used by a part must have an interface that
is compatible with one of the parts interfaces. This ensures that
they are compatible both physically and logically. The demands
introduced earlier should be seen as requirement specifications
for what skills and variables an interface needs to have. The
interface can, for instance, describe that a grinding wheel is
compatible with a motor. If an interface with the keyword
“ifTool” exists on a grinding wheel, then a motor to be connected
to it also needs an interface with that keyword, to ensure physical
compatibility. Interfaces also need to have compatible signals,
i.e., variables. If the wheel requires to set the speed of the motor
on variable RPM = 500, then that variable must exist on the
motors interface and be able to handle that speed. In this way,
physical and logical compatibility is checked to match resources
by searching interfaces.

A. Multiagent System

In the proposed Plug & Produce framework an agentabelongs
to the set of agents A, i.e., a ∈ A. Two types of agents exist,
parts p and resources r, see Fig. 2. A part p is included in the
set of parts P, while a resource r is a member of the set of
resources R. Hence, p ∈ P and r ∈ R. The set of all agents A
consist of all resources R and parts P , i.e., A = R ∪̇P . Parts
and resources have different agent strategies, where parts are
trying to reach goals, while resource agents represent available
physical or virtual resources.

Fig. 2. Diagram with classes for part and resource agents, which have
different strategies for part and resource.

Fig. 3. Diagram, showing the agent configuration classes and their
relations to each other, i.e., the agent ontology.

Goals can be described quantitatively by specifying parame-
ters together with the goal, e.g., SoftEdges(RPM:= 500), where
the soft edges should be produced with a speed of 500, in the case
that it is achieved by grinding. A resource agent has no goals,
but can be used by part agents. In this way, a resource agent will
facilitate the production of parts in the manufacturing setup by
offering services, e.g., grinding, transportation, or path planning.
The core idea is to be able to plug in all kinds of resources, needed
to handle the on-going manufacturing. Resources not needed can
be inactive or unplugged and stored for later use.

Each agent a ∈ A has a configuration. The configuration is
created manually and may apply to several agents, e.g., several
parts of the same type. It is through the configuration that goals,
skills, interfaces, variables, and demands are defined, without
programming. Once the configuration is downloaded to an agent,
it becomes unique for that specific agent instance. In Fig. 3, the
agent configuration classes and their relations to each other are
shown. This ontology is used by all agents in the system to share a
common understanding of how data is constructed. Furthermore,
when these classes are instantiated with configuration data, all
agents must understand the naming of skills and variables. This
requires all agents to follow some naming standards in order to
communicate.

All agents have at least one associated interface, if ∈ I . An
interface represents a point of interaction between two agents
that are compatible both physically and logically. The interface

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2415

defines the compatibility between agents by defining its skills
s ∈ S and configuration variables v ∈ V . Hence, an interface if
is defined by the tuple

if = �Sif , Vif �
where Sif ⊆ S, and Vif ⊆ V . A variable v can, for instance, be
a coordinate for a resource, a path for a robot, or a motor start
signal. A skill on a resource r is defined by a name together with
a process plan πs for executing the skill, forming the tuple

s = �name, πs� .
A single skill s represents a service, presented through an

agent interface that can be utilized by other agents on request.
However, a skill is only available if certain demands are fulfilled.
For instance, the skill grip on a robot gripper has a demand for a
robot to be mounted on. The robot needs to have the skill move
and certain variables available. In some cases, a demand includes
several skills that must exist on the same resource instance. For
example, if a part needs a gripper for transportation, the same
gripper must have the skills pick and place. It would not make
sense if these skills were on two different physical grippers.

Since available resource interfaces are unknown at the plan-
ning stage, they are defined as abstract interfaces u ∈ U =
{u1, u2, . . . , unu

}. When executing a process plan at runtime,
mapping of the abstract interfaces in U to resource interfaces
in I is carried out by an interface mapping algorithm, presented
in Section III-C. The algorithm generates demands du ∈ D =
{d1, d2, . . . , dnd

} and

du = {Su, Vu} .
Thus, a demand du defines skills and variables that an abstract

interface u should be able to satisfy.
In addition to interfaces, parts also have an associated set of

goals, Gp ⊆ G, where one goal g ∈ Gp. A goal represents a
result that a part should achieve with available resources, e.g., to
get soft edges. The part and resource agents can thus be described
as tuples

p = �Gp, Ip, Vp�
r = �Ir ,Vr� .

Note that interfaces contain skills that have process plans.
Hence, resource agents with skills carry their own process plans.
To find a solution that solves a part goal, we need to map goals on
parts with skills on resources. This is typically done by a process
plan. As already has been mentioned, a process plan translates
design information (goals) into a sequence of operations (skills)
needed to produce a part with the desired properties. Process
plans can be generated automatically or designed manually by a
human. For industrial manufacturing, it is difficult for softwares
to create a process plan that meets specific demands. This is
knowledge that today is more suitable to be defined manually
by humans [39], [33].

All process plans in the system are defined and included in
the set Π = ΠG ∪̇ ΠS , where one plan is π ∈ Π. The process
plans for part goals in ΠG are general and shared among all
parts. Process plans for skills πs ∈ ΠS are instead defined for a

Fig. 4. Example of a process plan with five skills
{Load,Transport,Grinding,Transport,UnLoad} and six states,
where the initial state is q0 and the final state is qf .

specific skill s on a resource r, describing how that skill should
be executed.

In this article, a process plan π defines a sequence of
skills (s1, s2, . . . , snπ

), that should be executed in a specific
order. Process plans for goals πg only describe the solution for
a single goal. However, there may be several ways to achieve
that goal. This is managed through the fact that several process
plans in the set Πg may exist for the same goal g. For each goal
g ∈ Gp, there must exist at least one process plan inΠ. A process
plan, πg or πs, can be formulated as a finite state automaton

π = �Q,S, δ, q0, Qf �
where Q is the set of states in the process plan, S is the set of
all skills, δ : Q× S → Q is the transition function, q0 ∈ Q is
the initial state, and Qf ⊆ Q is the set of acceptable final states.
This means that a process plan may include possible alternative
sequences of skills. In Fig. 4 an example is shown of a process
plan πg solving the goal g = SoftEdges, where the single final
state qf is the only element in Qf .

B. Agent Strategies

As soon as a new part or resource is added to the manufactur-
ing system, a corresponding agent a is instantiated representing
that specific object. The idea behind the agent concept is that
each object should be independent, self-aware, and autonomous.

Part agent strategy: A part agent p will start by trying to
fulfill the first goal g in the set of personal goals Gp, by finding
all process plans Πg ⊆ ΠG that describe how to reach that goal.
When a goal is reached the agent continues with the next goal.
When all goals in Gp have been achieved, the part agent p is
deleted, and the corresponding part is considered as completed.

To select the most suitable process plan for a specific goal
g, each plan πg ∈ Πg is checked for availability by asking all
resource agents in the agent network if they have any of the skills
required inπg and has a compatible interface for interaction. The
compatibility between interfaces could for instance deal with the
interaction between a gripper and a robot. A resource might need
to ask other resources to assist in order to fulfil a desired skill.
In Fig. 5, this is illustrated, where a part p has three goals in
Gp = {g1, g2, g3}. The first goal g1 has two alternative process
plans Πg1 = {π1

g1
, π2

g1
} that can solve g1. Both these plans are

checked for availability. However, in the figure, only plan π1
g1

is
described. Plan π1

g1
has two demands, d(s1, v5) for skill s1 and

d(s2, v4, v3) for skill s2. This means that s1 has to execute on an
interface containing a v5 variable and s2 needs to execute on an
interface that has a v4 and a v3 variable. The agent searches the
network and finds the interfaces if3 and if4, respectively.

When each plan in Πg1 is checked for availability (by running
the algorithm described in this article), the one with the lowest

2414 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

when communicating. This was done to avoid traditional agent
approaches where reasoning about concepts is hardcoded into
the agent’s behaviors.

In this article, agents also share a common understanding of
concepts, without any hard coding. This is part of the agent
configuration and can be changed without reprogramming.

III. PLUG & PRODUCE FRAMEWORK

To achieve physical flexibility, the system described in this
article uses self-aware and independent Plug & Produce process
modules. Several modules can be grouped together to form an
automated local manufacturing setup. To handle such a flexible
system, a controller that adapts to available resources is neces-
sary. To implement the controller, a distributed control strategy
based on a MAS framework is adopted.

A MAS consists of many single agents that can interact with
each other. Two types of agents are considered, part agents and
resource agents. Part agents have goals and use process plans
to reach them. A process plan translates design information
(goals) into a sequence of operations (skills) needed to produce
a part with the desired properties. To run a process plan on a
part agent, several skills and variables are required to exist on
resources in the agent network. In this article, this is noted as
demands. Resources also have plans that define how their skills
are executed. These plans might require additional skills to exist
on other resources in the agent network. A search algorithm
distributed on each agent is used to find this tree of connected
interfaces between agents.

Agents always interact with each other through interfaces,
meaning that a resource used by a part must have an interface that
is compatible with one of the parts interfaces. This ensures that
they are compatible both physically and logically. The demands
introduced earlier should be seen as requirement specifications
for what skills and variables an interface needs to have. The
interface can, for instance, describe that a grinding wheel is
compatible with a motor. If an interface with the keyword
“ifTool” exists on a grinding wheel, then a motor to be connected
to it also needs an interface with that keyword, to ensure physical
compatibility. Interfaces also need to have compatible signals,
i.e., variables. If the wheel requires to set the speed of the motor
on variable RPM = 500, then that variable must exist on the
motors interface and be able to handle that speed. In this way,
physical and logical compatibility is checked to match resources
by searching interfaces.

A. Multiagent System

In the proposed Plug & Produce framework an agentabelongs
to the set of agents A, i.e., a ∈ A. Two types of agents exist,
parts p and resources r, see Fig. 2. A part p is included in the
set of parts P, while a resource r is a member of the set of
resources R. Hence, p ∈ P and r ∈ R. The set of all agents A
consist of all resources R and parts P , i.e., A = R ∪̇P . Parts
and resources have different agent strategies, where parts are
trying to reach goals, while resource agents represent available
physical or virtual resources.

Fig. 2. Diagram with classes for part and resource agents, which have
different strategies for part and resource.

Fig. 3. Diagram, showing the agent configuration classes and their
relations to each other, i.e., the agent ontology.

Goals can be described quantitatively by specifying parame-
ters together with the goal, e.g., SoftEdges(RPM:= 500), where
the soft edges should be produced with a speed of 500, in the case
that it is achieved by grinding. A resource agent has no goals,
but can be used by part agents. In this way, a resource agent will
facilitate the production of parts in the manufacturing setup by
offering services, e.g., grinding, transportation, or path planning.
The core idea is to be able to plug in all kinds of resources, needed
to handle the on-going manufacturing. Resources not needed can
be inactive or unplugged and stored for later use.

Each agent a ∈ A has a configuration. The configuration is
created manually and may apply to several agents, e.g., several
parts of the same type. It is through the configuration that goals,
skills, interfaces, variables, and demands are defined, without
programming. Once the configuration is downloaded to an agent,
it becomes unique for that specific agent instance. In Fig. 3, the
agent configuration classes and their relations to each other are
shown. This ontology is used by all agents in the system to share a
common understanding of how data is constructed. Furthermore,
when these classes are instantiated with configuration data, all
agents must understand the naming of skills and variables. This
requires all agents to follow some naming standards in order to
communicate.

All agents have at least one associated interface, if ∈ I . An
interface represents a point of interaction between two agents
that are compatible both physically and logically. The interface

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2415

defines the compatibility between agents by defining its skills
s ∈ S and configuration variables v ∈ V . Hence, an interface if
is defined by the tuple

if = �Sif , Vif �
where Sif ⊆ S, and Vif ⊆ V . A variable v can, for instance, be
a coordinate for a resource, a path for a robot, or a motor start
signal. A skill on a resource r is defined by a name together with
a process plan πs for executing the skill, forming the tuple

s = �name, πs� .
A single skill s represents a service, presented through an

agent interface that can be utilized by other agents on request.
However, a skill is only available if certain demands are fulfilled.
For instance, the skill grip on a robot gripper has a demand for a
robot to be mounted on. The robot needs to have the skill move
and certain variables available. In some cases, a demand includes
several skills that must exist on the same resource instance. For
example, if a part needs a gripper for transportation, the same
gripper must have the skills pick and place. It would not make
sense if these skills were on two different physical grippers.

Since available resource interfaces are unknown at the plan-
ning stage, they are defined as abstract interfaces u ∈ U =
{u1, u2, . . . , unu

}. When executing a process plan at runtime,
mapping of the abstract interfaces in U to resource interfaces
in I is carried out by an interface mapping algorithm, presented
in Section III-C. The algorithm generates demands du ∈ D =
{d1, d2, . . . , dnd

} and

du = {Su, Vu} .
Thus, a demand du defines skills and variables that an abstract

interface u should be able to satisfy.
In addition to interfaces, parts also have an associated set of

goals, Gp ⊆ G, where one goal g ∈ Gp. A goal represents a
result that a part should achieve with available resources, e.g., to
get soft edges. The part and resource agents can thus be described
as tuples

p = �Gp, Ip, Vp�
r = �Ir ,Vr� .

Note that interfaces contain skills that have process plans.
Hence, resource agents with skills carry their own process plans.
To find a solution that solves a part goal, we need to map goals on
parts with skills on resources. This is typically done by a process
plan. As already has been mentioned, a process plan translates
design information (goals) into a sequence of operations (skills)
needed to produce a part with the desired properties. Process
plans can be generated automatically or designed manually by a
human. For industrial manufacturing, it is difficult for softwares
to create a process plan that meets specific demands. This is
knowledge that today is more suitable to be defined manually
by humans [39], [33].

All process plans in the system are defined and included in
the set Π = ΠG ∪̇ ΠS , where one plan is π ∈ Π. The process
plans for part goals in ΠG are general and shared among all
parts. Process plans for skills πs ∈ ΠS are instead defined for a

Fig. 4. Example of a process plan with five skills
{Load,Transport,Grinding,Transport,UnLoad} and six states,
where the initial state is q0 and the final state is qf .

specific skill s on a resource r, describing how that skill should
be executed.

In this article, a process plan π defines a sequence of
skills (s1, s2, . . . , snπ

), that should be executed in a specific
order. Process plans for goals πg only describe the solution for
a single goal. However, there may be several ways to achieve
that goal. This is managed through the fact that several process
plans in the set Πg may exist for the same goal g. For each goal
g ∈ Gp, there must exist at least one process plan inΠ. A process
plan, πg or πs, can be formulated as a finite state automaton

π = �Q,S, δ, q0, Qf �
where Q is the set of states in the process plan, S is the set of
all skills, δ : Q× S → Q is the transition function, q0 ∈ Q is
the initial state, and Qf ⊆ Q is the set of acceptable final states.
This means that a process plan may include possible alternative
sequences of skills. In Fig. 4 an example is shown of a process
plan πg solving the goal g = SoftEdges, where the single final
state qf is the only element in Qf .

B. Agent Strategies

As soon as a new part or resource is added to the manufactur-
ing system, a corresponding agent a is instantiated representing
that specific object. The idea behind the agent concept is that
each object should be independent, self-aware, and autonomous.

Part agent strategy: A part agent p will start by trying to
fulfill the first goal g in the set of personal goals Gp, by finding
all process plans Πg ⊆ ΠG that describe how to reach that goal.
When a goal is reached the agent continues with the next goal.
When all goals in Gp have been achieved, the part agent p is
deleted, and the corresponding part is considered as completed.

To select the most suitable process plan for a specific goal
g, each plan πg ∈ Πg is checked for availability by asking all
resource agents in the agent network if they have any of the skills
required inπg and has a compatible interface for interaction. The
compatibility between interfaces could for instance deal with the
interaction between a gripper and a robot. A resource might need
to ask other resources to assist in order to fulfil a desired skill.
In Fig. 5, this is illustrated, where a part p has three goals in
Gp = {g1, g2, g3}. The first goal g1 has two alternative process
plans Πg1 = {π1

g1
, π2

g1
} that can solve g1. Both these plans are

checked for availability. However, in the figure, only plan π1
g1

is
described. Plan π1

g1
has two demands, d(s1, v5) for skill s1 and

d(s2, v4, v3) for skill s2. This means that s1 has to execute on an
interface containing a v5 variable and s2 needs to execute on an
interface that has a v4 and a v3 variable. The agent searches the
network and finds the interfaces if3 and if4, respectively.

When each plan in Πg1 is checked for availability (by running
the algorithm described in this article), the one with the lowest

2416 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 5. Process plan that achieves the goal g1 is checked for availability. The first plan π1
g1

requires skills that exist on another agent through the
interfaces if3 and if4, where if4 requires additional skills that exist on if1 and if2.

cost is selected, i.e., selected plan πg1 = min(Πg1). In this way,
an agent can minimize the cost (execution time) by selecting the
most effective process plan. After a plan is selected, each skill
in the plan is executed on resource agents in the network. The
following steps summarize the part agent strategy.

Part Agent Strategy:
Step 1: Find next goal g in Gp that is not yet reached.
Step 2: Find available process plans Πg that fulfill g.
Step 3: Select the process plan πg with the lowest cost.
Step 4: For each skill in the selected plan, execute it on a

resource agent.
Resource agent strategy: In the same way as for the parts,

each resource is handled by an agent that is instantiated when
the resource is connected to the system. Each resource agent can
execute associated skills. A skill can be executed on request from
other agents and is only available if the demand du is fulfilled
for that skill. Several agents that cooperate in this way can be
viewed as an aggregated agent capable of more complex actions,
as illustrated in Fig. 5. For each skill s on a resource r a process
plan πs is configured with knowledge about the execution of
that skill. In contrast to the process plans in ΠG for part goals,
a plan πs for skill s only describes the use of a skill belonging
to a specific agent type. For instance, for agents close to the
hardware there might be a need for setting I/O values. In Fig. 5
it is shown that the plan πs2 for executing the skill s2 on interface
if4 requires additional skills s3, s4, s6 and finds if1 and if2 for
the demands d(s3, v2) and d(s4, v1). Skill s6 is a local skill and
is locally executed. Since all skills for process plan πs2 exist, if4

becomes available.

C. Interface Mapping Algorithm

In this article, a process plan needs to be connected to in-
terfaces on resource agents in the network. This results in an
executable process planπe. When running the interface mapping
algorithm, process plans inΠ are connected with resources in the
network through interfaces, forming a set of executable plansΠe.
Hence, Πe contains the executable versions of the plans inΠ. For
part goals, the single executable process plan πe that can reach
that goal with the lowest cost is selected. The cost is specified
on each resource skill and can be of any type as long as it is
expressed as an integer number. In the scenario presented in this
article, the cost is the execution time for a process plan. The

cost for one process plan includes the costs for all process plans
needed to execute in the underlying tree of connected interfaces.

A general algorithm has been developed that is implemented
in all agents (parts and resources), taking a plan π as input and
determine if it is available or not. If the plan π is available,
an executable process plan πe is returned, describing what
resources, interfaces, and variables to use for the skills in the
plan.

The algorithm works by generating demands du for each
abstract interface u in the process plan π. These demands are
then broadcasted to resources in the agent network that reply if
they fulfil the demand du or not. The algorithm can be divided
into three main steps.

Step 1: Find all demands D in π. Individual demands
du consist of required skills Su and variables Vu

D = {d1, d2, . . . , dnd
}

du = {Su, Vu} .
Step 2: Each identified demand du, in step 1, must be

fulfilled by an interface on a resource. Hence,
the algorithm requires abstract interfaces U =
{u1, u2, . . . , unu

}. For each demand du, search in-
terfaces in I to check if they can perform all needed
skills Su with the required variables Vu. The agent
a running this algorithm has a set of local interfaces
Ia, where one local interface is defined as ifa ∈ Ia.
For each interface if ∈ I that meet the demand du,
check if it is compatible with any of the local agent’s
interfaces ifa ∈ Ia. If they are compatible, store
them locally as potential interfaces Ip

for each abstract interface u in U{
du = {Su, Vu}
Ipu = { if ∈ I | if fulfils du Λ if compatible with ifa ∈ Ia}

.

Step 3: From the potential interfaces Ip, choose the ones
with the lowest cost and store as selected interfaces
Is. If π is feasible, then generate an executable
process plan πe containing the selected interfaces
Is together with the original plan π. Return this as
the result of the algorithm

for each element u in U : {Is = min (Ipu)
πe = �π, Is�.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2417

Fig. 6. Real industrial Plug & Produce demonstrator at University
West and a simulation model. This demonstrator was used for testing
the proposed Plug & Produce framework presented in this article. It
was developed in close collaboration with GKN Aerospace, a company
producing metal parts for the aeronautics industry.

IV. EXPERIMENTS

In this section, the proposed framework for Plug & Pro-
duce is evaluated. An existing Plug & Produce demonstrator
at University West, has been developed in close collaboration
with industry, see Fig. 6. The simulation shown, contains three
process modules. Module 1 is an operator-assisted unload station
for parts, module 2 is an operator-assisted load station for parts,
and module 3 contains a motor that has an attached grinding tool.
The demonstrator has ten slots (1–10) for process modules. To
decrease the hardware time, identical connectors are used for
all modules. Thus, it is possible to quickly connect modules on
available slots, and with one single cable connect power, air and
network. Each slot has a fixture with positioning pins that makes
sure that modules are placed correctly. This avoids recalibration
of positions, in order to reduce the software time.

The framework described above has been implemented and
tested using this demonstrator. Indeed, it is possible to use the
conventional agent framework JADE for implementing the agent
communication needed for our algorithm. However, we have
chosen the agent handling system (AHS) described in [17]. This
AHS has been used in the implementation of our algorithm since
it includes support for the OPC UA protocol, which is compatible
with various industrial devices. OPC UA was developed by
OPC foundation and is a platform-independent protocol for
communication in industrial automation [40].

The goal for the Plug & Produce demonstrator in this work
is to make soft edges on metal engine parts for the aeronautic
sector. With the proposed Plug & Produce framework it should
be easy to set up a local robot cell attached to an existing manu-
facturing flow. A local cell should be easy to set up when needed,

TABLE I
PROCESS PLAN FOR A GOAL g, DESCRIBING HOW TO MAKE SOFT EDGES

BY DEFINING A SEQUENCE OF SKILLS Su USING VARIABLES Vu.

Note that the Abstract Interfaces a, b, c, and d are Unmapped in the Process Plan and
Will be Identified During Runtime by the search Algorithm.

e.g., to handle rush orders or variations in supply/demand. In the
demonstrator, several process modules can be plugged in and out
to quickly change the manufacturing setup.

A. A Scenario for Soft Edges

The robot cell considered contains the following
resources: R = {Robot, Gripper 1, Gripper 2, Motor,
GrindingWheel, Load station, Unload station}, see Fig. 7.
In this scenario, the cost refers to the execution time of a
process plan. One metal part p is introduced to the system
and a corresponding agent is instantiated with the goal
g = SoftEdges. Several process plans Πg may be formulated
for the specific goal g.

The process planπg in Table I solves the goal g = SoftEdges,
using the abstract interfacesU = {a, b, c, d}.The plan describes
the following sequence of skills.

1) The metal part p appears at the load station (in Fig. 7
referred to as Part).

2) The part is transported (using the skill Transport) to a
grinding wheels StartPos using a gripper connected to
the part on GripLocation.

3) The grinding wheel that is pre-mounted manually to a
motor should start to rotate with the speed defined on
RPM.

4) The robot moves the part against the grinding wheel based
on the predesigned path GrindPath that is attached to the
part agent.

5) The grinding wheel is stopped.
6) The part leaves the system by moving to the unload station

position LeavePos.
7) The part is removed from the system and the agent is

deleted.

B. Evaluating the Algorithm

This section describes each step in the algorithm, considering
the process plan in Table I and the resources in Fig. 7. The

2416 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 5. Process plan that achieves the goal g1 is checked for availability. The first plan π1
g1

requires skills that exist on another agent through the
interfaces if3 and if4, where if4 requires additional skills that exist on if1 and if2.

cost is selected, i.e., selected plan πg1 = min(Πg1). In this way,
an agent can minimize the cost (execution time) by selecting the
most effective process plan. After a plan is selected, each skill
in the plan is executed on resource agents in the network. The
following steps summarize the part agent strategy.

Part Agent Strategy:
Step 1: Find next goal g in Gp that is not yet reached.
Step 2: Find available process plans Πg that fulfill g.
Step 3: Select the process plan πg with the lowest cost.
Step 4: For each skill in the selected plan, execute it on a

resource agent.
Resource agent strategy: In the same way as for the parts,

each resource is handled by an agent that is instantiated when
the resource is connected to the system. Each resource agent can
execute associated skills. A skill can be executed on request from
other agents and is only available if the demand du is fulfilled
for that skill. Several agents that cooperate in this way can be
viewed as an aggregated agent capable of more complex actions,
as illustrated in Fig. 5. For each skill s on a resource r a process
plan πs is configured with knowledge about the execution of
that skill. In contrast to the process plans in ΠG for part goals,
a plan πs for skill s only describes the use of a skill belonging
to a specific agent type. For instance, for agents close to the
hardware there might be a need for setting I/O values. In Fig. 5
it is shown that the plan πs2 for executing the skill s2 on interface
if4 requires additional skills s3, s4, s6 and finds if1 and if2 for
the demands d(s3, v2) and d(s4, v1). Skill s6 is a local skill and
is locally executed. Since all skills for process plan πs2 exist, if4

becomes available.

C. Interface Mapping Algorithm

In this article, a process plan needs to be connected to in-
terfaces on resource agents in the network. This results in an
executable process planπe. When running the interface mapping
algorithm, process plans inΠ are connected with resources in the
network through interfaces, forming a set of executable plansΠe.
Hence, Πe contains the executable versions of the plans inΠ. For
part goals, the single executable process plan πe that can reach
that goal with the lowest cost is selected. The cost is specified
on each resource skill and can be of any type as long as it is
expressed as an integer number. In the scenario presented in this
article, the cost is the execution time for a process plan. The

cost for one process plan includes the costs for all process plans
needed to execute in the underlying tree of connected interfaces.

A general algorithm has been developed that is implemented
in all agents (parts and resources), taking a plan π as input and
determine if it is available or not. If the plan π is available,
an executable process plan πe is returned, describing what
resources, interfaces, and variables to use for the skills in the
plan.

The algorithm works by generating demands du for each
abstract interface u in the process plan π. These demands are
then broadcasted to resources in the agent network that reply if
they fulfil the demand du or not. The algorithm can be divided
into three main steps.

Step 1: Find all demands D in π. Individual demands
du consist of required skills Su and variables Vu

D = {d1, d2, . . . , dnd
}

du = {Su, Vu} .
Step 2: Each identified demand du, in step 1, must be

fulfilled by an interface on a resource. Hence,
the algorithm requires abstract interfaces U =
{u1, u2, . . . , unu

}. For each demand du, search in-
terfaces in I to check if they can perform all needed
skills Su with the required variables Vu. The agent
a running this algorithm has a set of local interfaces
Ia, where one local interface is defined as ifa ∈ Ia.
For each interface if ∈ I that meet the demand du,
check if it is compatible with any of the local agent’s
interfaces ifa ∈ Ia. If they are compatible, store
them locally as potential interfaces Ip

for each abstract interface u in U{
du = {Su, Vu}
Ipu = { if ∈ I | if fulfils du Λ if compatible with ifa ∈ Ia}

.

Step 3: From the potential interfaces Ip, choose the ones
with the lowest cost and store as selected interfaces
Is. If π is feasible, then generate an executable
process plan πe containing the selected interfaces
Is together with the original plan π. Return this as
the result of the algorithm

for each element u in U : {Is = min (Ipu)
πe = �π, Is�.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2417

Fig. 6. Real industrial Plug & Produce demonstrator at University
West and a simulation model. This demonstrator was used for testing
the proposed Plug & Produce framework presented in this article. It
was developed in close collaboration with GKN Aerospace, a company
producing metal parts for the aeronautics industry.

IV. EXPERIMENTS

In this section, the proposed framework for Plug & Pro-
duce is evaluated. An existing Plug & Produce demonstrator
at University West, has been developed in close collaboration
with industry, see Fig. 6. The simulation shown, contains three
process modules. Module 1 is an operator-assisted unload station
for parts, module 2 is an operator-assisted load station for parts,
and module 3 contains a motor that has an attached grinding tool.
The demonstrator has ten slots (1–10) for process modules. To
decrease the hardware time, identical connectors are used for
all modules. Thus, it is possible to quickly connect modules on
available slots, and with one single cable connect power, air and
network. Each slot has a fixture with positioning pins that makes
sure that modules are placed correctly. This avoids recalibration
of positions, in order to reduce the software time.

The framework described above has been implemented and
tested using this demonstrator. Indeed, it is possible to use the
conventional agent framework JADE for implementing the agent
communication needed for our algorithm. However, we have
chosen the agent handling system (AHS) described in [17]. This
AHS has been used in the implementation of our algorithm since
it includes support for the OPC UA protocol, which is compatible
with various industrial devices. OPC UA was developed by
OPC foundation and is a platform-independent protocol for
communication in industrial automation [40].

The goal for the Plug & Produce demonstrator in this work
is to make soft edges on metal engine parts for the aeronautic
sector. With the proposed Plug & Produce framework it should
be easy to set up a local robot cell attached to an existing manu-
facturing flow. A local cell should be easy to set up when needed,

TABLE I
PROCESS PLAN FOR A GOAL g, DESCRIBING HOW TO MAKE SOFT EDGES

BY DEFINING A SEQUENCE OF SKILLS Su USING VARIABLES Vu.

Note that the Abstract Interfaces a, b, c, and d are Unmapped in the Process Plan and
Will be Identified During Runtime by the search Algorithm.

e.g., to handle rush orders or variations in supply/demand. In the
demonstrator, several process modules can be plugged in and out
to quickly change the manufacturing setup.

A. A Scenario for Soft Edges

The robot cell considered contains the following
resources: R = {Robot, Gripper 1, Gripper 2, Motor,
GrindingWheel, Load station, Unload station}, see Fig. 7.
In this scenario, the cost refers to the execution time of a
process plan. One metal part p is introduced to the system
and a corresponding agent is instantiated with the goal
g = SoftEdges. Several process plans Πg may be formulated
for the specific goal g.

The process planπg in Table I solves the goal g = SoftEdges,
using the abstract interfacesU = {a, b, c, d}.The plan describes
the following sequence of skills.

1) The metal part p appears at the load station (in Fig. 7
referred to as Part).

2) The part is transported (using the skill Transport) to a
grinding wheels StartPos using a gripper connected to
the part on GripLocation.

3) The grinding wheel that is pre-mounted manually to a
motor should start to rotate with the speed defined on
RPM.

4) The robot moves the part against the grinding wheel based
on the predesigned path GrindPath that is attached to the
part agent.

5) The grinding wheel is stopped.
6) The part leaves the system by moving to the unload station

position LeavePos.
7) The part is removed from the system and the agent is

deleted.

B. Evaluating the Algorithm

This section describes each step in the algorithm, considering
the process plan in Table I and the resources in Fig. 7. The

2418 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 7. Using interfaces to connect a part with resource skills. Available interface connections are illustrated by red lines with a circle marking the
connection point.

algorithm in this example explains how the metal part agent will
run this algorithm, i.e., this example describes the algorithm
from the part perspective.

Step 1: The process plan πg has four demands du ∈
D, based on the abstract interfaces U = {a, b, c, d}
in πg . The demands consist of demanded skills Su

and variables Vu, forming the set D of all demands
for U

Sa = {Load}
Sb = {Transport, MoveAlong}
Sc = {Grinding}
Sd = {Unload}
Va = { }
Vb = {From, To}
Vc = {Speed, StartPos}
Vd = {LeavePos}
da = {Sa, Va}
db = {Sb, Vb}
dc = {Sc, Vc}
dd = {Sd, Vd}
D = {da, db, dc, dd} .

Step 2: For each abstract interface u ∈ U, the related de-
mand du is broadcasted to resource agents in the
network that reply if they have an interface that
meets the demand du. The local agent (in this case
the part p) checks if any of the found interfaces
are compatible with the local agents interfaces. If

they are compatible, they are added to the potential
interfaces Ip, in this case, representing a total of four
interfaces on resources. Hence,

Ipa = {if Buffer}
Ipb = {if GripMetal}
Ipc = {if Grind}
Ipd = {if Buffer}

Ip = {Ipa , Ipb , Ipc , Ipd} .

For this specific case, there is only one element in
each set Ipu, however, more alternatives could be
available if multiple compatible resources would be
available for the same skill.

Step 3: From the potential interfaces Ipu, select the interfaces
with the lowest cost Is, where

Is = {min (Ipa) ,min (Ipb) ,min (Ipc) ,min (Ipd)}

and use the selected interfaces Is to map the plan πg

to physical resources in the agent network. Save the
mapped process plan as an executable process plan

πe
g = map (πg, I

s) .

The algorithm that was described turns process plans πg into
executable process plans πe

g . Since several process plans πg ∈
Πg for a goal g can exist, Πe

g is formed, where πe
g ∈ Πe

g .
Since each element inΠg is an alternative process plan that can

reach the goal g = SoftEdges, the executable process plan πe
g ∈

Πe
g with the lowest cost for reaching the goal is now chosen. This

makes the plan ready to run since the abstract interfaces U =
(a, b, c, d) are now mapped to interfaces on physical resources
in the agent network.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2419

TABLE II
NUMBER OF ACTIVITIES THAT USES SOFTWARE TIME, COMPARED BETWEEN
CASES 1, 2, 3, AND 4, WHEN USING THE PLUG & PRODUCE FRAMEWORK

V. EVALUATION

The main motivation for this article is to minimize software
time spent on programming and configuration of Plug & Produce
systems. From the presented Plug & Produce framework, four
cases can be identified that highly affect the software time,
cases 1–4. Four separate activities are observed that contribute
to software time: (A1) preparing goals, (A2) creation of process
plans, (A3) defining interfaces and (A4) programming, as given
in Table II. The introduction of new parts relates to activity A1
and A2 while the preparation of resources relates to activities
A2, A3, and A4. Activity A4, i.e., programming, regards to
the time spent on adapting a resource to the Plug & Produce
framework. In order to adapt a resource to our framework, some
code must be written to make it compatible with the Plug &
Produce framework.

Case 1—Creating a new robot cell: All new resources not pre-
viously prepared for the Plug & Produce framework have to
be programmed (A4) and configured, i.e., creating interfaces
with skills (A3) and plans for running those skills (A2).
Hence, if all resources are new, there will be a considerable
time spent adapting them to the Plug & Produce framework.
However, this is a one-time effort. If new goals and plans are
introduced, they will require time for creating goals (A1) and
defining process plans (A2). The use of the proposed frame-
work simplifies the programming (compared to traditional
central control) since no dependencies or communication
between resources have to be defined.

Case 2—Changing, modifying or replacing a part: In this case,
the agent configuration must be updated to reflect this. It might
also be necessary to change the physical configuration of the
robot cell. For minor changes like adjusting how soft the soft
edges should be or what paint to use when painting a part,
only the goals (A1), plans (A2) and their related variables are
modified. This case shows the main benefits of the presented
Plug & Produce framework, since no programming or config-
uration has to be performed when changing goals or process
plans. This can be compared with a traditional central control,
where reprogramming commonly has to be performed.

Case 3—Adding a new resource: If a new resource is introduced,
then it has to be adapted to the Plug & Produce framework
by plans (A2), interfaces (A3) and programming (A4). The
benefit of using the Plug & Produce framework is that the
resource can be developed and tested offline without inter-
rupting ongoing manufacturing. In the same way as case 1,

TABLE III
TIME COMPARED BETWEEN CASES 1, 2, 3, AND 4. THESE NUMBERS WERE

FOUND DURING A CLOSE COLLABORATION WITH GKN AEROSPACE.

∗Note that Each Value in Cases 2, 3, and 4 are Percentages Out of the Total Time of
Case 1.

the programming is simplified by letting the agent system
manage all communication.

Case 4—Recycling of manufacturing systems: In an industry
with needs for flexibility, a robot cell will not last forever.
When rebuilding, moving, or recycling a robot cell, it is
desirable to reuse the resources, corresponding programming
and agent configurations. Reused resources can drastically
decrease the deployment time. The Plug & Produce frame-
work use a distributed approach for the controller of each
agent. This makes it possible to configure one resource or part
without considering any other objects in the system. Hence, an
agent configuration can effortlessly be moved together with
the resource to another robot cell. The agent configuration
can be compared to a software driver for a USB device with
plug and play functionality. Additionally, the code written
inside the resources, like robot code and PLC code in the
process modules, can be reused, since it has no dependencies
with any other device in the system. Device code and agent
configuration will only be modified if the resource should
receive new functionalities, e.g., adding a new sensor or
button.

Case comparison: In Table II, each activity that adds to the
software time has been counted and sorted into the cases 1, 2,
3, and 4. These cases are taken from the presented scenario in
Fig. 7 and assumes that the Plug & Produce framework is used.
The scenario requires one goal, one plan, 11 interfaces and four
resources. In the first case, all 11 Interfaces and four resources
must be configured and programmed together with one goal and
process plan defined. In the second case, a part is modified,
needing a new goal and process plan to be defined. None of the
interfaces needs to be changed, and no programming is required.
In the third case, one new process module is configured and
programmed, resulting in one interface and one program needed
to be created, together with one process plan to be defined for
solving its skills. In the fourth case, recycling is performed of one
process module without using any software time. The number
of activities needed for each case is given in Table II.

The time consumed on the various activities has been mea-
sured and confirmed during collaboration with GKN Aerospace.
From this data, it was found that out of the total time consumed
in case 1 (100%), a goal (A1) took less than 1%, a plan (A2)
1%, one interface (A3) ∼5%, and programming of one device
(A4) ∼10%. This is shown in Table III.

2418 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 7. Using interfaces to connect a part with resource skills. Available interface connections are illustrated by red lines with a circle marking the
connection point.

algorithm in this example explains how the metal part agent will
run this algorithm, i.e., this example describes the algorithm
from the part perspective.

Step 1: The process plan πg has four demands du ∈
D, based on the abstract interfaces U = {a, b, c, d}
in πg . The demands consist of demanded skills Su

and variables Vu, forming the set D of all demands
for U

Sa = {Load}
Sb = {Transport, MoveAlong}
Sc = {Grinding}
Sd = {Unload}
Va = { }
Vb = {From, To}
Vc = {Speed, StartPos}
Vd = {LeavePos}
da = {Sa, Va}
db = {Sb, Vb}
dc = {Sc, Vc}
dd = {Sd, Vd}
D = {da, db, dc, dd} .

Step 2: For each abstract interface u ∈ U, the related de-
mand du is broadcasted to resource agents in the
network that reply if they have an interface that
meets the demand du. The local agent (in this case
the part p) checks if any of the found interfaces
are compatible with the local agents interfaces. If

they are compatible, they are added to the potential
interfaces Ip, in this case, representing a total of four
interfaces on resources. Hence,

Ipa = {if Buffer}
Ipb = {if GripMetal}
Ipc = {if Grind}
Ipd = {if Buffer}

Ip = {Ipa , Ipb , Ipc , Ipd} .

For this specific case, there is only one element in
each set Ipu, however, more alternatives could be
available if multiple compatible resources would be
available for the same skill.

Step 3: From the potential interfaces Ipu, select the interfaces
with the lowest cost Is, where

Is = {min (Ipa) ,min (Ipb) ,min (Ipc) ,min (Ipd)}

and use the selected interfaces Is to map the plan πg

to physical resources in the agent network. Save the
mapped process plan as an executable process plan

πe
g = map (πg, I

s) .

The algorithm that was described turns process plans πg into
executable process plans πe

g . Since several process plans πg ∈
Πg for a goal g can exist, Πe

g is formed, where πe
g ∈ Πe

g .
Since each element inΠg is an alternative process plan that can

reach the goal g = SoftEdges, the executable process plan πe
g ∈

Πe
g with the lowest cost for reaching the goal is now chosen. This

makes the plan ready to run since the abstract interfaces U =
(a, b, c, d) are now mapped to interfaces on physical resources
in the agent network.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2419

TABLE II
NUMBER OF ACTIVITIES THAT USES SOFTWARE TIME, COMPARED BETWEEN
CASES 1, 2, 3, AND 4, WHEN USING THE PLUG & PRODUCE FRAMEWORK

V. EVALUATION

The main motivation for this article is to minimize software
time spent on programming and configuration of Plug & Produce
systems. From the presented Plug & Produce framework, four
cases can be identified that highly affect the software time,
cases 1–4. Four separate activities are observed that contribute
to software time: (A1) preparing goals, (A2) creation of process
plans, (A3) defining interfaces and (A4) programming, as given
in Table II. The introduction of new parts relates to activity A1
and A2 while the preparation of resources relates to activities
A2, A3, and A4. Activity A4, i.e., programming, regards to
the time spent on adapting a resource to the Plug & Produce
framework. In order to adapt a resource to our framework, some
code must be written to make it compatible with the Plug &
Produce framework.

Case 1—Creating a new robot cell: All new resources not pre-
viously prepared for the Plug & Produce framework have to
be programmed (A4) and configured, i.e., creating interfaces
with skills (A3) and plans for running those skills (A2).
Hence, if all resources are new, there will be a considerable
time spent adapting them to the Plug & Produce framework.
However, this is a one-time effort. If new goals and plans are
introduced, they will require time for creating goals (A1) and
defining process plans (A2). The use of the proposed frame-
work simplifies the programming (compared to traditional
central control) since no dependencies or communication
between resources have to be defined.

Case 2—Changing, modifying or replacing a part: In this case,
the agent configuration must be updated to reflect this. It might
also be necessary to change the physical configuration of the
robot cell. For minor changes like adjusting how soft the soft
edges should be or what paint to use when painting a part,
only the goals (A1), plans (A2) and their related variables are
modified. This case shows the main benefits of the presented
Plug & Produce framework, since no programming or config-
uration has to be performed when changing goals or process
plans. This can be compared with a traditional central control,
where reprogramming commonly has to be performed.

Case 3—Adding a new resource: If a new resource is introduced,
then it has to be adapted to the Plug & Produce framework
by plans (A2), interfaces (A3) and programming (A4). The
benefit of using the Plug & Produce framework is that the
resource can be developed and tested offline without inter-
rupting ongoing manufacturing. In the same way as case 1,

TABLE III
TIME COMPARED BETWEEN CASES 1, 2, 3, AND 4. THESE NUMBERS WERE

FOUND DURING A CLOSE COLLABORATION WITH GKN AEROSPACE.

∗Note that Each Value in Cases 2, 3, and 4 are Percentages Out of the Total Time of
Case 1.

the programming is simplified by letting the agent system
manage all communication.

Case 4—Recycling of manufacturing systems: In an industry
with needs for flexibility, a robot cell will not last forever.
When rebuilding, moving, or recycling a robot cell, it is
desirable to reuse the resources, corresponding programming
and agent configurations. Reused resources can drastically
decrease the deployment time. The Plug & Produce frame-
work use a distributed approach for the controller of each
agent. This makes it possible to configure one resource or part
without considering any other objects in the system. Hence, an
agent configuration can effortlessly be moved together with
the resource to another robot cell. The agent configuration
can be compared to a software driver for a USB device with
plug and play functionality. Additionally, the code written
inside the resources, like robot code and PLC code in the
process modules, can be reused, since it has no dependencies
with any other device in the system. Device code and agent
configuration will only be modified if the resource should
receive new functionalities, e.g., adding a new sensor or
button.

Case comparison: In Table II, each activity that adds to the
software time has been counted and sorted into the cases 1, 2,
3, and 4. These cases are taken from the presented scenario in
Fig. 7 and assumes that the Plug & Produce framework is used.
The scenario requires one goal, one plan, 11 interfaces and four
resources. In the first case, all 11 Interfaces and four resources
must be configured and programmed together with one goal and
process plan defined. In the second case, a part is modified,
needing a new goal and process plan to be defined. None of the
interfaces needs to be changed, and no programming is required.
In the third case, one new process module is configured and
programmed, resulting in one interface and one program needed
to be created, together with one process plan to be defined for
solving its skills. In the fourth case, recycling is performed of one
process module without using any software time. The number
of activities needed for each case is given in Table II.

The time consumed on the various activities has been mea-
sured and confirmed during collaboration with GKN Aerospace.
From this data, it was found that out of the total time consumed
in case 1 (100%), a goal (A1) took less than 1%, a plan (A2)
1%, one interface (A3) ∼5%, and programming of one device
(A4) ∼10%. This is shown in Table III.

2420 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

The time (case 1) for the 11 interfaces was 57% and the time
for programming 4 devices was 41%, as given in Table III. We
can also see that case 2 uses only a total of 2% of the total time
needed for cases 1 and 3 requires a total of 16% of the total time
of case 1, while case 4 required no software time.

This result clearly shows that the presented Plug & Produce
framework can decrease the software time compared to tradi-
tional approaches. In case 1, the programming is simplified by
letting the agents solve all dependencies and communication be-
tween resources. Case 2 shows that the change of part goals and
plans has a low influence on the software time. In case 3, a new
process module was added similarly to case 1. In case 4, there
was no software time needed. The reason is that resources can
be integrated automatically if they were previously prepared for
the Plug & Produce framework. The hardware time to physically
install a module was, during the conducted experiments, found
to be around one minute. This time is the same for any of the
process modules, as long as they use the standardized hardware
connectors mentioned above. This implies that if a framework
that works as described in this article would be used as a standard,
then a company could buy a resource that is delivered with
configuration data much like a USB device for a computer that
is delivered with a driver. Then there would be no time spent on
the programming (A4) or interface activities (A3) of Table II,
thus avoiding the activities with the highest software time when
a new robot cell is created.

VI. CONCLUSION

In this article, a framework for Plug & Produce was formu-
lated. This includes a new way of describing process plans
with unmapped resources by formulating abstract interfaces.
The mapping of resources to process plans was accomplished
by generating demands for interfaces on other resources in
the agent network. A mapping algorithm was described that
can connect resources to form trees of collaborating agents.
This algorithm runs on every agent in the system, making the
search distributed. The algorithm was implemented and tested
in a physical demonstrator, which verified that the proposed
Plug & Produce framework works.

The main benefit of the proposed framework was that it makes
it possible to add new types of products faster in terms of minutes
rather than days in traditional approaches. It also encapsulates
resources so that they have no dependencies between each other.
This makes it much easier to develop resources and to move
them between manufacturing systems, without adapting them
to specific new scenarios.

REFERENCES

[1] S. Hu et al., “Assembly system design and operations for product variety,”
CIRP Ann. Manuf. Technol., vol. 60, no. 2, pp. 715–733, 2011.

[2] M. Onori, N. Lohse, J. Barata and C. Hanisch, “The IDEAS project: Plug &
produce at shop – floor level,” Assem. Automat., vol. 32, no. 2, pp. 124–134,
2012.

[3] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, “Recent progress
on programming methods for industrial robots,” Robot. Comput.-Integr.
Manuf., vol. 28, no. 2, pp. 87–94, 2012.

[4] T. Blecker and G. Friedrich, Mass Customization: Challenges and Solu-
tions. New York, NY,USA: Springer, 2006.

[5] M. R. Pedersen et al., “Robot skills for manufacturing: From con-
cept to industrial deployment,” Robot. Comput.-Integr. Manuf., vol. 37,
pp. 282–291, 2016.

[6] G. Lanza, J. Stoll, N. Stricker, S. Peters, and C. Lorenz, “Measuring global
production effectiveness,” in Proc. 46th CIRP Conf. Manuf. Syst., 2013,
pp. 31–36.

[7] H. Elmaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” Int. J. Flexible Manuf. Syst, vol. 17, no. 4, pp. 261–276, 2005.

[8] P. Coletti and T. Aichner, Mass Customization: An Exploration of Euro-
pean Characteristics. New York, NY, USA: Springer, 2011.

[9] Y. Koren et al., “Reconfigurable manufacturing systems,” CIRP Ann.,
vol. 48, no. 2, pp. 527–540, Aug. 1999.

[10] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly system
by plug and produce,” CIRP Ann. Manuf. Technol, vol. 49, no. 1, pp. 1–4,
2000.

[11] L. Ribeiro, J. Barata, M. Onori and J. Hoos, “Industrial agents for the
fast deployment of evolvable assembly systems,” in Industrial Agents,
Amsterdam, The Netherlands: Elsevier, 2015, pp. 301–322.

[12] A. Zoitl, G. Kainz and N. Keddis, “Production plan-driven flexible assem-
bly automation architecture,” in Industrial Applications of Holonic and
Multi-Agent Systems, New York, NY, USA: Springer, 2013, pp. 49–58.

[13] M. Hvilshøj and S. Bøgh, ““Little helper” - An autonomous industrial
mobile manipulator concept,” Int. J. Adv. Robot. Syst, vol. 8, no. 2, pp. 1–11,
2011.

[14] C. Schou and O. Madsen, “A plug and produce framework for industrial
collaborative robots,” Int. J. Adv. Robot. syst., vol. 14, no. 4, pp. 1–10,
2017.

[15] M. Skilton and F. Hovsepian, The 4th Industrial Revolution - Responding
to the Impact of Artificial Intelligence on Business, Cham, Switzerland:
Palgrave Macmillan, 2018.

[16] B. Svensson and F. Danielsson, “P-SOP – A multi-agent based control
approach for flexible and robust manufacturing,” Robot. Comput. Integr.
Manuf., vol. 36, pp. 109–118, 2015.

[17] M. Bennulf, F. Danielsson and B. Svensson, “Identification of resources
and parts in a plug and produce system,” in Proc. 29th Int. Conf. Flexible
Automat. Intell. Manuf., 2019, pp. 858–865.

[18] V. Mařík and J. Lažanský, “Industrial applications of agent technologies,”
Control Eng. Pract., vol. 15, no. 11, pp. 1364–1380, Nov. 2007.

[19] N. K. C. Krothapalli and A. V. Deshmukh, “Design of negotiation protocols
for multi-agent manufacturing systems,” Int. J. Prod. Res., vol. 37, no. 7,
pp. 1601–1624, 1999.

[20] P. Leitão, V. Mařík and P. Vrba, “Past, present, and future of industrial agent
applications,” IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 2360–2372,
Nov. 2013.

[21] P. Leitão and S. Karnouskos, “A survey on factors that impact industrial
agent acceptance,” in Industrial Agents, Amsterdam, The Netherlands:
Elsevier, 2015, pp. 401–429.

[22] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-
art survey,” Eng. Appl. Artif. intell., vol. 22, no. 7, pp. 979–991, Oct. 2009.

[23] W. Shen, Q. Hao, H. J. Yoon and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,” Adv. Eng.
Informat., vol. 20, no. 4, pp. 415–431, Oct. 2006.

[24] S. Karnouskos and P. Leitão, “Key contributing factors to the acceptance
of agents in industrial environments,” IEEE Trans. Ind. Informat, vol. 13,
no. 2, pp. 696–703, Apr. 2017.

[25] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and prac-
tice,” Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, 1995.

[26] C. Carabelea, O. Boissier and F. Ramparany, “Benefits and requirements
of using multi-agent systems on smart devices,” in Proc. Euro-Par Parallel
Process., 2003, pp. 1091–1098.

[27] L. Steels, “When are robots intelligent autonomous agents?,” Robot. Auton.
Syst., vol. 15, no. 1/2, pp. 3–9, 1995.

[28] “FIPA 97 Part 1 Version 1.0: Agent management specification,” Found.
Intell. Phys. Agents, Geneva, Switzerland, 1997.

[29] S. Poslad, “Specifying protocols for multi-agent systems interaction,”
ACM Trans. Auton. Adaptive Syst., vol. 2, no. 4, pp. 15–24, 2007.

[30] “FIPA agent management specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[31] “FIPA ACL message structure specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[32] F. Bellifemine, G. Caire and D. Greenwood, Developing Multi-Agent
Systems With JADE, New York, NY, USA: Wiley, 2007.

[33] E. Järvenpää, M. Lanz and R. Tuokko, “Application of a capability-based
adaptation methodology to a small-size production system,” Int. J. Manuf.
Technol. Manage., vol. 30, no. 1/2, pp. 67–86, Apr. 2016.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2421

[34] N. Antzoulatos, E. Castro, L. d. Silva, A. D. Rocha, S. Ratchev and
J. Barata, “A multi-agent framework for capability-based reconfigura-
tion of industrial assembly systems,” Int. J. Prod. Res., vol. 55, no. 10,
pp. 2950–2960, 2017.

[35] J. W. Park, M. Shin and D. Y. Kim, “An extended agent communica-
tion framework for rapid reconfiguration of distributed manufacturing
systems,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3845–3855, 2019.

[36] S. Rehberger, L. Spreiter and B. Vogel-Heuser, “An agent-based approach
for dependable planning of production sequences in automated production
systems,” Automatisierungstechnik, vol. 65, no. 11, pp. 766–778, 2017.

[37] R. S. Sutton, D. Precup and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1-2, pp. 181–211, 1999.

[38] M. Vallée, M. Merdan, W. Lepuschitz and G. Koppensteiner, “Decentral-
ized reconfiguration of a flexible transportation system,” IEEE Trans. Ind.
Informat., vol. 7, no. 3, pp. 505–516, Aug. 2011.

[39] D. Smale and S. Ratchev, “A capability model and taxonomy for multiple
assembly system reconfigurations,” IFAC Symp. Inf. Control Problems
Manuf., vol. 42, no. 4, pp. 1923–1928, Jun. 2009.

[40] W. Mahnke, S.-H. Leitner and M. Damm, OPC Unified Architecture, New
York, NY, USA: Springer, 2009.

2420 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

The time (case 1) for the 11 interfaces was 57% and the time
for programming 4 devices was 41%, as given in Table III. We
can also see that case 2 uses only a total of 2% of the total time
needed for cases 1 and 3 requires a total of 16% of the total time
of case 1, while case 4 required no software time.

This result clearly shows that the presented Plug & Produce
framework can decrease the software time compared to tradi-
tional approaches. In case 1, the programming is simplified by
letting the agents solve all dependencies and communication be-
tween resources. Case 2 shows that the change of part goals and
plans has a low influence on the software time. In case 3, a new
process module was added similarly to case 1. In case 4, there
was no software time needed. The reason is that resources can
be integrated automatically if they were previously prepared for
the Plug & Produce framework. The hardware time to physically
install a module was, during the conducted experiments, found
to be around one minute. This time is the same for any of the
process modules, as long as they use the standardized hardware
connectors mentioned above. This implies that if a framework
that works as described in this article would be used as a standard,
then a company could buy a resource that is delivered with
configuration data much like a USB device for a computer that
is delivered with a driver. Then there would be no time spent on
the programming (A4) or interface activities (A3) of Table II,
thus avoiding the activities with the highest software time when
a new robot cell is created.

VI. CONCLUSION

In this article, a framework for Plug & Produce was formu-
lated. This includes a new way of describing process plans
with unmapped resources by formulating abstract interfaces.
The mapping of resources to process plans was accomplished
by generating demands for interfaces on other resources in
the agent network. A mapping algorithm was described that
can connect resources to form trees of collaborating agents.
This algorithm runs on every agent in the system, making the
search distributed. The algorithm was implemented and tested
in a physical demonstrator, which verified that the proposed
Plug & Produce framework works.

The main benefit of the proposed framework was that it makes
it possible to add new types of products faster in terms of minutes
rather than days in traditional approaches. It also encapsulates
resources so that they have no dependencies between each other.
This makes it much easier to develop resources and to move
them between manufacturing systems, without adapting them
to specific new scenarios.

REFERENCES

[1] S. Hu et al., “Assembly system design and operations for product variety,”
CIRP Ann. Manuf. Technol., vol. 60, no. 2, pp. 715–733, 2011.

[2] M. Onori, N. Lohse, J. Barata and C. Hanisch, “The IDEAS project: Plug &
produce at shop – floor level,” Assem. Automat., vol. 32, no. 2, pp. 124–134,
2012.

[3] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, “Recent progress
on programming methods for industrial robots,” Robot. Comput.-Integr.
Manuf., vol. 28, no. 2, pp. 87–94, 2012.

[4] T. Blecker and G. Friedrich, Mass Customization: Challenges and Solu-
tions. New York, NY,USA: Springer, 2006.

[5] M. R. Pedersen et al., “Robot skills for manufacturing: From con-
cept to industrial deployment,” Robot. Comput.-Integr. Manuf., vol. 37,
pp. 282–291, 2016.

[6] G. Lanza, J. Stoll, N. Stricker, S. Peters, and C. Lorenz, “Measuring global
production effectiveness,” in Proc. 46th CIRP Conf. Manuf. Syst., 2013,
pp. 31–36.

[7] H. Elmaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” Int. J. Flexible Manuf. Syst, vol. 17, no. 4, pp. 261–276, 2005.

[8] P. Coletti and T. Aichner, Mass Customization: An Exploration of Euro-
pean Characteristics. New York, NY, USA: Springer, 2011.

[9] Y. Koren et al., “Reconfigurable manufacturing systems,” CIRP Ann.,
vol. 48, no. 2, pp. 527–540, Aug. 1999.

[10] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly system
by plug and produce,” CIRP Ann. Manuf. Technol, vol. 49, no. 1, pp. 1–4,
2000.

[11] L. Ribeiro, J. Barata, M. Onori and J. Hoos, “Industrial agents for the
fast deployment of evolvable assembly systems,” in Industrial Agents,
Amsterdam, The Netherlands: Elsevier, 2015, pp. 301–322.

[12] A. Zoitl, G. Kainz and N. Keddis, “Production plan-driven flexible assem-
bly automation architecture,” in Industrial Applications of Holonic and
Multi-Agent Systems, New York, NY, USA: Springer, 2013, pp. 49–58.

[13] M. Hvilshøj and S. Bøgh, ““Little helper” - An autonomous industrial
mobile manipulator concept,” Int. J. Adv. Robot. Syst, vol. 8, no. 2, pp. 1–11,
2011.

[14] C. Schou and O. Madsen, “A plug and produce framework for industrial
collaborative robots,” Int. J. Adv. Robot. syst., vol. 14, no. 4, pp. 1–10,
2017.

[15] M. Skilton and F. Hovsepian, The 4th Industrial Revolution - Responding
to the Impact of Artificial Intelligence on Business, Cham, Switzerland:
Palgrave Macmillan, 2018.

[16] B. Svensson and F. Danielsson, “P-SOP – A multi-agent based control
approach for flexible and robust manufacturing,” Robot. Comput. Integr.
Manuf., vol. 36, pp. 109–118, 2015.

[17] M. Bennulf, F. Danielsson and B. Svensson, “Identification of resources
and parts in a plug and produce system,” in Proc. 29th Int. Conf. Flexible
Automat. Intell. Manuf., 2019, pp. 858–865.

[18] V. Mařík and J. Lažanský, “Industrial applications of agent technologies,”
Control Eng. Pract., vol. 15, no. 11, pp. 1364–1380, Nov. 2007.

[19] N. K. C. Krothapalli and A. V. Deshmukh, “Design of negotiation protocols
for multi-agent manufacturing systems,” Int. J. Prod. Res., vol. 37, no. 7,
pp. 1601–1624, 1999.

[20] P. Leitão, V. Mařík and P. Vrba, “Past, present, and future of industrial agent
applications,” IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 2360–2372,
Nov. 2013.

[21] P. Leitão and S. Karnouskos, “A survey on factors that impact industrial
agent acceptance,” in Industrial Agents, Amsterdam, The Netherlands:
Elsevier, 2015, pp. 401–429.

[22] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-
art survey,” Eng. Appl. Artif. intell., vol. 22, no. 7, pp. 979–991, Oct. 2009.

[23] W. Shen, Q. Hao, H. J. Yoon and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,” Adv. Eng.
Informat., vol. 20, no. 4, pp. 415–431, Oct. 2006.

[24] S. Karnouskos and P. Leitão, “Key contributing factors to the acceptance
of agents in industrial environments,” IEEE Trans. Ind. Informat, vol. 13,
no. 2, pp. 696–703, Apr. 2017.

[25] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and prac-
tice,” Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, 1995.

[26] C. Carabelea, O. Boissier and F. Ramparany, “Benefits and requirements
of using multi-agent systems on smart devices,” in Proc. Euro-Par Parallel
Process., 2003, pp. 1091–1098.

[27] L. Steels, “When are robots intelligent autonomous agents?,” Robot. Auton.
Syst., vol. 15, no. 1/2, pp. 3–9, 1995.

[28] “FIPA 97 Part 1 Version 1.0: Agent management specification,” Found.
Intell. Phys. Agents, Geneva, Switzerland, 1997.

[29] S. Poslad, “Specifying protocols for multi-agent systems interaction,”
ACM Trans. Auton. Adaptive Syst., vol. 2, no. 4, pp. 15–24, 2007.

[30] “FIPA agent management specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[31] “FIPA ACL message structure specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[32] F. Bellifemine, G. Caire and D. Greenwood, Developing Multi-Agent
Systems With JADE, New York, NY, USA: Wiley, 2007.

[33] E. Järvenpää, M. Lanz and R. Tuokko, “Application of a capability-based
adaptation methodology to a small-size production system,” Int. J. Manuf.
Technol. Manage., vol. 30, no. 1/2, pp. 67–86, Apr. 2016.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2421

[34] N. Antzoulatos, E. Castro, L. d. Silva, A. D. Rocha, S. Ratchev and
J. Barata, “A multi-agent framework for capability-based reconfigura-
tion of industrial assembly systems,” Int. J. Prod. Res., vol. 55, no. 10,
pp. 2950–2960, 2017.

[35] J. W. Park, M. Shin and D. Y. Kim, “An extended agent communica-
tion framework for rapid reconfiguration of distributed manufacturing
systems,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3845–3855, 2019.

[36] S. Rehberger, L. Spreiter and B. Vogel-Heuser, “An agent-based approach
for dependable planning of production sequences in automated production
systems,” Automatisierungstechnik, vol. 65, no. 11, pp. 766–778, 2017.

[37] R. S. Sutton, D. Precup and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1-2, pp. 181–211, 1999.

[38] M. Vallée, M. Merdan, W. Lepuschitz and G. Koppensteiner, “Decentral-
ized reconfiguration of a flexible transportation system,” IEEE Trans. Ind.
Informat., vol. 7, no. 3, pp. 505–516, Aug. 2011.

[39] D. Smale and S. Ratchev, “A capability model and taxonomy for multiple
assembly system reconfigurations,” IFAC Symp. Inf. Control Problems
Manuf., vol. 42, no. 4, pp. 1923–1928, Jun. 2009.

[40] W. Mahnke, S.-H. Leitner and M. Damm, OPC Unified Architecture, New
York, NY, USA: Springer, 2009.

Paper B

Identification of resources and parts in a
Plug and Produce system using OPC UA

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the Flexible Automation and Intelligent
Manufacturing International Conference, FAIM, in

Limerick, Ireland, June 2019

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

Printed and published with permission

B

Paper B

Identification of resources and parts in a
Plug and Produce system using OPC UA

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the Flexible Automation and Intelligent
Manufacturing International Conference, FAIM, in

Limerick, Ireland, June 2019

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

Printed and published with permission

B

ScienceDirect

Available online at www.sciencedirect.com

Procedia Manufacturing 38 (2019) 858–865

2351-9789 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019 (FAIM 2019)
10.1016/j.promfg.2020.01.167

10.1016/j.promfg.2020.01.167 2351-9789

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019 (FAIM 2019)

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

29th International Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2019), June 24-28, 2019, Limerick, Ireland.

Identification of resources and parts in a Plug and Produce system
using OPC UA

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
University West, Department of Engineering Science, Trollhättan, Sweden

Abstract

This paper describes a method together with an implementation for automating the detection, identification and configuration
of newly added resources and parts in a Plug and Produce system using OPC UA. In a Plug and Produce system, resources and
parts are usually controlled by agents, forming a multi-agent system of collaborating resources. Hence, when a resource or part is
connected to the system, a corresponding agent must be instantiated and associated with that specific device. In order to automate
this, the system needs information about newly connected devices. This information could, for example, be positional data
describing where the device is connected. Some devices like tools and parts to be processed have no own network connection,
but still, they should get an agent with correct configuration instantiated. In this work, OPC UA is used for communication
between devices and the corresponding agents. All agents and their communication are handled by an Agent Handling System,
consisting of an OPC UA HUB together with functions for device detection and agent instantiation. The HUB is used for
transferring data between devices and their agents in the network by OPC UA protocols. When a device is connected to the
network, it is detected, and a connection is automatically created to the HUB that becomes configured for transmitting data
between the device and its corresponding agent.

© 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

Keywords: OPC UA; Multi-agent; Industry 4.0; Smart Factory; Plug and Produce;

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

29th International Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2019), June 24-28, 2019, Limerick, Ireland.

Identification of resources and parts in a Plug and Produce system
using OPC UA

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
University West, Department of Engineering Science, Trollhättan, Sweden

Abstract

This paper describes a method together with an implementation for automating the detection, identification and configuration
of newly added resources and parts in a Plug and Produce system using OPC UA. In a Plug and Produce system, resources and
parts are usually controlled by agents, forming a multi-agent system of collaborating resources. Hence, when a resource or part is
connected to the system, a corresponding agent must be instantiated and associated with that specific device. In order to automate
this, the system needs information about newly connected devices. This information could, for example, be positional data
describing where the device is connected. Some devices like tools and parts to be processed have no own network connection,
but still, they should get an agent with correct configuration instantiated. In this work, OPC UA is used for communication
between devices and the corresponding agents. All agents and their communication are handled by an Agent Handling System,
consisting of an OPC UA HUB together with functions for device detection and agent instantiation. The HUB is used for
transferring data between devices and their agents in the network by OPC UA protocols. When a device is connected to the
network, it is detected, and a connection is automatically created to the HUB that becomes configured for transmitting data
between the device and its corresponding agent.

© 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

Keywords: OPC UA; Multi-agent; Industry 4.0; Smart Factory; Plug and Produce;

* Corresponding author. E-mail address: mattias.bennulf@hv.se

2 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

1. Introduction

Today, product lifecycles are decreasing (sometimes down to customized products) [1], resulting in difficulties
for factories to maintain profitability, due to the cost associated with rapidly changing dedicated manufacturing
equipment [2]. Instead, a trend now is to design automation systems that are reconfigurable for new products by
decreasing the time it takes to add new resources to the production. A system that handles this automatically can be
regarded as a Plug and Produce system and was firstly introduced in [3].

Adding a resource or a part, i.e., a device, to a system requires three main activities, 1) physically attaching the
device to the system, 2) establish a communication to the device (or its representative) and 3) integrating the device
in the production from a logical point of view. In this paper, activity 1 is handled by dividing resources into process
modules (see Fig. 1 and Fig. 5), that can be connected to the system through standard connectors containing
communication, air and power. The production cell at University West, referred to (see Fig. 1 and Fig. 5) and used
for the implementation in this work has 10 standard connection slots where process modules can be placed. Further,
an industrial robot is also a fixed part of the cell together with a safety system using laser scanners to protect the
operators. Using standard modules for sharing hardware has been done before for production systems, e.g., [4], [5].
In other works, such as [6], [7] this type of design is regarded as increasing the mechatronic compatibility. The
process module approach in Fig. 1 has been implemented and tested in the physical production cell at University
West and has proved to solve the physical flexibility. However, to reach Plug and Produce, the modules also need to
automatically be detected and integrated with the production logically. When adding new devices to a
communication bus or a network, i.e., activity 2, the network configuration and setup is commonly done manually
today and is to be considered as static. An example is that industrial automation devices commonly communicate
with shared variables or memory areas and these must be mapped when a new device is connected. In this paper, a
platform-independent communication protocol was preferred, rather than traditional vendor specific industrial
fieldbuses to reach a general proposal. There exist many platform-independent protocols, however, in this work
OPC UA is used due to its wide acceptance in the industry for automation. To handle the integration of Plug and
Produce devices in production, i.e., activity 3, a multi-agent-based solution is preferred, where each resource and
part has a unique agent representing them. Agents do not necessarily run on the hardware for the devices, it can run
somewhere else in the production cell, e.g., on a server, a PLC or even in the cloud.

In this paper, two categories of agents are defined, resource agents and part agents. The agent logic is general
and can be used to represent any device, i.e., the same software represents all parts and resources in the system. To
prepare an agent for a specific device, an agent configuration is always needed. One agent configuration may be
used for instantiating multiple agents, since several devices with identical type can be present in the system, e.g.,
several parts of the same type to be processed. However, each agent is unique through its instance. The agent
configuration contains data describing the connected device physical and logical properties. This includes
parameters such as definitions of item position and physical properties like locations for gripping an item or base for
placing them on a table.

In this concept, all part agents have goals that they want to reach. A part agent searches the network for
resources with the correct skills to assist in reaching those goals. When a new resource is connected, it will be
included in the system and becomes visible to other resources and parts. For the process module in Fig. 1 (B) four
agents can be identified: the Cell agent, the Process module agent, the Part 1 agent and the Part 2 agent. In this
example, the process module is a station for loading/unloading parts. Agents can model their points of interaction
with other agents by defining interfaces, shown as dots in the picture with a number for the interfaces local id on
each agent. The interfaces, in this case, defines attachment between agents. For Fig. 1 (B), the interface connections
are:

1) Part 1 is attached on its interface 1 to the Process module interface 2,
2) Part 2 is attached on its interface 1 to the Process module interface 3 and,
3) Process module is attached on its interface 1 to the Cell interface 9 (i.e., slot 9).

Resources and parts need positional data when requesting transportation by the robot in the production cell.

Their agents can use defined interfaces for calculating its position in the production cell by knowing what it is
attached to. It is essential that each agent has a correct description of what it is attached to, all the way down to the
Cell agent which has an absolute position in the world. When a Process module is connected to the production cell,

 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865 859

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

29th International Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2019), June 24-28, 2019, Limerick, Ireland.

Identification of resources and parts in a Plug and Produce system
using OPC UA

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
University West, Department of Engineering Science, Trollhättan, Sweden

Abstract

This paper describes a method together with an implementation for automating the detection, identification and configuration
of newly added resources and parts in a Plug and Produce system using OPC UA. In a Plug and Produce system, resources and
parts are usually controlled by agents, forming a multi-agent system of collaborating resources. Hence, when a resource or part is
connected to the system, a corresponding agent must be instantiated and associated with that specific device. In order to automate
this, the system needs information about newly connected devices. This information could, for example, be positional data
describing where the device is connected. Some devices like tools and parts to be processed have no own network connection,
but still, they should get an agent with correct configuration instantiated. In this work, OPC UA is used for communication
between devices and the corresponding agents. All agents and their communication are handled by an Agent Handling System,
consisting of an OPC UA HUB together with functions for device detection and agent instantiation. The HUB is used for
transferring data between devices and their agents in the network by OPC UA protocols. When a device is connected to the
network, it is detected, and a connection is automatically created to the HUB that becomes configured for transmitting data
between the device and its corresponding agent.

© 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

Keywords: OPC UA; Multi-agent; Industry 4.0; Smart Factory; Plug and Produce;

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

29th International Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2019), June 24-28, 2019, Limerick, Ireland.

Identification of resources and parts in a Plug and Produce system
using OPC UA

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
University West, Department of Engineering Science, Trollhättan, Sweden

Abstract

This paper describes a method together with an implementation for automating the detection, identification and configuration
of newly added resources and parts in a Plug and Produce system using OPC UA. In a Plug and Produce system, resources and
parts are usually controlled by agents, forming a multi-agent system of collaborating resources. Hence, when a resource or part is
connected to the system, a corresponding agent must be instantiated and associated with that specific device. In order to automate
this, the system needs information about newly connected devices. This information could, for example, be positional data
describing where the device is connected. Some devices like tools and parts to be processed have no own network connection,
but still, they should get an agent with correct configuration instantiated. In this work, OPC UA is used for communication
between devices and the corresponding agents. All agents and their communication are handled by an Agent Handling System,
consisting of an OPC UA HUB together with functions for device detection and agent instantiation. The HUB is used for
transferring data between devices and their agents in the network by OPC UA protocols. When a device is connected to the
network, it is detected, and a connection is automatically created to the HUB that becomes configured for transmitting data
between the device and its corresponding agent.

© 2019 The Authors, Published by Elsevier B.V.
Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

Keywords: OPC UA; Multi-agent; Industry 4.0; Smart Factory; Plug and Produce;

* Corresponding author. E-mail address: mattias.bennulf@hv.se

2 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

1. Introduction

Today, product lifecycles are decreasing (sometimes down to customized products) [1], resulting in difficulties
for factories to maintain profitability, due to the cost associated with rapidly changing dedicated manufacturing
equipment [2]. Instead, a trend now is to design automation systems that are reconfigurable for new products by
decreasing the time it takes to add new resources to the production. A system that handles this automatically can be
regarded as a Plug and Produce system and was firstly introduced in [3].

Adding a resource or a part, i.e., a device, to a system requires three main activities, 1) physically attaching the
device to the system, 2) establish a communication to the device (or its representative) and 3) integrating the device
in the production from a logical point of view. In this paper, activity 1 is handled by dividing resources into process
modules (see Fig. 1 and Fig. 5), that can be connected to the system through standard connectors containing
communication, air and power. The production cell at University West, referred to (see Fig. 1 and Fig. 5) and used
for the implementation in this work has 10 standard connection slots where process modules can be placed. Further,
an industrial robot is also a fixed part of the cell together with a safety system using laser scanners to protect the
operators. Using standard modules for sharing hardware has been done before for production systems, e.g., [4], [5].
In other works, such as [6], [7] this type of design is regarded as increasing the mechatronic compatibility. The
process module approach in Fig. 1 has been implemented and tested in the physical production cell at University
West and has proved to solve the physical flexibility. However, to reach Plug and Produce, the modules also need to
automatically be detected and integrated with the production logically. When adding new devices to a
communication bus or a network, i.e., activity 2, the network configuration and setup is commonly done manually
today and is to be considered as static. An example is that industrial automation devices commonly communicate
with shared variables or memory areas and these must be mapped when a new device is connected. In this paper, a
platform-independent communication protocol was preferred, rather than traditional vendor specific industrial
fieldbuses to reach a general proposal. There exist many platform-independent protocols, however, in this work
OPC UA is used due to its wide acceptance in the industry for automation. To handle the integration of Plug and
Produce devices in production, i.e., activity 3, a multi-agent-based solution is preferred, where each resource and
part has a unique agent representing them. Agents do not necessarily run on the hardware for the devices, it can run
somewhere else in the production cell, e.g., on a server, a PLC or even in the cloud.

In this paper, two categories of agents are defined, resource agents and part agents. The agent logic is general
and can be used to represent any device, i.e., the same software represents all parts and resources in the system. To
prepare an agent for a specific device, an agent configuration is always needed. One agent configuration may be
used for instantiating multiple agents, since several devices with identical type can be present in the system, e.g.,
several parts of the same type to be processed. However, each agent is unique through its instance. The agent
configuration contains data describing the connected device physical and logical properties. This includes
parameters such as definitions of item position and physical properties like locations for gripping an item or base for
placing them on a table.

In this concept, all part agents have goals that they want to reach. A part agent searches the network for
resources with the correct skills to assist in reaching those goals. When a new resource is connected, it will be
included in the system and becomes visible to other resources and parts. For the process module in Fig. 1 (B) four
agents can be identified: the Cell agent, the Process module agent, the Part 1 agent and the Part 2 agent. In this
example, the process module is a station for loading/unloading parts. Agents can model their points of interaction
with other agents by defining interfaces, shown as dots in the picture with a number for the interfaces local id on
each agent. The interfaces, in this case, defines attachment between agents. For Fig. 1 (B), the interface connections
are:

1) Part 1 is attached on its interface 1 to the Process module interface 2,
2) Part 2 is attached on its interface 1 to the Process module interface 3 and,
3) Process module is attached on its interface 1 to the Cell interface 9 (i.e., slot 9).

Resources and parts need positional data when requesting transportation by the robot in the production cell.

Their agents can use defined interfaces for calculating its position in the production cell by knowing what it is
attached to. It is essential that each agent has a correct description of what it is attached to, all the way down to the
Cell agent which has an absolute position in the world. When a Process module is connected to the production cell,

860 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865
 Author name / Procedia Manufacturing 00 (2019) 000–000 3

it needs to determine which slot it is placed in, i.e., which of the Cell interface 1-10 it is attached to. Similarly, Part
1 and Part 2 needs to detect its position on the Process module. However, the parts in this case have no network
connection and must therefore rely on sensors on the Process module.

Fig. 1. Simulated production cell with process modules (A) and a close look at one process module that act as a load/unload station (B). An
industrial robot with a tool changer is located in the middle of the cell in A.

This paper focuses on activity 2, i.e., a new method for discovering newly added devices in a Plug and Produce
system and how to automatically configure the network to make those devices part of the OPC UA framework. A
multi-agent system that handles activity 3 has been developed at University West and was used in the
implementations described in this paper. This agent system extends a previously developed multi-agent system in
[8]. When a device is attached to the system, a related agent should be instantiated and given a correct agent
configuration based on what resource or part it is representing and then set up communication between the physical
device and its agent. Some of the devices have no direct network connection but still should have a software agent
instantiated for representing them.

2. Related work

Agents were described by Wooldridge et al. [9] in 1995. An agent is some software or hardware perceiving the
environment and reacting on that. In this paper, parts have production goals to reach. A multi-agent system is a
group of agents working together. Several researchers have described that the reason for not seeing multi-agent
systems in production today is because the lack of systems and tools to reconfigure the system without
understanding the agent-systems complexity [10], [11]. In this paper, this is regarded by focusing on simplifying the
connection and setup of new resources and parts.

OPC UA is a platform-independent communication protocol for industrial automation, developed by OPC
Foundation [12]. It enables the use of service-oriented architecture (SOA), that is a paradigm for designing software
that is loosely coupled, decreasing the dependencies between the softwares in the network. Additionally, using OPC
UA, it is possible to model data with object-oriented techniques, which makes communication more sophisticated.
OPC UA supports client/server communication as well as publish/subscribe. In [13] automatic device discovery is
investigated for OPC UA communication. They extend the OPC UA built-in Local Discovery Server (LDS) to make
automatic detection of connected devices on the network. They describe that devices need the IP address to be either
manually preconfigured or found by detecting the device on the network automatically. They focus on the automatic
approach and use a DHCP server for giving the IP address to the connected device. Then another discovery server
independently detects the connected device. Dynamic Host Configuration Protocol (DHCP) is a protocol that can be
used to dynamically assign IP addresses to any device connected to a network.

For the work presented in this paper, their solution will not work by itself, since not all devices have a network
connection, e.g., part or tool. Also, this paper aims at a system that could include other protocols than OPC UA for
legacy devices not supporting OPC UA. This paper uses the DHCP server directly for detecting the device without
the need for a discovery server. That makes it possible to detect legacy devices not running OPC UA and connecting
to them using other protocols if implemented in the system.

1 1
2 3

1
9

Part 1 Part 2

Process module

Cell

1
2

3

4

5 6 7

8
9
10

A B

4 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

3. Method for identification and agent instantiation

This chapter presents a method for automating the previously described activity 2, i.e., discovering added
devices, automatic configuration of the network and instantiation of the corresponding agent representing the added
devices. The method describes an Agent Handling System (AHS) that is controlling and interacting with: Agents,
Devices on the network and the agent configuration database (Config-DB). A device, could, for example, be a
process module that is connected to the network, carrying several agents without a network connection. The Config-
DB is a database containing all needed agent configurations that are matching devices connected to the network.

The Agent Handling System method can be divided into six main steps and are shown in Fig. 2 and described in the
following list:

1) Detect new devices in the network:
 Assign a unique IP address to each new device on the network and store the address in the AHS.

2) Establish a connection to the new devices:
Use the new IP address found to establish an OPC UA connection between the new device and the
OPC UA HUB that is a part of the AHS.

3) Identify possible agents:
Use the established connection to identify all resources and parts on the newly attached device and
save them in an array A.

4) Get global configuration:
For each resource and part in A select correct agent configuration from the Config-DB and populate the
OPC UA HUB with the new configuration values.

5) Get local configuration:
For each new resource and part get local configurations from the new device and update the OPC UA
HUB with local values.

6) Instantiate new agent program:
Instantiate a new agent on an available CPU, using the OPC UA HUB with populated configuration
and specific states created in the previous steps.

After these six steps are done, a loop starts in the OPC UA HUB that begins to send data between the physical
devices and their corresponding agents, see Fig. 2.

Update HUB

Send data

Send data

Get Global Configuration

Instantiate new agent

Detect module

DeviceAHS AgentConfig-DB

Loop n

Identify agents

Connect HUB

Fig. 2 Method for adding a network device to the Plug and Produce system by using an Agent Handling System.

 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865 861
 Author name / Procedia Manufacturing 00 (2019) 000–000 3

it needs to determine which slot it is placed in, i.e., which of the Cell interface 1-10 it is attached to. Similarly, Part
1 and Part 2 needs to detect its position on the Process module. However, the parts in this case have no network
connection and must therefore rely on sensors on the Process module.

Fig. 1. Simulated production cell with process modules (A) and a close look at one process module that act as a load/unload station (B). An
industrial robot with a tool changer is located in the middle of the cell in A.

This paper focuses on activity 2, i.e., a new method for discovering newly added devices in a Plug and Produce
system and how to automatically configure the network to make those devices part of the OPC UA framework. A
multi-agent system that handles activity 3 has been developed at University West and was used in the
implementations described in this paper. This agent system extends a previously developed multi-agent system in
[8]. When a device is attached to the system, a related agent should be instantiated and given a correct agent
configuration based on what resource or part it is representing and then set up communication between the physical
device and its agent. Some of the devices have no direct network connection but still should have a software agent
instantiated for representing them.

2. Related work

Agents were described by Wooldridge et al. [9] in 1995. An agent is some software or hardware perceiving the
environment and reacting on that. In this paper, parts have production goals to reach. A multi-agent system is a
group of agents working together. Several researchers have described that the reason for not seeing multi-agent
systems in production today is because the lack of systems and tools to reconfigure the system without
understanding the agent-systems complexity [10], [11]. In this paper, this is regarded by focusing on simplifying the
connection and setup of new resources and parts.

OPC UA is a platform-independent communication protocol for industrial automation, developed by OPC
Foundation [12]. It enables the use of service-oriented architecture (SOA), that is a paradigm for designing software
that is loosely coupled, decreasing the dependencies between the softwares in the network. Additionally, using OPC
UA, it is possible to model data with object-oriented techniques, which makes communication more sophisticated.
OPC UA supports client/server communication as well as publish/subscribe. In [13] automatic device discovery is
investigated for OPC UA communication. They extend the OPC UA built-in Local Discovery Server (LDS) to make
automatic detection of connected devices on the network. They describe that devices need the IP address to be either
manually preconfigured or found by detecting the device on the network automatically. They focus on the automatic
approach and use a DHCP server for giving the IP address to the connected device. Then another discovery server
independently detects the connected device. Dynamic Host Configuration Protocol (DHCP) is a protocol that can be
used to dynamically assign IP addresses to any device connected to a network.

For the work presented in this paper, their solution will not work by itself, since not all devices have a network
connection, e.g., part or tool. Also, this paper aims at a system that could include other protocols than OPC UA for
legacy devices not supporting OPC UA. This paper uses the DHCP server directly for detecting the device without
the need for a discovery server. That makes it possible to detect legacy devices not running OPC UA and connecting
to them using other protocols if implemented in the system.

1 1
2 3

1
9

Part 1 Part 2

Process module

Cell

1
2

3

4

5 6 7

8
9
10

A B

4 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

3. Method for identification and agent instantiation

This chapter presents a method for automating the previously described activity 2, i.e., discovering added
devices, automatic configuration of the network and instantiation of the corresponding agent representing the added
devices. The method describes an Agent Handling System (AHS) that is controlling and interacting with: Agents,
Devices on the network and the agent configuration database (Config-DB). A device, could, for example, be a
process module that is connected to the network, carrying several agents without a network connection. The Config-
DB is a database containing all needed agent configurations that are matching devices connected to the network.

The Agent Handling System method can be divided into six main steps and are shown in Fig. 2 and described in the
following list:

1) Detect new devices in the network:
 Assign a unique IP address to each new device on the network and store the address in the AHS.

2) Establish a connection to the new devices:
Use the new IP address found to establish an OPC UA connection between the new device and the
OPC UA HUB that is a part of the AHS.

3) Identify possible agents:
Use the established connection to identify all resources and parts on the newly attached device and
save them in an array A.

4) Get global configuration:
For each resource and part in A select correct agent configuration from the Config-DB and populate the
OPC UA HUB with the new configuration values.

5) Get local configuration:
For each new resource and part get local configurations from the new device and update the OPC UA
HUB with local values.

6) Instantiate new agent program:
Instantiate a new agent on an available CPU, using the OPC UA HUB with populated configuration
and specific states created in the previous steps.

After these six steps are done, a loop starts in the OPC UA HUB that begins to send data between the physical
devices and their corresponding agents, see Fig. 2.

Update HUB

Send data

Send data

Get Global Configuration

Instantiate new agent

Detect module

DeviceAHS AgentConfig-DB

Loop n

Identify agents

Connect HUB

Fig. 2 Method for adding a network device to the Plug and Produce system by using an Agent Handling System.

862 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865
 Author name / Procedia Manufacturing 00 (2019) 000–000 5

4. Implementation

In the FIPA97 specification [14], an Agent Management System (AMS) is described as required for managing
the agent's life cycles. Similarly, the Plug and Produce system in this paper has an Agent Handling System (AHS),
containing an Agent Creator that takes care of agent instantiation.

4.1. Test scenario

The AHS consist of an OPC UA HUB, Agent Creator, DHCP server and an Agent Detector. In Fig. 3, an
overview of the implemented Plug and Produce system is presented, with one process module (Load Station)
carrying two devices (Part and Load) and another process module (Motor Station) carrying a device (Motor). The
AHS connect the three devices, to the agents in the cloud. Using the strategy of having agents decoupled from the
Agent Handling System and devices, implies that they can be placed anywhere in the network or even in a cloud
service. This also increases the scalability of the agent concept, which is particularly useful when agents run
extensive algorithms with a high computational load. A configuration database is also available containing all agents
global configuration templates, related to device types presented on OPC UA Servers on the two process modules.

Fig. 3. Test scenario of the Agent Handling System and process modules.

The states of all agents in the production cell are mirrored to the OPC UA HUB in the AHS. Hence, the HUB
contains all configuration data for agents and variables that could have changed value since agent instantiation. Each
agent in the production cell has a profile in the HUB, created automatically when it is instantiated. The HUB has
both OPC UA clients and servers available to be used for communication with the agents and devices, since agents
and devices in the network may have either OPC UA server or client. Values in the HUB is synchronized between
the agent and the physical world in real-time, making it necessary to map some variables used for communication
between agents and their connected devices. Consider the example in Fig. 4 where the Agent 1 for the Part needs a
motor for a specific process. The Agent 1 request the Agent 2 for the Motor to run the skill StartMotor. The Agent 2
for the Motor sets the variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, the physical motor device is mapped to that variable, so that it does
indeed, start the motor. The Motor device also sends data to its agent, e.g. Status: Running.

Agent Handling System Process module 2: Motor Station

Global Configurations

OPC UA HUB

Profile
Agent 1

Profile
Agent 2

Profile
Agent 3

Config
Motor

Agent 2
Motor

Agent 3
Load Agent 1

Part

Agent
Creator

DHCP Agent
Detector

OPC UA

Process module 1: Load Station

Device
Part

Config
Load

Config
Part

Device
Motor

Device
Load

OPC UA Server

OPC UA Server

6 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

Fig. 4. Example of a motor syncing variables with its related agent.

4.2. Method validation

The method has been implemented and validated in the physical production cell at University West. The
implementation details of each step in the described method are explained based on the scenario in Fig. 3, that is
corresponding to the real setup in the production cell. For physically attaching the device to the system, standard
connectors for the physical connection was used, containing communication, air and power, see Fig. 5.

Step 1) Detect new devices in the network: Both process modules 1 and 2 in the production cell, are equipped with a
PLC running an OPC UA server. When the PLC is connected to the network using Ethernet, it is detected by the
DHCP server and assigned an IP address. The DHCP server is designed to notify the Agent Detector (in the AHS)
that a new device is connected. The IP address of the connected device together with the connection slot number is
stored for later use in the AHS, to determine at what position it was connected. Hence, the AHS now know that the
device is attached to the Cell agent.

Step 2) Establish a connection to the new device: The AHS establish an OPC UA connection between the process
module and the central OPC UA HUB, using the IP addresses assigned by the DHCP.

Step 3) Identify possible agents: The OPC UA server on each process module presents information about each
device its representing. For process module 1 in Fig. 3, it presents two devices, the Part and Load. For process
module 2 there is only one device, the Motor. The Part on the Load Station have no electronics or network
connection, so it needs to rely on the Load Station to detect it. The PLC on the Load Station is programmed to detect
the Part when attached to it and present its local configurations on the modules OPC UA server. For each device
presented on the modules OPC UA server a related agent should be instantiated by the AHS. To do that, the Agent
Detector in the AHS searches each module discovered in step 1, to determine if that module needs any agents to be
instantiated. Some devices could be connected for other purposes in the network and they should in this step be
filtered out.

One way for the Load Station to detect the Part is to attach a QR code or RFID tag to the device, encoded with
information that the module can read. Another approach is to predefine holders for loading specific part types to the
system, then the PLC uses a sensor with Boolean values and is preconfigured with information to put into the OPC
UA server on the module. In both approaches, the PLC adds the position of the Part to its OPC UA server. Hence,
the AHS can get the data about where the Part was attached to the process module, (in case that there are several
slots for placing parts). Hence, if connecting a process module carrying parts already attached to it, then those parts

OPC UA HUB

Profile
Agent 1

Profile
Agent 2

Process module 2:
Motor Station

OPC UA
Server

Device
Motor

Motor = ON
Speed = 500

Status: Running

Agent 1
Part

Skill: StartMotor
Skill: StopMotor

Agent 2
Motor

 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865 863
 Author name / Procedia Manufacturing 00 (2019) 000–000 5

4. Implementation

In the FIPA97 specification [14], an Agent Management System (AMS) is described as required for managing
the agent's life cycles. Similarly, the Plug and Produce system in this paper has an Agent Handling System (AHS),
containing an Agent Creator that takes care of agent instantiation.

4.1. Test scenario

The AHS consist of an OPC UA HUB, Agent Creator, DHCP server and an Agent Detector. In Fig. 3, an
overview of the implemented Plug and Produce system is presented, with one process module (Load Station)
carrying two devices (Part and Load) and another process module (Motor Station) carrying a device (Motor). The
AHS connect the three devices, to the agents in the cloud. Using the strategy of having agents decoupled from the
Agent Handling System and devices, implies that they can be placed anywhere in the network or even in a cloud
service. This also increases the scalability of the agent concept, which is particularly useful when agents run
extensive algorithms with a high computational load. A configuration database is also available containing all agents
global configuration templates, related to device types presented on OPC UA Servers on the two process modules.

Fig. 3. Test scenario of the Agent Handling System and process modules.

The states of all agents in the production cell are mirrored to the OPC UA HUB in the AHS. Hence, the HUB
contains all configuration data for agents and variables that could have changed value since agent instantiation. Each
agent in the production cell has a profile in the HUB, created automatically when it is instantiated. The HUB has
both OPC UA clients and servers available to be used for communication with the agents and devices, since agents
and devices in the network may have either OPC UA server or client. Values in the HUB is synchronized between
the agent and the physical world in real-time, making it necessary to map some variables used for communication
between agents and their connected devices. Consider the example in Fig. 4 where the Agent 1 for the Part needs a
motor for a specific process. The Agent 1 request the Agent 2 for the Motor to run the skill StartMotor. The Agent 2
for the Motor sets the variable 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, the physical motor device is mapped to that variable, so that it does
indeed, start the motor. The Motor device also sends data to its agent, e.g. Status: Running.

Agent Handling System Process module 2: Motor Station

Global Configurations

OPC UA HUB

Profile
Agent 1

Profile
Agent 2

Profile
Agent 3

Config
Motor

Agent 2
Motor

Agent 3
Load Agent 1

Part

Agent
Creator

DHCP Agent
Detector

OPC UA

Process module 1: Load Station

Device
Part

Config
Load

Config
Part

Device
Motor

Device
Load

OPC UA Server

OPC UA Server

6 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

Fig. 4. Example of a motor syncing variables with its related agent.

4.2. Method validation

The method has been implemented and validated in the physical production cell at University West. The
implementation details of each step in the described method are explained based on the scenario in Fig. 3, that is
corresponding to the real setup in the production cell. For physically attaching the device to the system, standard
connectors for the physical connection was used, containing communication, air and power, see Fig. 5.

Step 1) Detect new devices in the network: Both process modules 1 and 2 in the production cell, are equipped with a
PLC running an OPC UA server. When the PLC is connected to the network using Ethernet, it is detected by the
DHCP server and assigned an IP address. The DHCP server is designed to notify the Agent Detector (in the AHS)
that a new device is connected. The IP address of the connected device together with the connection slot number is
stored for later use in the AHS, to determine at what position it was connected. Hence, the AHS now know that the
device is attached to the Cell agent.

Step 2) Establish a connection to the new device: The AHS establish an OPC UA connection between the process
module and the central OPC UA HUB, using the IP addresses assigned by the DHCP.

Step 3) Identify possible agents: The OPC UA server on each process module presents information about each
device its representing. For process module 1 in Fig. 3, it presents two devices, the Part and Load. For process
module 2 there is only one device, the Motor. The Part on the Load Station have no electronics or network
connection, so it needs to rely on the Load Station to detect it. The PLC on the Load Station is programmed to detect
the Part when attached to it and present its local configurations on the modules OPC UA server. For each device
presented on the modules OPC UA server a related agent should be instantiated by the AHS. To do that, the Agent
Detector in the AHS searches each module discovered in step 1, to determine if that module needs any agents to be
instantiated. Some devices could be connected for other purposes in the network and they should in this step be
filtered out.

One way for the Load Station to detect the Part is to attach a QR code or RFID tag to the device, encoded with
information that the module can read. Another approach is to predefine holders for loading specific part types to the
system, then the PLC uses a sensor with Boolean values and is preconfigured with information to put into the OPC
UA server on the module. In both approaches, the PLC adds the position of the Part to its OPC UA server. Hence,
the AHS can get the data about where the Part was attached to the process module, (in case that there are several
slots for placing parts). Hence, if connecting a process module carrying parts already attached to it, then those parts

OPC UA HUB

Profile
Agent 1

Profile
Agent 2

Process module 2:
Motor Station

OPC UA
Server

Device
Motor

Motor = ON
Speed = 500

Status: Running

Agent 1
Part

Skill: StartMotor
Skill: StopMotor

Agent 2
Motor

864 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865
 Author name / Procedia Manufacturing 00 (2019) 000–000 7

will be recognized by the readers and agents instantiated. In this way, parts can be removed and added to the process
module even when it’s not connected to the production cell.

Step 4) Get global configuration: The agent creator now has all the information it needs and selects the correct
agent configuration from the database of configurations and populates the OPC UA HUB with the new
configuration values.

Step 5) Get local configuration: Update the OPC UA HUB with the local values like position fetched from the
modules earlier. Additional values could be fetched in this step such as specific part identification number, for
tracking device through the production or any other configuration values that deviate from the global configuration
in the database.

Step 6) Instantiate new agent program: Configurations uploaded into the HUB needs to have one or more agent
running somewhere in the network since the HUB only moves data and has no agent logic. The AHS has functions
for searching the network to find possible servers that can be used for instantiating and hosting agents.
Configurations in the HUB without any related agent instance is assigned a CPU in the network by the AHS. The
configuration is used to create the new agent instance on the selected server. Finally, the agents on the servers start
to sync data from and to the OPC_UA HUB. The HUB has a function that continuously goes through each agent’s
profile and synchronizes it with the devices OPC UA servers.

The six steps described in the method was implemented and tested in the physical production cell. The Part in Fig. 5
(B) could be detected by the process module and published on its OPC UA server. The AHS instantiated the newly
added devices and connected them to the OPC UA HUB.

5. Conclusion

In this paper, a new method is described that automate the detection, identification and configuration of newly
added devices, i.e., resources and parts, in a Plug and Produce system. This was done by developing an Agent
Handling System, that can control and interact with agents, devices and the global configuration database. Each
device connected to the network in the system has an OPC UA server. Devices without a network connection, such
as parts and tools can be detected by letting another device, connected to the network (such as process modules)
present the types of devices that are attached to it. The Agent Handling System has the ability to detect newly added
devices in the network and searches their OPC UA servers to identify presented devices to choose which agents to

A B

Cables

Docking

Part

Fig. 5. Image A shows a process module (Load Station) from GKN Aerospace in the production cell at University West.
The module has physical docking to the floor and cables containing communication, air and power. Image B shows a

closer view of the two loading slots for parts.

8 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

be instantiated, based on the device types presented. The instantiated agents are then automatically connected to the
newly attached devices. The method was implemented and tested in the physical production cell at University West,
focusing on a scenario with two process modules. The implementation had successful results, showing that the
detection, identification and configuration are possible to automate using the developed Agent Handling System,
which will decrease the time it takes to connect a new device in a Plug and Produce system. The production cell at
University West has several laser scanners to protect the operator from robot movements. This made it necessary to
stop the robot whenever a part or module was added. In future work it would be of interest to consider the safety
systems in the production cell, to enable the human operator to add parts without interruption the ongoing
production.

Acknowledgments

We thank GKN Aerospace for supporting and allowing us to work with their process modules that was used for
this paper.

References
[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger and O. Madsen, "Robot skills for manufacturing: From

concept to industrial deployment," Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282-291, 2015.
[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent progress on programming methods for industrial robots," Robotics and

Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.
[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly System by “Plug and Produce“," CIRP Ann Manuf Technol, vol. 49,

no. 1, pp. 1-4, 2000.
[4] M. Hvilshøj and S. Bøgh, "“Little Helper” - An Autonomous Industrial Mobile Manipulator Concept," Int J Adv Robotic Syst, vol. 8, no. 2,

pp. 1-11, 2011.
[5] M. Onori, N. Lohse, J. Barata and C. Hanisch, "The IDEAS project: plug & produce," Assembly Automation, vol. 32, no. 2, pp. 124-134,

2012.
[6] L. Ribeiro, J. Barata, M. Onori and J. Hoos, "Industrial agents for the fast deployment of evolvable assembly systems," in Industrial Agents,

Elsevier, 2015, pp. 301-322.
[7] A. Zoitl, G. Kainz and N. Keddis, "Production Plan-Driven Flexible Assembly Automation Architecture," in Industrial Applications,

Springer, 2013, pp. 49-58.
[8] B. Svensson och F. Danielsson, ”P-SOP – A multi-agent based control approach for flexible and robust manufacturing,” Robotics and

Computer-Integrated Manufacturing, vol. 36, pp. 109-118, 2015.
[9] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," The Knowledge Engineering Review, vol. 10, no. 2, pp. 115-

152, 1995.
[10] P. Leitao, V. Mařík and P. Vrba, "Past, present, and future of industrial agent applications," IEEE Trans. Ind. Informat, vol. 9, no. 4, pp.

2360-2372, Nov. 2013.
[11] P. Leitao, "Agent-based distributed manufacturing control : A state-of-the-art survey," Engineering applications of artificial intelligence,

vol. 22, no. 7, pp. 979-991, Oct. 2009.
[12] W. Mahnke, S.-H. Leitner and M. Damm, OPC unified architecture, Springer Science & Business Media, 2009.
[13] S. Profanter, K. Dorofeev, A. Zoitl and A. Knoll, "OPC UA for Plug & Produce: Automatic Device Discovery using LDS-ME," in 22nd

IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 2017.
[14] FIPA 97 Part 1 Version 1.0: Agent Management Specification, Foundation for intelligent physical agents, 1997.

 Mattias Bennulf et al. / Procedia Manufacturing 38 (2019) 858–865 865
 Author name / Procedia Manufacturing 00 (2019) 000–000 7

will be recognized by the readers and agents instantiated. In this way, parts can be removed and added to the process
module even when it’s not connected to the production cell.

Step 4) Get global configuration: The agent creator now has all the information it needs and selects the correct
agent configuration from the database of configurations and populates the OPC UA HUB with the new
configuration values.

Step 5) Get local configuration: Update the OPC UA HUB with the local values like position fetched from the
modules earlier. Additional values could be fetched in this step such as specific part identification number, for
tracking device through the production or any other configuration values that deviate from the global configuration
in the database.

Step 6) Instantiate new agent program: Configurations uploaded into the HUB needs to have one or more agent
running somewhere in the network since the HUB only moves data and has no agent logic. The AHS has functions
for searching the network to find possible servers that can be used for instantiating and hosting agents.
Configurations in the HUB without any related agent instance is assigned a CPU in the network by the AHS. The
configuration is used to create the new agent instance on the selected server. Finally, the agents on the servers start
to sync data from and to the OPC_UA HUB. The HUB has a function that continuously goes through each agent’s
profile and synchronizes it with the devices OPC UA servers.

The six steps described in the method was implemented and tested in the physical production cell. The Part in Fig. 5
(B) could be detected by the process module and published on its OPC UA server. The AHS instantiated the newly
added devices and connected them to the OPC UA HUB.

5. Conclusion

In this paper, a new method is described that automate the detection, identification and configuration of newly
added devices, i.e., resources and parts, in a Plug and Produce system. This was done by developing an Agent
Handling System, that can control and interact with agents, devices and the global configuration database. Each
device connected to the network in the system has an OPC UA server. Devices without a network connection, such
as parts and tools can be detected by letting another device, connected to the network (such as process modules)
present the types of devices that are attached to it. The Agent Handling System has the ability to detect newly added
devices in the network and searches their OPC UA servers to identify presented devices to choose which agents to

A B

Cables

Docking

Part

Fig. 5. Image A shows a process module (Load Station) from GKN Aerospace in the production cell at University West.
The module has physical docking to the floor and cables containing communication, air and power. Image B shows a

closer view of the two loading slots for parts.

8 Mattias Bennulf et al / Procedia Manufacturing 00 (2019) 000–000

be instantiated, based on the device types presented. The instantiated agents are then automatically connected to the
newly attached devices. The method was implemented and tested in the physical production cell at University West,
focusing on a scenario with two process modules. The implementation had successful results, showing that the
detection, identification and configuration are possible to automate using the developed Agent Handling System,
which will decrease the time it takes to connect a new device in a Plug and Produce system. The production cell at
University West has several laser scanners to protect the operator from robot movements. This made it necessary to
stop the robot whenever a part or module was added. In future work it would be of interest to consider the safety
systems in the production cell, to enable the human operator to add parts without interruption the ongoing
production.

Acknowledgments

We thank GKN Aerospace for supporting and allowing us to work with their process modules that was used for
this paper.

References
[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger and O. Madsen, "Robot skills for manufacturing: From

concept to industrial deployment," Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282-291, 2015.
[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent progress on programming methods for industrial robots," Robotics and

Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.
[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly System by “Plug and Produce“," CIRP Ann Manuf Technol, vol. 49,

no. 1, pp. 1-4, 2000.
[4] M. Hvilshøj and S. Bøgh, "“Little Helper” - An Autonomous Industrial Mobile Manipulator Concept," Int J Adv Robotic Syst, vol. 8, no. 2,

pp. 1-11, 2011.
[5] M. Onori, N. Lohse, J. Barata and C. Hanisch, "The IDEAS project: plug & produce," Assembly Automation, vol. 32, no. 2, pp. 124-134,

2012.
[6] L. Ribeiro, J. Barata, M. Onori and J. Hoos, "Industrial agents for the fast deployment of evolvable assembly systems," in Industrial Agents,

Elsevier, 2015, pp. 301-322.
[7] A. Zoitl, G. Kainz and N. Keddis, "Production Plan-Driven Flexible Assembly Automation Architecture," in Industrial Applications,

Springer, 2013, pp. 49-58.
[8] B. Svensson och F. Danielsson, ”P-SOP – A multi-agent based control approach for flexible and robust manufacturing,” Robotics and

Computer-Integrated Manufacturing, vol. 36, pp. 109-118, 2015.
[9] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," The Knowledge Engineering Review, vol. 10, no. 2, pp. 115-

152, 1995.
[10] P. Leitao, V. Mařík and P. Vrba, "Past, present, and future of industrial agent applications," IEEE Trans. Ind. Informat, vol. 9, no. 4, pp.

2360-2372, Nov. 2013.
[11] P. Leitao, "Agent-based distributed manufacturing control : A state-of-the-art survey," Engineering applications of artificial intelligence,

vol. 22, no. 7, pp. 979-991, Oct. 2009.
[12] W. Mahnke, S.-H. Leitner and M. Damm, OPC unified architecture, Springer Science & Business Media, 2009.
[13] S. Profanter, K. Dorofeev, A. Zoitl and A. Knoll, "OPC UA for Plug & Produce: Automatic Device Discovery using LDS-ME," in 22nd

IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 2017.
[14] FIPA 97 Part 1 Version 1.0: Agent Management Specification, Foundation for intelligent physical agents, 1997.

'

Paper C

A conceptual model for multi-agent
communication applied on a Plug &

Produce system

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the CIRP Conference on Manufacturing
Systems, CIRP CMS, in Chicago, IL, U.S., July 2020

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

Printed and published with permission

C

'

Paper C

A conceptual model for multi-agent
communication applied on a Plug &

Produce system

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the CIRP Conference on Manufacturing
Systems, CIRP CMS, in Chicago, IL, U.S., July 2020

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

Printed and published with permission

C

'

Paper C

A conceptual model for multi-agent
communication applied on a Plug &

Produce system

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the CIRP Conference on Manufacturing
Systems, CIRP CMS, in Chicago, IL, U.S., July 2020

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0

C

ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 93 (2020) 347–352

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
10.1016/j.procir.2020.04.004

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

A conceptual model for multi-agent communication applied on
a Plug & Produce system

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
Production Systems, University West, Gustava Melins gata 2, Trollhättan, 46132, Sweden

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Abstract

Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing
systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce
systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general
standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how
to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing
system.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Multi-agent; Cyber-physical; Industry 4.0; Smart Factory; Plug & Produce;

1. Introduction

 The demand for customized products and low volume
production is increasing [1]. Due to the costs associated with
changing dedicated manufacturing equipment, it is difficult to
adapt to these new trends [2]. An alternative solution is
reconfigurable systems that can decrease the time and cost it
takes to add new resources or product types to ongoing
manufacturing. These typically have limitations since they
focus on hardware rather than software. To further decrease the
cost for adapting the manufacturing, the software has to be
taken into consideration by designing systems such as Plug &
Produce, that was introduced in [3].
 One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part
and resource in the system is controlled by a piece of
autonomous software called an agent. Together these agents
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack
of standards and guidelines for implementing those systems.
The result is that multi-agent systems demand more time and

cost in research and development than traditional
manufacturing systems. This makes multi-agent systems an
expensive solution to implement in the industry today.
 To make multi-agent systems available for companies to
use, there have to be clear guidelines on how to implement such
systems for manufacturing. Guidelines need to include a
complete description of how to design a multi-agent-based
manufacturing system. In this paper, we address this by
proposing a conceptual model for communication and
negotiation between agents for Plug & Produce systems.
Currently, there exist standards for agent communication, such
as the FIPA 97 [4], that was later updated in 2002 to the current
FIPA specifications [5]. These standards were developed by the
Foundation for Intelligent Physical Agents (FIPA) [9].
However, this standard is general, aiming for all kinds of agent
systems. This leaves the engineer with too many options and
decisions to make.
 When building the core software for agents there are many
things to consider. There is communication, negotiation,
optimization, booking and much more. It can quickly become
extremely complex to develop these systems. Guidelines

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

A conceptual model for multi-agent communication applied on
a Plug & Produce system

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
Production Systems, University West, Gustava Melins gata 2, Trollhättan, 46132, Sweden

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Abstract

Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing
systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce
systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general
standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how
to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing
system.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Multi-agent; Cyber-physical; Industry 4.0; Smart Factory; Plug & Produce;

1. Introduction

 The demand for customized products and low volume
production is increasing [1]. Due to the costs associated with
changing dedicated manufacturing equipment, it is difficult to
adapt to these new trends [2]. An alternative solution is
reconfigurable systems that can decrease the time and cost it
takes to add new resources or product types to ongoing
manufacturing. These typically have limitations since they
focus on hardware rather than software. To further decrease the
cost for adapting the manufacturing, the software has to be
taken into consideration by designing systems such as Plug &
Produce, that was introduced in [3].
 One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part
and resource in the system is controlled by a piece of
autonomous software called an agent. Together these agents
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack
of standards and guidelines for implementing those systems.
The result is that multi-agent systems demand more time and

cost in research and development than traditional
manufacturing systems. This makes multi-agent systems an
expensive solution to implement in the industry today.
 To make multi-agent systems available for companies to
use, there have to be clear guidelines on how to implement such
systems for manufacturing. Guidelines need to include a
complete description of how to design a multi-agent-based
manufacturing system. In this paper, we address this by
proposing a conceptual model for communication and
negotiation between agents for Plug & Produce systems.
Currently, there exist standards for agent communication, such
as the FIPA 97 [4], that was later updated in 2002 to the current
FIPA specifications [5]. These standards were developed by the
Foundation for Intelligent Physical Agents (FIPA) [9].
However, this standard is general, aiming for all kinds of agent
systems. This leaves the engineer with too many options and
decisions to make.
 When building the core software for agents there are many
things to consider. There is communication, negotiation,
optimization, booking and much more. It can quickly become
extremely complex to develop these systems. Guidelines

ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 93 (2020) 347–352

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
10.1016/j.procir.2020.04.004

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

A conceptual model for multi-agent communication applied on
a Plug & Produce system

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
Production Systems, University West, Gustava Melins gata 2, Trollhättan, 46132, Sweden

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Abstract

Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing
systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce
systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general
standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how
to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing
system.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Multi-agent; Cyber-physical; Industry 4.0; Smart Factory; Plug & Produce;

1. Introduction

 The demand for customized products and low volume
production is increasing [1]. Due to the costs associated with
changing dedicated manufacturing equipment, it is difficult to
adapt to these new trends [2]. An alternative solution is
reconfigurable systems that can decrease the time and cost it
takes to add new resources or product types to ongoing
manufacturing. These typically have limitations since they
focus on hardware rather than software. To further decrease the
cost for adapting the manufacturing, the software has to be
taken into consideration by designing systems such as Plug &
Produce, that was introduced in [3].
 One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part
and resource in the system is controlled by a piece of
autonomous software called an agent. Together these agents
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack
of standards and guidelines for implementing those systems.
The result is that multi-agent systems demand more time and

cost in research and development than traditional
manufacturing systems. This makes multi-agent systems an
expensive solution to implement in the industry today.
 To make multi-agent systems available for companies to
use, there have to be clear guidelines on how to implement such
systems for manufacturing. Guidelines need to include a
complete description of how to design a multi-agent-based
manufacturing system. In this paper, we address this by
proposing a conceptual model for communication and
negotiation between agents for Plug & Produce systems.
Currently, there exist standards for agent communication, such
as the FIPA 97 [4], that was later updated in 2002 to the current
FIPA specifications [5]. These standards were developed by the
Foundation for Intelligent Physical Agents (FIPA) [9].
However, this standard is general, aiming for all kinds of agent
systems. This leaves the engineer with too many options and
decisions to make.
 When building the core software for agents there are many
things to consider. There is communication, negotiation,
optimization, booking and much more. It can quickly become
extremely complex to develop these systems. Guidelines

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

A conceptual model for multi-agent communication applied on
a Plug & Produce system

Mattias Bennulf *, Fredrik Danielsson, Bo Svensson
Production Systems, University West, Gustava Melins gata 2, Trollhättan, 46132, Sweden

* Corresponding author. E-mail address: mattias.bennulf@hv.se

Abstract

Today, multi-agent systems are still uncommon in the industry because they require more time to be implemented than traditional manufacturing
systems. In this paper, a conceptual model and guidelines are defined for communication and negotiation between agents for Plug & Produce
systems. Standards for agent communication exists today, such as the FIPA collection of specifications. However, FIPA is a broad and general
standard for any kind of system and leaves a lot of room for interpretation. This paper presents a new conceptual model and guidelines on how
to simplify the implementation phase by limiting the choices an engineer must make when implementing a multi-agent system for a manufacturing
system.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

 Keywords: Multi-agent; Cyber-physical; Industry 4.0; Smart Factory; Plug & Produce;

1. Introduction

 The demand for customized products and low volume
production is increasing [1]. Due to the costs associated with
changing dedicated manufacturing equipment, it is difficult to
adapt to these new trends [2]. An alternative solution is
reconfigurable systems that can decrease the time and cost it
takes to add new resources or product types to ongoing
manufacturing. These typically have limitations since they
focus on hardware rather than software. To further decrease the
cost for adapting the manufacturing, the software has to be
taken into consideration by designing systems such as Plug &
Produce, that was introduced in [3].
 One approach for Plug & Produce is to create a cyber-
physical system using a multi-agent system where each part
and resource in the system is controlled by a piece of
autonomous software called an agent. Together these agents
collaborate and solve manufacturing goals. However, multi-
agent systems are still uncommon in the industry due to the lack
of standards and guidelines for implementing those systems.
The result is that multi-agent systems demand more time and

cost in research and development than traditional
manufacturing systems. This makes multi-agent systems an
expensive solution to implement in the industry today.
 To make multi-agent systems available for companies to
use, there have to be clear guidelines on how to implement such
systems for manufacturing. Guidelines need to include a
complete description of how to design a multi-agent-based
manufacturing system. In this paper, we address this by
proposing a conceptual model for communication and
negotiation between agents for Plug & Produce systems.
Currently, there exist standards for agent communication, such
as the FIPA 97 [4], that was later updated in 2002 to the current
FIPA specifications [5]. These standards were developed by the
Foundation for Intelligent Physical Agents (FIPA) [9].
However, this standard is general, aiming for all kinds of agent
systems. This leaves the engineer with too many options and
decisions to make.
 When building the core software for agents there are many
things to consider. There is communication, negotiation,
optimization, booking and much more. It can quickly become
extremely complex to develop these systems. Guidelines

348 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
2 Author name / Procedia CIRP 00 (2019) 000–000

designed specifically for communication between agents in
Plug & Produce systems could help to simplify this by limiting
the choices one has to make to design such a system. The
guidelines need to include detailed information on how the
communication between agents is supposed to be implemented.
This paper presents a conceptual model and guidelines for
agent communication together with a physical implementation
in our labs. The conceptual model was developed, separating
multi-agent communication in four different layers. The
implementation generates further suggestions on how the agent
environment, such as the physical flexibility and network
layout should be designed.

2. Background

 A multi-agent system consists of multiple agents. Agents
were described by Wooldridge et al. [6] in 1995. They are
pieces of software that run independently. They perceive the
world, using inputs and reacts to it using its outputs. They can
also have their own goals to solve. This is somewhat different
from a traditional computer function, where a certain response
is always expected. An agent can say no to a request or suggest
another solution. This is what makes them autonomous, see
Fig. 1.

Fig. 1. An agent sensing the environment and reacting based on an internal

decision.

 Agents can be used for implementing a cyber-physical
system since they are a virtual representation of the physical
objects. They help to clearly separate the cyber components
from the physical world. In a multi-agent system, several
agents collaborate by communicating and negotiating to reach
manufacturing goals, see Fig. 2.

Fig. 2. A network of multiple agents that together makes a multi-agent

system.

 Cyber-physical systems are about combining cyber
components with physical components. Cyber components are
regarded as the computation and software components, while
the physical components are the plant and process. Cyber
components and physical components might be connected
through communication networks.
 To be able to communicate, agents all need to speak a
common agent language. Agent communication standards
exist, the FIPA specification is today widely used in research
[5]. A multi-agent system can be used to create a Plug &
Produce system with high flexibility and reconfigurability.
Many researchers have worked with developing various types
of agent systems. However, the use of these systems is still
extremely uncommon in the manufacturing industry. Other
researchers have identified that the main reason is the lack of a
standardized abstraction layer that hides the agent complexity
from the developer [7], [8]. To implement an agent system can

be more time-consuming than to implement a traditional
control system. A standardized abstraction layer, reuse of agent
code and simplified industrial adapted configuration tools are
ways to overcome the implementation cost.
 FIPA or the Foundation for Intelligent Physical Agents is
an IEEE organization developing standards for multi-agent
systems [9]. FIPA defines a collection of specifications,
including an Agent Communication Language (FIPA ACL)
describing how communication is performed between agents in
a multi-agent system [10] together with a Communicative Acts
Library (FIPA CAL). FIPA also specifies an Agent
Management Specification, describing general guidelines for
designing a multi-agent system [5].

2.1. FIPA ACL

 The FIPA ACL specification describes the message
structure of agent communication [10]. An ACL message
usually contains the message parameters: sender, receiver,
content and performative. FIPA also describes many more
message parameters, not listed in this paper. The performative
describes the communicative act that the message is related to.

2.2. FIPA CAL

 FIPA CAL introduces the concept of communicative acts
between agents. Communicative acts are used to categorize
different types of communication [11]. FIPA defines 22
different communicative acts shown in Table 1. These are not
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using
this library.

Table 1. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that an action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for value of expression

Not Understood Did not understand message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask agent to act as proxy

Query If Ask agent if proposition is true

Query Ref Ask for an object

Refuse Refuse to perform action

Reject Proposal Rejecting a given proposal

Request Request agent to perform action

Request When Request when proposition is true

Request Whenever Always run when proposition is true

Subscribe Let other agent send updated data

Agent
Sensing
Reacting

Agent

Agent

Agent

 Author name / Procedia CIRP 00 (2019) 000–000 3

2.3. Agent Management

 In FIPA Agent Management Specification [5] an Agent
Platform (AP) is introduced. This platform provides an
infrastructure for deploying agents. The platform consists of
the computational hardware, agents and FIPA components. The
components are the Directory Facilitator (DF), Agent
Management System (AMS) and the Message Transport
Service (MTS).
 Director Facilitator: This component is acting as a “yellow
pages” service where each agent can list their skills, in order to
help other agents to find them.
 Agent Management System: The AMS gives the agents a
unique identification number when registered with the AMS.
There can only exist one AMS in a single Agent Platform (AP).
 Message Transport Service: This is the communication
channel used for all agents to communicate with each other
[12].

3. Agent communication

 Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system,
due to the lack of standards and tools that are easy enough to
use. To overcome part of this, it is possible to let the software
agents be based on one single agent class [13]. The agent class
contains all methods for negotiation among other agents and
strategies to solve the personal goals of the agents. This agent
class can be instantiated as an object for each product and
resource in the system.

3.1. Re-configuration

 All agents in the system should be configured rather than
reprogrammed to avoid costly implementation tasks. Resources
have skills while parts have goals. All skills in the system are
𝑆𝑆𝑆𝑆 = �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own
subset of skills 𝑆𝑆𝑆𝑆� ⊆ 𝑆𝑆𝑆𝑆. All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺.
 The agent source code is never changed and can be
considered static. Hence, the behaviour of an agent depends
highly on its configuration. When configuring an instantiated
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable
with the positions where a gripper can pick it up together with
geometry data such as its weight and size. Then 𝑝𝑝𝑝𝑝 could use
these variables to find a resource in the system that can perform
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔.
In this way, the system never needs to be reprogrammed but
instead reconfigured for new scenarios.
 Interfaces: When two agents collaborate, they need a shared
understanding of points of interaction, e.g., when a robot tool
is to be attached to a robot, they both need to know if they are
compatible. This can be solved by defining interfaces for
interaction, i.e., a compatible interface has to exist between two
agents in order to carry out a specific skill that is going to be
executed. Interfaces are also part of the agent configuration.
 Process plans: For the industry, it is usually not desirable to
have unpredictable systems, but rather extremely reliable
systems. Because of this, it is not suitable to let the agents

figure everything out by themselves. Instead, process plans
need to be defined by human experts and given to the agents.
Process plans should be abstract representations without too
many details. Several process plans can be created for solving
the same goal. Process plans should be written as recipes, rather
than a program.

3.2. Semantics

 Agents need to have a common language for
communication. In FIPA ACL there exist many guidelines on
how to set up communication and how to send data between
agents. As described earlier, this includes a set of pre-coded
communicative acts (co-acts), e.g., Inform, Request and Agree
[14]. These types of co-acts are made to be general for any
agent system and not specifically for manufacturing systems.
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource,
starting a process or requesting an agent to translate
coordinates. In this paper, the specialized co-acts are separated
from the general co-acts making it easier to change the
specialized co-acts.
 Additionally, agents need to share a common naming
standard about interfaces, skills and variables names. These
semantics must be defined in each agent so that they have a
common understanding when communicating. Semantics
should be configured rather than programmed into the agents
so that they can be changed and adapted to specific processes
without re-programming. Researchers have previously
suggested that agent-based solutions should be created as
“black boxes” with simple configuration tools hiding the
complexity of the agents from the user [8].
 Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) describe a
location. The knowledge about what this variable is
representing can be regarded as semantics that is configured
into the agent system. It is not enough to know that this is a
location variable since there could be a location both for
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to
maintain a strict and rigid standard for naming the variables.
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes functionality that
needs to be understood by each agent using that skill. To
support the user to preserve a strict consistent configuration,
tools must be designed that handle the semantics. A promising
approach is to have a database describing the semantics with
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users
will get suggestions and the possibility to see the description
for a given signal or skill. If creating a global standard for
several companies, then agent configurations would be
compatible with all those companies systems. This would make
it possible to move a resource, e.g., a robot from one company
to another without reconfiguring anything.
 An example of semantics that is part of the agent language
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then a message would be sent written in an agent language
from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃� containing something like “Have skill:
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ?”. This sentence consisting of three keywords:
“have”, “skill” and "? " has to be understood in the same way
on both agents and the semantics for these must be understood
in both agents. The semantics becomes a part of the agent
language while the content, e.g., the skill name is not part of

 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352 349
2 Author name / Procedia CIRP 00 (2019) 000–000

designed specifically for communication between agents in
Plug & Produce systems could help to simplify this by limiting
the choices one has to make to design such a system. The
guidelines need to include detailed information on how the
communication between agents is supposed to be implemented.
This paper presents a conceptual model and guidelines for
agent communication together with a physical implementation
in our labs. The conceptual model was developed, separating
multi-agent communication in four different layers. The
implementation generates further suggestions on how the agent
environment, such as the physical flexibility and network
layout should be designed.

2. Background

 A multi-agent system consists of multiple agents. Agents
were described by Wooldridge et al. [6] in 1995. They are
pieces of software that run independently. They perceive the
world, using inputs and reacts to it using its outputs. They can
also have their own goals to solve. This is somewhat different
from a traditional computer function, where a certain response
is always expected. An agent can say no to a request or suggest
another solution. This is what makes them autonomous, see
Fig. 1.

Fig. 1. An agent sensing the environment and reacting based on an internal

decision.

 Agents can be used for implementing a cyber-physical
system since they are a virtual representation of the physical
objects. They help to clearly separate the cyber components
from the physical world. In a multi-agent system, several
agents collaborate by communicating and negotiating to reach
manufacturing goals, see Fig. 2.

Fig. 2. A network of multiple agents that together makes a multi-agent

system.

 Cyber-physical systems are about combining cyber
components with physical components. Cyber components are
regarded as the computation and software components, while
the physical components are the plant and process. Cyber
components and physical components might be connected
through communication networks.
 To be able to communicate, agents all need to speak a
common agent language. Agent communication standards
exist, the FIPA specification is today widely used in research
[5]. A multi-agent system can be used to create a Plug &
Produce system with high flexibility and reconfigurability.
Many researchers have worked with developing various types
of agent systems. However, the use of these systems is still
extremely uncommon in the manufacturing industry. Other
researchers have identified that the main reason is the lack of a
standardized abstraction layer that hides the agent complexity
from the developer [7], [8]. To implement an agent system can

be more time-consuming than to implement a traditional
control system. A standardized abstraction layer, reuse of agent
code and simplified industrial adapted configuration tools are
ways to overcome the implementation cost.
 FIPA or the Foundation for Intelligent Physical Agents is
an IEEE organization developing standards for multi-agent
systems [9]. FIPA defines a collection of specifications,
including an Agent Communication Language (FIPA ACL)
describing how communication is performed between agents in
a multi-agent system [10] together with a Communicative Acts
Library (FIPA CAL). FIPA also specifies an Agent
Management Specification, describing general guidelines for
designing a multi-agent system [5].

2.1. FIPA ACL

 The FIPA ACL specification describes the message
structure of agent communication [10]. An ACL message
usually contains the message parameters: sender, receiver,
content and performative. FIPA also describes many more
message parameters, not listed in this paper. The performative
describes the communicative act that the message is related to.

2.2. FIPA CAL

 FIPA CAL introduces the concept of communicative acts
between agents. Communicative acts are used to categorize
different types of communication [11]. FIPA defines 22
different communicative acts shown in Table 1. These are not
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using
this library.

Table 1. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that an action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for value of expression

Not Understood Did not understand message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask agent to act as proxy

Query If Ask agent if proposition is true

Query Ref Ask for an object

Refuse Refuse to perform action

Reject Proposal Rejecting a given proposal

Request Request agent to perform action

Request When Request when proposition is true

Request Whenever Always run when proposition is true

Subscribe Let other agent send updated data

Agent
Sensing
Reacting

Agent

Agent

Agent

 Author name / Procedia CIRP 00 (2019) 000–000 3

2.3. Agent Management

 In FIPA Agent Management Specification [5] an Agent
Platform (AP) is introduced. This platform provides an
infrastructure for deploying agents. The platform consists of
the computational hardware, agents and FIPA components. The
components are the Directory Facilitator (DF), Agent
Management System (AMS) and the Message Transport
Service (MTS).
 Director Facilitator: This component is acting as a “yellow
pages” service where each agent can list their skills, in order to
help other agents to find them.
 Agent Management System: The AMS gives the agents a
unique identification number when registered with the AMS.
There can only exist one AMS in a single Agent Platform (AP).
 Message Transport Service: This is the communication
channel used for all agents to communicate with each other
[12].

3. Agent communication

 Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system,
due to the lack of standards and tools that are easy enough to
use. To overcome part of this, it is possible to let the software
agents be based on one single agent class [13]. The agent class
contains all methods for negotiation among other agents and
strategies to solve the personal goals of the agents. This agent
class can be instantiated as an object for each product and
resource in the system.

3.1. Re-configuration

 All agents in the system should be configured rather than
reprogrammed to avoid costly implementation tasks. Resources
have skills while parts have goals. All skills in the system are
𝑆𝑆𝑆𝑆 = �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own
subset of skills 𝑆𝑆𝑆𝑆� ⊆ 𝑆𝑆𝑆𝑆. All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺.
 The agent source code is never changed and can be
considered static. Hence, the behaviour of an agent depends
highly on its configuration. When configuring an instantiated
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable
with the positions where a gripper can pick it up together with
geometry data such as its weight and size. Then 𝑝𝑝𝑝𝑝 could use
these variables to find a resource in the system that can perform
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔.
In this way, the system never needs to be reprogrammed but
instead reconfigured for new scenarios.
 Interfaces: When two agents collaborate, they need a shared
understanding of points of interaction, e.g., when a robot tool
is to be attached to a robot, they both need to know if they are
compatible. This can be solved by defining interfaces for
interaction, i.e., a compatible interface has to exist between two
agents in order to carry out a specific skill that is going to be
executed. Interfaces are also part of the agent configuration.
 Process plans: For the industry, it is usually not desirable to
have unpredictable systems, but rather extremely reliable
systems. Because of this, it is not suitable to let the agents

figure everything out by themselves. Instead, process plans
need to be defined by human experts and given to the agents.
Process plans should be abstract representations without too
many details. Several process plans can be created for solving
the same goal. Process plans should be written as recipes, rather
than a program.

3.2. Semantics

 Agents need to have a common language for
communication. In FIPA ACL there exist many guidelines on
how to set up communication and how to send data between
agents. As described earlier, this includes a set of pre-coded
communicative acts (co-acts), e.g., Inform, Request and Agree
[14]. These types of co-acts are made to be general for any
agent system and not specifically for manufacturing systems.
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource,
starting a process or requesting an agent to translate
coordinates. In this paper, the specialized co-acts are separated
from the general co-acts making it easier to change the
specialized co-acts.
 Additionally, agents need to share a common naming
standard about interfaces, skills and variables names. These
semantics must be defined in each agent so that they have a
common understanding when communicating. Semantics
should be configured rather than programmed into the agents
so that they can be changed and adapted to specific processes
without re-programming. Researchers have previously
suggested that agent-based solutions should be created as
“black boxes” with simple configuration tools hiding the
complexity of the agents from the user [8].
 Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) describe a
location. The knowledge about what this variable is
representing can be regarded as semantics that is configured
into the agent system. It is not enough to know that this is a
location variable since there could be a location both for
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to
maintain a strict and rigid standard for naming the variables.
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes functionality that
needs to be understood by each agent using that skill. To
support the user to preserve a strict consistent configuration,
tools must be designed that handle the semantics. A promising
approach is to have a database describing the semantics with
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users
will get suggestions and the possibility to see the description
for a given signal or skill. If creating a global standard for
several companies, then agent configurations would be
compatible with all those companies systems. This would make
it possible to move a resource, e.g., a robot from one company
to another without reconfiguring anything.
 An example of semantics that is part of the agent language
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then a message would be sent written in an agent language
from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃� containing something like “Have skill:
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ?”. This sentence consisting of three keywords:
“have”, “skill” and "? " has to be understood in the same way
on both agents and the semantics for these must be understood
in both agents. The semantics becomes a part of the agent
language while the content, e.g., the skill name is not part of

348 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
2 Author name / Procedia CIRP 00 (2019) 000–000

designed specifically for communication between agents in
Plug & Produce systems could help to simplify this by limiting
the choices one has to make to design such a system. The
guidelines need to include detailed information on how the
communication between agents is supposed to be implemented.
This paper presents a conceptual model and guidelines for
agent communication together with a physical implementation
in our labs. The conceptual model was developed, separating
multi-agent communication in four different layers. The
implementation generates further suggestions on how the agent
environment, such as the physical flexibility and network
layout should be designed.

2. Background

 A multi-agent system consists of multiple agents. Agents
were described by Wooldridge et al. [6] in 1995. They are
pieces of software that run independently. They perceive the
world, using inputs and reacts to it using its outputs. They can
also have their own goals to solve. This is somewhat different
from a traditional computer function, where a certain response
is always expected. An agent can say no to a request or suggest
another solution. This is what makes them autonomous, see
Fig. 1.

Fig. 1. An agent sensing the environment and reacting based on an internal

decision.

 Agents can be used for implementing a cyber-physical
system since they are a virtual representation of the physical
objects. They help to clearly separate the cyber components
from the physical world. In a multi-agent system, several
agents collaborate by communicating and negotiating to reach
manufacturing goals, see Fig. 2.

Fig. 2. A network of multiple agents that together makes a multi-agent

system.

 Cyber-physical systems are about combining cyber
components with physical components. Cyber components are
regarded as the computation and software components, while
the physical components are the plant and process. Cyber
components and physical components might be connected
through communication networks.
 To be able to communicate, agents all need to speak a
common agent language. Agent communication standards
exist, the FIPA specification is today widely used in research
[5]. A multi-agent system can be used to create a Plug &
Produce system with high flexibility and reconfigurability.
Many researchers have worked with developing various types
of agent systems. However, the use of these systems is still
extremely uncommon in the manufacturing industry. Other
researchers have identified that the main reason is the lack of a
standardized abstraction layer that hides the agent complexity
from the developer [7], [8]. To implement an agent system can

be more time-consuming than to implement a traditional
control system. A standardized abstraction layer, reuse of agent
code and simplified industrial adapted configuration tools are
ways to overcome the implementation cost.
 FIPA or the Foundation for Intelligent Physical Agents is
an IEEE organization developing standards for multi-agent
systems [9]. FIPA defines a collection of specifications,
including an Agent Communication Language (FIPA ACL)
describing how communication is performed between agents in
a multi-agent system [10] together with a Communicative Acts
Library (FIPA CAL). FIPA also specifies an Agent
Management Specification, describing general guidelines for
designing a multi-agent system [5].

2.1. FIPA ACL

 The FIPA ACL specification describes the message
structure of agent communication [10]. An ACL message
usually contains the message parameters: sender, receiver,
content and performative. FIPA also describes many more
message parameters, not listed in this paper. The performative
describes the communicative act that the message is related to.

2.2. FIPA CAL

 FIPA CAL introduces the concept of communicative acts
between agents. Communicative acts are used to categorize
different types of communication [11]. FIPA defines 22
different communicative acts shown in Table 1. These are not
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using
this library.

Table 1. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that an action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for value of expression

Not Understood Did not understand message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask agent to act as proxy

Query If Ask agent if proposition is true

Query Ref Ask for an object

Refuse Refuse to perform action

Reject Proposal Rejecting a given proposal

Request Request agent to perform action

Request When Request when proposition is true

Request Whenever Always run when proposition is true

Subscribe Let other agent send updated data

Agent
Sensing
Reacting

Agent

Agent

Agent

 Author name / Procedia CIRP 00 (2019) 000–000 3

2.3. Agent Management

 In FIPA Agent Management Specification [5] an Agent
Platform (AP) is introduced. This platform provides an
infrastructure for deploying agents. The platform consists of
the computational hardware, agents and FIPA components. The
components are the Directory Facilitator (DF), Agent
Management System (AMS) and the Message Transport
Service (MTS).
 Director Facilitator: This component is acting as a “yellow
pages” service where each agent can list their skills, in order to
help other agents to find them.
 Agent Management System: The AMS gives the agents a
unique identification number when registered with the AMS.
There can only exist one AMS in a single Agent Platform (AP).
 Message Transport Service: This is the communication
channel used for all agents to communicate with each other
[12].

3. Agent communication

 Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system,
due to the lack of standards and tools that are easy enough to
use. To overcome part of this, it is possible to let the software
agents be based on one single agent class [13]. The agent class
contains all methods for negotiation among other agents and
strategies to solve the personal goals of the agents. This agent
class can be instantiated as an object for each product and
resource in the system.

3.1. Re-configuration

 All agents in the system should be configured rather than
reprogrammed to avoid costly implementation tasks. Resources
have skills while parts have goals. All skills in the system are
𝑆𝑆𝑆𝑆 = �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own
subset of skills 𝑆𝑆𝑆𝑆� ⊆ 𝑆𝑆𝑆𝑆. All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺.
 The agent source code is never changed and can be
considered static. Hence, the behaviour of an agent depends
highly on its configuration. When configuring an instantiated
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable
with the positions where a gripper can pick it up together with
geometry data such as its weight and size. Then 𝑝𝑝𝑝𝑝 could use
these variables to find a resource in the system that can perform
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔.
In this way, the system never needs to be reprogrammed but
instead reconfigured for new scenarios.
 Interfaces: When two agents collaborate, they need a shared
understanding of points of interaction, e.g., when a robot tool
is to be attached to a robot, they both need to know if they are
compatible. This can be solved by defining interfaces for
interaction, i.e., a compatible interface has to exist between two
agents in order to carry out a specific skill that is going to be
executed. Interfaces are also part of the agent configuration.
 Process plans: For the industry, it is usually not desirable to
have unpredictable systems, but rather extremely reliable
systems. Because of this, it is not suitable to let the agents

figure everything out by themselves. Instead, process plans
need to be defined by human experts and given to the agents.
Process plans should be abstract representations without too
many details. Several process plans can be created for solving
the same goal. Process plans should be written as recipes, rather
than a program.

3.2. Semantics

 Agents need to have a common language for
communication. In FIPA ACL there exist many guidelines on
how to set up communication and how to send data between
agents. As described earlier, this includes a set of pre-coded
communicative acts (co-acts), e.g., Inform, Request and Agree
[14]. These types of co-acts are made to be general for any
agent system and not specifically for manufacturing systems.
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource,
starting a process or requesting an agent to translate
coordinates. In this paper, the specialized co-acts are separated
from the general co-acts making it easier to change the
specialized co-acts.
 Additionally, agents need to share a common naming
standard about interfaces, skills and variables names. These
semantics must be defined in each agent so that they have a
common understanding when communicating. Semantics
should be configured rather than programmed into the agents
so that they can be changed and adapted to specific processes
without re-programming. Researchers have previously
suggested that agent-based solutions should be created as
“black boxes” with simple configuration tools hiding the
complexity of the agents from the user [8].
 Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) describe a
location. The knowledge about what this variable is
representing can be regarded as semantics that is configured
into the agent system. It is not enough to know that this is a
location variable since there could be a location both for
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to
maintain a strict and rigid standard for naming the variables.
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes functionality that
needs to be understood by each agent using that skill. To
support the user to preserve a strict consistent configuration,
tools must be designed that handle the semantics. A promising
approach is to have a database describing the semantics with
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users
will get suggestions and the possibility to see the description
for a given signal or skill. If creating a global standard for
several companies, then agent configurations would be
compatible with all those companies systems. This would make
it possible to move a resource, e.g., a robot from one company
to another without reconfiguring anything.
 An example of semantics that is part of the agent language
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then a message would be sent written in an agent language
from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃� containing something like “Have skill:
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ?”. This sentence consisting of three keywords:
“have”, “skill” and "? " has to be understood in the same way
on both agents and the semantics for these must be understood
in both agents. The semantics becomes a part of the agent
language while the content, e.g., the skill name is not part of

 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352 349
2 Author name / Procedia CIRP 00 (2019) 000–000

designed specifically for communication between agents in
Plug & Produce systems could help to simplify this by limiting
the choices one has to make to design such a system. The
guidelines need to include detailed information on how the
communication between agents is supposed to be implemented.
This paper presents a conceptual model and guidelines for
agent communication together with a physical implementation
in our labs. The conceptual model was developed, separating
multi-agent communication in four different layers. The
implementation generates further suggestions on how the agent
environment, such as the physical flexibility and network
layout should be designed.

2. Background

 A multi-agent system consists of multiple agents. Agents
were described by Wooldridge et al. [6] in 1995. They are
pieces of software that run independently. They perceive the
world, using inputs and reacts to it using its outputs. They can
also have their own goals to solve. This is somewhat different
from a traditional computer function, where a certain response
is always expected. An agent can say no to a request or suggest
another solution. This is what makes them autonomous, see
Fig. 1.

Fig. 1. An agent sensing the environment and reacting based on an internal

decision.

 Agents can be used for implementing a cyber-physical
system since they are a virtual representation of the physical
objects. They help to clearly separate the cyber components
from the physical world. In a multi-agent system, several
agents collaborate by communicating and negotiating to reach
manufacturing goals, see Fig. 2.

Fig. 2. A network of multiple agents that together makes a multi-agent

system.

 Cyber-physical systems are about combining cyber
components with physical components. Cyber components are
regarded as the computation and software components, while
the physical components are the plant and process. Cyber
components and physical components might be connected
through communication networks.
 To be able to communicate, agents all need to speak a
common agent language. Agent communication standards
exist, the FIPA specification is today widely used in research
[5]. A multi-agent system can be used to create a Plug &
Produce system with high flexibility and reconfigurability.
Many researchers have worked with developing various types
of agent systems. However, the use of these systems is still
extremely uncommon in the manufacturing industry. Other
researchers have identified that the main reason is the lack of a
standardized abstraction layer that hides the agent complexity
from the developer [7], [8]. To implement an agent system can

be more time-consuming than to implement a traditional
control system. A standardized abstraction layer, reuse of agent
code and simplified industrial adapted configuration tools are
ways to overcome the implementation cost.
 FIPA or the Foundation for Intelligent Physical Agents is
an IEEE organization developing standards for multi-agent
systems [9]. FIPA defines a collection of specifications,
including an Agent Communication Language (FIPA ACL)
describing how communication is performed between agents in
a multi-agent system [10] together with a Communicative Acts
Library (FIPA CAL). FIPA also specifies an Agent
Management Specification, describing general guidelines for
designing a multi-agent system [5].

2.1. FIPA ACL

 The FIPA ACL specification describes the message
structure of agent communication [10]. An ACL message
usually contains the message parameters: sender, receiver,
content and performative. FIPA also describes many more
message parameters, not listed in this paper. The performative
describes the communicative act that the message is related to.

2.2. FIPA CAL

 FIPA CAL introduces the concept of communicative acts
between agents. Communicative acts are used to categorize
different types of communication [11]. FIPA defines 22
different communicative acts shown in Table 1. These are not
customized for manufacturing systems, making it time-
consuming to implement new Plug & Produce systems using
this library.

Table 1. Communicative acts in FIPA 2002.

Communicative act Description

Accept proposal Accept a submitted proposal

Agree Agree to perform some action

Cancel Cancel an action

Call For Proposal Request proposals

Confirm Confirms a proposition

Disconfirm Disconfirm a proposition

Failure Inform that an action failed

Inform Inform about a proposition being true

Inform If Inform if a proposition is true

Inform Ref Asks for value of expression

Not Understood Did not understand message

Propagate Asks agents to forward this message

Propose Send a proposal

Proxy Ask agent to act as proxy

Query If Ask agent if proposition is true

Query Ref Ask for an object

Refuse Refuse to perform action

Reject Proposal Rejecting a given proposal

Request Request agent to perform action

Request When Request when proposition is true

Request Whenever Always run when proposition is true

Subscribe Let other agent send updated data

Agent
Sensing
Reacting

Agent

Agent

Agent

 Author name / Procedia CIRP 00 (2019) 000–000 3

2.3. Agent Management

 In FIPA Agent Management Specification [5] an Agent
Platform (AP) is introduced. This platform provides an
infrastructure for deploying agents. The platform consists of
the computational hardware, agents and FIPA components. The
components are the Directory Facilitator (DF), Agent
Management System (AMS) and the Message Transport
Service (MTS).
 Director Facilitator: This component is acting as a “yellow
pages” service where each agent can list their skills, in order to
help other agents to find them.
 Agent Management System: The AMS gives the agents a
unique identification number when registered with the AMS.
There can only exist one AMS in a single Agent Platform (AP).
 Message Transport Service: This is the communication
channel used for all agents to communicate with each other
[12].

3. Agent communication

 Today it is far too complex and expensive to design a multi-
agent system in a profitable way for a manufacturing system,
due to the lack of standards and tools that are easy enough to
use. To overcome part of this, it is possible to let the software
agents be based on one single agent class [13]. The agent class
contains all methods for negotiation among other agents and
strategies to solve the personal goals of the agents. This agent
class can be instantiated as an object for each product and
resource in the system.

3.1. Re-configuration

 All agents in the system should be configured rather than
reprogrammed to avoid costly implementation tasks. Resources
have skills while parts have goals. All skills in the system are
𝑆𝑆𝑆𝑆 = �𝑠𝑠𝑠𝑠�, 𝑠𝑠𝑠𝑠�, … , 𝑠𝑠𝑠𝑠�� �, where 𝑠𝑠𝑠𝑠 𝑠𝑠 𝑆𝑆𝑆𝑆. A resources 𝑟𝑟𝑟𝑟 has its own
subset of skills 𝑆𝑆𝑆𝑆� ⊆ 𝑆𝑆𝑆𝑆. All goals in the system are 𝐺𝐺𝐺𝐺 =
{𝑔𝑔𝑔𝑔�, 𝑔𝑔𝑔𝑔�, … , 𝑔𝑔𝑔𝑔��}, where 𝑔𝑔𝑔𝑔 𝑠𝑠 𝑠𝑠𝑠𝑠. A part 𝑝𝑝𝑝𝑝 has its own subset of
goals 𝐺𝐺𝐺𝐺� ⊆ 𝐺𝐺𝐺𝐺.
 The agent source code is never changed and can be
considered static. Hence, the behaviour of an agent depends
highly on its configuration. When configuring an instantiated
agent, variables are also added with parameters. For a part 𝑝𝑝𝑝𝑝
with the goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , it would need a variable
with the positions where a gripper can pick it up together with
geometry data such as its weight and size. Then 𝑝𝑝𝑝𝑝 could use
these variables to find a resource in the system that can perform
𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to a station with the skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔.
In this way, the system never needs to be reprogrammed but
instead reconfigured for new scenarios.
 Interfaces: When two agents collaborate, they need a shared
understanding of points of interaction, e.g., when a robot tool
is to be attached to a robot, they both need to know if they are
compatible. This can be solved by defining interfaces for
interaction, i.e., a compatible interface has to exist between two
agents in order to carry out a specific skill that is going to be
executed. Interfaces are also part of the agent configuration.
 Process plans: For the industry, it is usually not desirable to
have unpredictable systems, but rather extremely reliable
systems. Because of this, it is not suitable to let the agents

figure everything out by themselves. Instead, process plans
need to be defined by human experts and given to the agents.
Process plans should be abstract representations without too
many details. Several process plans can be created for solving
the same goal. Process plans should be written as recipes, rather
than a program.

3.2. Semantics

 Agents need to have a common language for
communication. In FIPA ACL there exist many guidelines on
how to set up communication and how to send data between
agents. As described earlier, this includes a set of pre-coded
communicative acts (co-acts), e.g., Inform, Request and Agree
[14]. These types of co-acts are made to be general for any
agent system and not specifically for manufacturing systems.
What is not described in this specification is the specialized co-
acts for manufacturing systems, such as booking a resource,
starting a process or requesting an agent to translate
coordinates. In this paper, the specialized co-acts are separated
from the general co-acts making it easier to change the
specialized co-acts.
 Additionally, agents need to share a common naming
standard about interfaces, skills and variables names. These
semantics must be defined in each agent so that they have a
common understanding when communicating. Semantics
should be configured rather than programmed into the agents
so that they can be changed and adapted to specific processes
without re-programming. Researchers have previously
suggested that agent-based solutions should be created as
“black boxes” with simple configuration tools hiding the
complexity of the agents from the user [8].
 Variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) describe a
location. The knowledge about what this variable is
representing can be regarded as semantics that is configured
into the agent system. It is not enough to know that this is a
location variable since there could be a location both for
picking and another one for placing, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) in the same agent. This approach requires the user to
maintain a strict and rigid standard for naming the variables.
Additionally, a skill 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes functionality that
needs to be understood by each agent using that skill. To
support the user to preserve a strict consistent configuration,
tools must be designed that handle the semantics. A promising
approach is to have a database describing the semantics with
all the required name definitions and descriptions in a human-
readable way. Then when using the configuration tools users
will get suggestions and the possibility to see the description
for a given signal or skill. If creating a global standard for
several companies, then agent configurations would be
compatible with all those companies systems. This would make
it possible to move a resource, e.g., a robot from one company
to another without reconfiguring anything.
 An example of semantics that is part of the agent language
is if an agent 𝑃𝑃𝑃𝑃� asks agent 𝑃𝑃𝑃𝑃� if it has the skill 𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then a message would be sent written in an agent language
from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃� containing something like “Have skill:
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ?”. This sentence consisting of three keywords:
“have”, “skill” and "? " has to be understood in the same way
on both agents and the semantics for these must be understood
in both agents. The semantics becomes a part of the agent
language while the content, e.g., the skill name is not part of

350 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
4 Author name / Procedia CIRP 00 (2019) 000–000

the language, but rather something the agents talk about using
the language. Both systems need to understand this syntax to
be able to know the meaning of “have”, what a skill is and the
understanding of what a question is. This is especially of
importance in agent systems where agents use a language more
similar to humans languages.

3.3. Network design

 It can be debated whether the actual software for the agents
should run close to the physical device, e.g., in a robot
controller or if it should be running in a cloud service. The
benefit of distributing software agents on multiple hardware is
that it decreases the risk of single-point failure. However, it is
common in multi agent-systems to still have a central point of
connection, e.g., “yellow pages” for looking up other agents.
 For Plug & Produce systems it would be desirable to have a
standardized connection between the cyber and physical
components, such as OPC UA developed by OPC Foundation
[15]. Together with this an automatic detection of connected
physical components and the corresponding agent in
cyberspace is needed. In this paper, OPC UA was used for
connecting all resource agents with their physical resources.
This approach has previously been implemented and verified
in [13].

3.4. Communication layers

 Four layers of communication can be identified. The first
two layers identified already exists in previous
implementations, while layers three and four are new and part
of the contribution of this paper, see Fig. 3.

Fig. 3. The conceptual model with four layers, describing multi-agent

communication.

 The first layer (1) is a basic network protocol used to set up
a channel for communication between agents, e.g., OPC UA or
Data Distribution Service (DDS). The second layer (2) is the
general communicative acts layer that is working for any type
of agent system. Here, FIPA has developed a de facto standard
describing how this could be implemented. The third layer (3)
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden
from the other layers. It only needs to be updated if an entirely
new concept is introduced that the agents need to communicate
about, e.g., if an assembly application was not considered when
designing the agent code, it could be necessary to add a new
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎�
that they are now merged. However, most of the time any
changes to a manufacturing system only affect layer four (4),
the reconfigurable layer, e.g., when a new resource or new

product is introduced the only task is to reconfigure the system
on layer four. The specialized co-acts are implemented as static
skills existing on each agent instance in the system.

4. Implementation

 This chapter evaluates the conceptual model described and
introduced in this paper with a given scenario. The scenario
will be tested with an implementation based on the presented
concepts in this paper.

4.1. Manufacturing scenario

 This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.

Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟�

from buffer 𝑟𝑟𝑟𝑟�.

 In Table 2, all configuration values needed for this scenario
are shown.

Table 2. Configuration values in reconfigurable layer (4).

Agent Description Data type Name

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

 Author name / Procedia CIRP 00 (2019) 000–000 5

 The part 𝑝𝑝𝑝𝑝 has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃 and three
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable
to lift the part using a robot tool. 𝑣𝑣𝑣𝑣� describes a point
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣�
is a coordinate system used for painting.

Fig. 5. Location variables for agents.

 Location variables are defined locally on each agent for
resources or parts. They must be translated into world
coordinates before shared with other agents. In Fig. 5, the part
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The
variable 𝑣𝑣𝑣𝑣� for gripping has to be translated before
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built
in functionality to translate coordinates before communicating
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some
point defined in the world coordinate system to be able to
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as
the robot utilizes for transportation. However, note that the
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further,
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can
physically be attached to the surface of the resources, i.e., they
are mechanically compatible, see Fig. 6. The interfaces are
discussed more in detail in [13].

Fig. 6. Interfaces, defining mechanical compatibility between agents.

 In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃� communicates further with 𝑃𝑃𝑃𝑃� . This
communication layout is shown in Fig. 7.

Fig. 7. Agent communication layout.

 A process plan 𝜋𝜋𝜋𝜋 is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃. The plan describes two steps 1) transport part
to paint station 2) paint part. The physical resources for
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 .
Hence the system must find matching resources before
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these
resources, the following two steps will be generated:

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�.

 The robot is not part of the process plan since it is not known
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with
𝑃𝑃𝑃𝑃�.

4.2. Experiment

 A multi-agent system was developed to evaluate the
proposed conceptual model. The system has the functionality
to add new specialized co-acts in layer 3. By testing multiple
manufacturing scenarios it was found that all of them could be
described with the following specialized co-acts: 1) Request
information, 2) Give information, 3) Book/Unbook skill, 4)
Request skill to start and 5) Attach/Detach. All coordinates
shared between agents are translated to world coordinates
before communicated to other agents.
 It is important to understand that these co-acts work for
many scenarios but are limited to a specific type of system. In
this case, they apply to some types of manufacturing systems
including the one in the scenario described in this paper. In
Table 3, each specialized co-act for our scenario is listed.

Table 3. Specialized co-acts layer (3).

Number Specialized co-act

1 Request information

Give information

Book/Unbook skill

Request skill to start

Attach/Detach

2

3

4

5

 The following list describes each communication step in the
scenario using the previously defined specialized co-acts for
agent communication. This list is limited to the perspective of
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the
following list are described in detail in Table 2. Each step
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number
presented in Table 3:

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to
world coordinates before sending it to 𝑝𝑝𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣� 𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃� 𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352 351
4 Author name / Procedia CIRP 00 (2019) 000–000

the language, but rather something the agents talk about using
the language. Both systems need to understand this syntax to
be able to know the meaning of “have”, what a skill is and the
understanding of what a question is. This is especially of
importance in agent systems where agents use a language more
similar to humans languages.

3.3. Network design

 It can be debated whether the actual software for the agents
should run close to the physical device, e.g., in a robot
controller or if it should be running in a cloud service. The
benefit of distributing software agents on multiple hardware is
that it decreases the risk of single-point failure. However, it is
common in multi agent-systems to still have a central point of
connection, e.g., “yellow pages” for looking up other agents.
 For Plug & Produce systems it would be desirable to have a
standardized connection between the cyber and physical
components, such as OPC UA developed by OPC Foundation
[15]. Together with this an automatic detection of connected
physical components and the corresponding agent in
cyberspace is needed. In this paper, OPC UA was used for
connecting all resource agents with their physical resources.
This approach has previously been implemented and verified
in [13].

3.4. Communication layers

 Four layers of communication can be identified. The first
two layers identified already exists in previous
implementations, while layers three and four are new and part
of the contribution of this paper, see Fig. 3.

Fig. 3. The conceptual model with four layers, describing multi-agent

communication.

 The first layer (1) is a basic network protocol used to set up
a channel for communication between agents, e.g., OPC UA or
Data Distribution Service (DDS). The second layer (2) is the
general communicative acts layer that is working for any type
of agent system. Here, FIPA has developed a de facto standard
describing how this could be implemented. The third layer (3)
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden
from the other layers. It only needs to be updated if an entirely
new concept is introduced that the agents need to communicate
about, e.g., if an assembly application was not considered when
designing the agent code, it could be necessary to add a new
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎�
that they are now merged. However, most of the time any
changes to a manufacturing system only affect layer four (4),
the reconfigurable layer, e.g., when a new resource or new

product is introduced the only task is to reconfigure the system
on layer four. The specialized co-acts are implemented as static
skills existing on each agent instance in the system.

4. Implementation

 This chapter evaluates the conceptual model described and
introduced in this paper with a given scenario. The scenario
will be tested with an implementation based on the presented
concepts in this paper.

4.1. Manufacturing scenario

 This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.

Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟�

from buffer 𝑟𝑟𝑟𝑟�.

 In Table 2, all configuration values needed for this scenario
are shown.

Table 2. Configuration values in reconfigurable layer (4).

Agent Description Data type Name

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

 Author name / Procedia CIRP 00 (2019) 000–000 5

 The part 𝑝𝑝𝑝𝑝 has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃 and three
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable
to lift the part using a robot tool. 𝑣𝑣𝑣𝑣� describes a point
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣�
is a coordinate system used for painting.

Fig. 5. Location variables for agents.

 Location variables are defined locally on each agent for
resources or parts. They must be translated into world
coordinates before shared with other agents. In Fig. 5, the part
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The
variable 𝑣𝑣𝑣𝑣� for gripping has to be translated before
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built
in functionality to translate coordinates before communicating
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some
point defined in the world coordinate system to be able to
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as
the robot utilizes for transportation. However, note that the
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further,
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can
physically be attached to the surface of the resources, i.e., they
are mechanically compatible, see Fig. 6. The interfaces are
discussed more in detail in [13].

Fig. 6. Interfaces, defining mechanical compatibility between agents.

 In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃� communicates further with 𝑃𝑃𝑃𝑃� . This
communication layout is shown in Fig. 7.

Fig. 7. Agent communication layout.

 A process plan 𝜋𝜋𝜋𝜋 is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃. The plan describes two steps 1) transport part
to paint station 2) paint part. The physical resources for
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 .
Hence the system must find matching resources before
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these
resources, the following two steps will be generated:

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�.

 The robot is not part of the process plan since it is not known
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with
𝑃𝑃𝑃𝑃�.

4.2. Experiment

 A multi-agent system was developed to evaluate the
proposed conceptual model. The system has the functionality
to add new specialized co-acts in layer 3. By testing multiple
manufacturing scenarios it was found that all of them could be
described with the following specialized co-acts: 1) Request
information, 2) Give information, 3) Book/Unbook skill, 4)
Request skill to start and 5) Attach/Detach. All coordinates
shared between agents are translated to world coordinates
before communicated to other agents.
 It is important to understand that these co-acts work for
many scenarios but are limited to a specific type of system. In
this case, they apply to some types of manufacturing systems
including the one in the scenario described in this paper. In
Table 3, each specialized co-act for our scenario is listed.

Table 3. Specialized co-acts layer (3).

Number Specialized co-act

1 Request information

Give information

Book/Unbook skill

Request skill to start

Attach/Detach

2

3

4

5

 The following list describes each communication step in the
scenario using the previously defined specialized co-acts for
agent communication. This list is limited to the perspective of
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the
following list are described in detail in Table 2. Each step
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number
presented in Table 3:

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to
world coordinates before sending it to 𝑝𝑝𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣� 𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃� 𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

350 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
4 Author name / Procedia CIRP 00 (2019) 000–000

the language, but rather something the agents talk about using
the language. Both systems need to understand this syntax to
be able to know the meaning of “have”, what a skill is and the
understanding of what a question is. This is especially of
importance in agent systems where agents use a language more
similar to humans languages.

3.3. Network design

 It can be debated whether the actual software for the agents
should run close to the physical device, e.g., in a robot
controller or if it should be running in a cloud service. The
benefit of distributing software agents on multiple hardware is
that it decreases the risk of single-point failure. However, it is
common in multi agent-systems to still have a central point of
connection, e.g., “yellow pages” for looking up other agents.
 For Plug & Produce systems it would be desirable to have a
standardized connection between the cyber and physical
components, such as OPC UA developed by OPC Foundation
[15]. Together with this an automatic detection of connected
physical components and the corresponding agent in
cyberspace is needed. In this paper, OPC UA was used for
connecting all resource agents with their physical resources.
This approach has previously been implemented and verified
in [13].

3.4. Communication layers

 Four layers of communication can be identified. The first
two layers identified already exists in previous
implementations, while layers three and four are new and part
of the contribution of this paper, see Fig. 3.

Fig. 3. The conceptual model with four layers, describing multi-agent

communication.

 The first layer (1) is a basic network protocol used to set up
a channel for communication between agents, e.g., OPC UA or
Data Distribution Service (DDS). The second layer (2) is the
general communicative acts layer that is working for any type
of agent system. Here, FIPA has developed a de facto standard
describing how this could be implemented. The third layer (3)
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden
from the other layers. It only needs to be updated if an entirely
new concept is introduced that the agents need to communicate
about, e.g., if an assembly application was not considered when
designing the agent code, it could be necessary to add a new
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎�
that they are now merged. However, most of the time any
changes to a manufacturing system only affect layer four (4),
the reconfigurable layer, e.g., when a new resource or new

product is introduced the only task is to reconfigure the system
on layer four. The specialized co-acts are implemented as static
skills existing on each agent instance in the system.

4. Implementation

 This chapter evaluates the conceptual model described and
introduced in this paper with a given scenario. The scenario
will be tested with an implementation based on the presented
concepts in this paper.

4.1. Manufacturing scenario

 This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.

Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟�

from buffer 𝑟𝑟𝑟𝑟�.

 In Table 2, all configuration values needed for this scenario
are shown.

Table 2. Configuration values in reconfigurable layer (4).

Agent Description Data type Name

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

 Author name / Procedia CIRP 00 (2019) 000–000 5

 The part 𝑝𝑝𝑝𝑝 has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃 and three
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable
to lift the part using a robot tool. 𝑣𝑣𝑣𝑣� describes a point
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣�
is a coordinate system used for painting.

Fig. 5. Location variables for agents.

 Location variables are defined locally on each agent for
resources or parts. They must be translated into world
coordinates before shared with other agents. In Fig. 5, the part
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The
variable 𝑣𝑣𝑣𝑣� for gripping has to be translated before
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built
in functionality to translate coordinates before communicating
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some
point defined in the world coordinate system to be able to
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as
the robot utilizes for transportation. However, note that the
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further,
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can
physically be attached to the surface of the resources, i.e., they
are mechanically compatible, see Fig. 6. The interfaces are
discussed more in detail in [13].

Fig. 6. Interfaces, defining mechanical compatibility between agents.

 In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃� communicates further with 𝑃𝑃𝑃𝑃� . This
communication layout is shown in Fig. 7.

Fig. 7. Agent communication layout.

 A process plan 𝜋𝜋𝜋𝜋 is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃. The plan describes two steps 1) transport part
to paint station 2) paint part. The physical resources for
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 .
Hence the system must find matching resources before
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these
resources, the following two steps will be generated:

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�.

 The robot is not part of the process plan since it is not known
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with
𝑃𝑃𝑃𝑃�.

4.2. Experiment

 A multi-agent system was developed to evaluate the
proposed conceptual model. The system has the functionality
to add new specialized co-acts in layer 3. By testing multiple
manufacturing scenarios it was found that all of them could be
described with the following specialized co-acts: 1) Request
information, 2) Give information, 3) Book/Unbook skill, 4)
Request skill to start and 5) Attach/Detach. All coordinates
shared between agents are translated to world coordinates
before communicated to other agents.
 It is important to understand that these co-acts work for
many scenarios but are limited to a specific type of system. In
this case, they apply to some types of manufacturing systems
including the one in the scenario described in this paper. In
Table 3, each specialized co-act for our scenario is listed.

Table 3. Specialized co-acts layer (3).

Number Specialized co-act

1 Request information

Give information

Book/Unbook skill

Request skill to start

Attach/Detach

2

3

4

5

 The following list describes each communication step in the
scenario using the previously defined specialized co-acts for
agent communication. This list is limited to the perspective of
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the
following list are described in detail in Table 2. Each step
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number
presented in Table 3:

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to
world coordinates before sending it to 𝑝𝑝𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣� 𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃� 𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352 351
4 Author name / Procedia CIRP 00 (2019) 000–000

the language, but rather something the agents talk about using
the language. Both systems need to understand this syntax to
be able to know the meaning of “have”, what a skill is and the
understanding of what a question is. This is especially of
importance in agent systems where agents use a language more
similar to humans languages.

3.3. Network design

 It can be debated whether the actual software for the agents
should run close to the physical device, e.g., in a robot
controller or if it should be running in a cloud service. The
benefit of distributing software agents on multiple hardware is
that it decreases the risk of single-point failure. However, it is
common in multi agent-systems to still have a central point of
connection, e.g., “yellow pages” for looking up other agents.
 For Plug & Produce systems it would be desirable to have a
standardized connection between the cyber and physical
components, such as OPC UA developed by OPC Foundation
[15]. Together with this an automatic detection of connected
physical components and the corresponding agent in
cyberspace is needed. In this paper, OPC UA was used for
connecting all resource agents with their physical resources.
This approach has previously been implemented and verified
in [13].

3.4. Communication layers

 Four layers of communication can be identified. The first
two layers identified already exists in previous
implementations, while layers three and four are new and part
of the contribution of this paper, see Fig. 3.

Fig. 3. The conceptual model with four layers, describing multi-agent

communication.

 The first layer (1) is a basic network protocol used to set up
a channel for communication between agents, e.g., OPC UA or
Data Distribution Service (DDS). The second layer (2) is the
general communicative acts layer that is working for any type
of agent system. Here, FIPA has developed a de facto standard
describing how this could be implemented. The third layer (3)
is application dependent. In this paper, it adds specialized co-
acts for manufacturing systems. These are static and hidden
from the other layers. It only needs to be updated if an entirely
new concept is introduced that the agents need to communicate
about, e.g., if an assembly application was not considered when
designing the agent code, it could be necessary to add a new
specialized co-act where and agent 𝑎𝑎𝑎𝑎� can inform an agent 𝑎𝑎𝑎𝑎�
that they are now merged. However, most of the time any
changes to a manufacturing system only affect layer four (4),
the reconfigurable layer, e.g., when a new resource or new

product is introduced the only task is to reconfigure the system
on layer four. The specialized co-acts are implemented as static
skills existing on each agent instance in the system.

4. Implementation

 This chapter evaluates the conceptual model described and
introduced in this paper with a given scenario. The scenario
will be tested with an implementation based on the presented
concepts in this paper.

4.1. Manufacturing scenario

 This section describes a scenario where a part 𝑝𝑝𝑝𝑝 is
transported from a buffer 𝑟𝑟𝑟𝑟� to a paint station 𝑟𝑟𝑟𝑟�, using a gripper
𝑟𝑟𝑟𝑟� that is attached to a robot 𝑟𝑟𝑟𝑟�, see Fig. 4.

Fig. 4. A manufacturing scenario, transporting a part 𝑝𝑝𝑝𝑝 to a painting station 𝑟𝑟𝑟𝑟�

from buffer 𝑟𝑟𝑟𝑟�.

 In Table 2, all configuration values needed for this scenario
are shown.

Table 2. Configuration values in reconfigurable layer (4).

Agent Description Data type Name

𝑝𝑝𝑝𝑝 Grip location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Base location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint location Location 𝑣𝑣𝑣𝑣�

𝑝𝑝𝑝𝑝 Paint part red Goal 𝑔𝑔𝑔𝑔

𝑝𝑝𝑝𝑝 Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Buffer location Location 𝑣𝑣𝑣𝑣�

𝑟𝑟𝑟𝑟� Buffer interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Paint skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Grip interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

𝑟𝑟𝑟𝑟� Transport skill Skill 𝑠𝑠𝑠𝑠�

𝑟𝑟𝑟𝑟� Tool interface Interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

 Author name / Procedia CIRP 00 (2019) 000–000 5

 The part 𝑝𝑝𝑝𝑝 has one goal 𝑔𝑔𝑔𝑔 = 𝑃𝑃 and three
location variables 𝑣𝑣𝑣𝑣�, 𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣�. In Fig. 5, these variables are
shown. The variable 𝑣𝑣𝑣𝑣� is a “grip location” where it is suitable
to lift the part using a robot tool. 𝑣𝑣𝑣𝑣� describes a point
underneath 𝑝𝑝𝑝𝑝 that connects with the resource it is placed on. 𝑣𝑣𝑣𝑣�
is a coordinate system used for painting.

Fig. 5. Location variables for agents.

 Location variables are defined locally on each agent for
resources or parts. They must be translated into world
coordinates before shared with other agents. In Fig. 5, the part
𝑝𝑝𝑝𝑝 is placed on the resource 𝑃𝑃𝑃𝑃� and requests transport to 𝑃𝑃𝑃𝑃�. The
variable 𝑣𝑣𝑣𝑣� for gripping has to be translated before
communicated to the robot gripper with transport skill 𝑠𝑠𝑠𝑠�. This
can be done by using the base location 𝑣𝑣𝑣𝑣�. All agents have built
in functionality to translate coordinates before communicating
them to other agents. This assumes that the buffer 𝑃𝑃𝑃𝑃� , paint
station 𝑃𝑃𝑃𝑃� and robot 𝑃𝑃𝑃𝑃� all have been calibrated relative to some
point defined in the world coordinate system to be able to
calculate where the part 𝑝𝑝𝑝𝑝 is located. Thus, the buffer locations
𝑣𝑣𝑣𝑣� and 𝑣𝑣𝑣𝑣� has to be described in the same reference system as
the robot utilizes for transportation. However, note that the
locations on 𝑝𝑝𝑝𝑝 must be relative to where it is placed. Further,
the interfaces {𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�, . . . , 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�} is used to know that the part can
physically be attached to the surface of the resources, i.e., they
are mechanically compatible, see Fig. 6. The interfaces are
discussed more in detail in [13].

Fig. 6. Interfaces, defining mechanical compatibility between agents.

 In this scenario, the part 𝑝𝑝𝑝𝑝 can communicate with 𝑃𝑃𝑃𝑃�, 𝑃𝑃𝑃𝑃� and
𝑃𝑃𝑃𝑃� . The resource 𝑃𝑃𝑃𝑃� communicates further with 𝑃𝑃𝑃𝑃� . This
communication layout is shown in Fig. 7.

Fig. 7. Agent communication layout.

 A process plan 𝜋𝜋𝜋𝜋 is defined for solving the goal 𝑔𝑔𝑔𝑔 =
𝑃𝑃. The plan describes two steps 1) transport part
to paint station 2) paint part. The physical resources for
transportation and paining are unknown when defining 𝜋𝜋𝜋𝜋 .
Hence the system must find matching resources before
executing the process plan 𝜋𝜋𝜋𝜋. After the system has found these
resources, the following two steps will be generated:

1. 𝑝𝑝𝑝𝑝 is transported by 𝑃𝑃𝑃𝑃� from 𝑃𝑃𝑃𝑃� to 𝑃𝑃𝑃𝑃�.
2. 𝑝𝑝𝑝𝑝 is painted by 𝑃𝑃𝑃𝑃�.

 The robot is not part of the process plan since it is not known
by the part 𝑝𝑝𝑝𝑝. Instead, it is the resource 𝑃𝑃𝑃𝑃� that collaborates with
𝑃𝑃𝑃𝑃�.

4.2. Experiment

 A multi-agent system was developed to evaluate the
proposed conceptual model. The system has the functionality
to add new specialized co-acts in layer 3. By testing multiple
manufacturing scenarios it was found that all of them could be
described with the following specialized co-acts: 1) Request
information, 2) Give information, 3) Book/Unbook skill, 4)
Request skill to start and 5) Attach/Detach. All coordinates
shared between agents are translated to world coordinates
before communicated to other agents.
 It is important to understand that these co-acts work for
many scenarios but are limited to a specific type of system. In
this case, they apply to some types of manufacturing systems
including the one in the scenario described in this paper. In
Table 3, each specialized co-act for our scenario is listed.

Table 3. Specialized co-acts layer (3).

Number Specialized co-act

1 Request information

Give information

Book/Unbook skill

Request skill to start

Attach/Detach

2

3

4

5

 The following list describes each communication step in the
scenario using the previously defined specialized co-acts for
agent communication. This list is limited to the perspective of
part 𝑝𝑝𝑝𝑝. Hence, the robot is not included. All variables in the
following list are described in detail in Table 2. Each step
below is noted with (𝑥𝑥𝑥𝑥), where 𝑥𝑥𝑥𝑥 is the related co-act number
presented in Table 3:

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The part

𝑝𝑝𝑝𝑝 is compatible with the interfaces 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (3) 𝑝𝑝𝑝𝑝 tries to book 𝑃𝑃𝑃𝑃� if it has a skill 𝑠𝑠𝑠𝑠� = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The
part 𝑝𝑝𝑝𝑝 is compatible with the interface 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� on 𝑃𝑃𝑃𝑃� and is
therefore booked by 𝑝𝑝𝑝𝑝.

• (1) 𝑝𝑝𝑝𝑝 is attached to 𝑃𝑃𝑃𝑃� with 𝑣𝑣𝑣𝑣� attached to 𝑣𝑣𝑣𝑣�. Thus, 𝑝𝑝𝑝𝑝 asks
𝑃𝑃𝑃𝑃� to give the variable 𝑣𝑣𝑣𝑣�. Resource 𝑃𝑃𝑃𝑃� translates 𝑣𝑣𝑣𝑣� to
world coordinates before sending it to 𝑝𝑝𝑝𝑝.

• (1) To find the location for placing, 𝑝𝑝𝑝𝑝 asks 𝑃𝑃𝑃𝑃� for the

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣� 𝑣𝑣𝑣𝑣�

𝑣𝑣𝑣𝑣�

𝑃𝑃𝑃𝑃�

𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃� 𝑃𝑃𝑃𝑃�𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖�

𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

𝑃𝑃𝑃𝑃�

352 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
6 Author name / Procedia CIRP 00 (2019) 000–000

variable 𝑣𝑣𝑣𝑣�. Resource 𝑟𝑟𝑟𝑟� translates 𝑣𝑣𝑣𝑣� to world coordinates
before sending it to 𝑝𝑝𝑝𝑝.

• (2) 𝑝𝑝𝑝𝑝 uses its grip location 𝑣𝑣𝑣𝑣� to calculate the pick and
place location to move between 𝑟𝑟𝑟𝑟� and 𝑟𝑟𝑟𝑟�. Then these are
sent to the gripper 𝑟𝑟𝑟𝑟�.

• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠�
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟�
• (5) 𝑝𝑝𝑝𝑝 tells 𝑟𝑟𝑟𝑟� that 𝑝𝑝𝑝𝑝 is attached to 𝑟𝑟𝑟𝑟�
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟�
• (2) 𝑝𝑝𝑝𝑝 gives the variable data 𝑣𝑣𝑣𝑣� to 𝑟𝑟𝑟𝑟�.
• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠�

5. Conclusion

 In this paper, a conceptual model was presented that divides
agent communication into four layers. The network layer (1),
General co-acts layer (2), Specialized co-acts layer (3) and a
Reconfigurable layer (4). This helps to separate the logic for
general communication (layer 2) from the specialized
communication in this paper a manufacturing system (layer 3).
The reconfigurable layer (4) makes it possible to change a
manufacturing system without reprogramming. A multi-agent
system was developed and used to evaluate the conceptual
model.
 Two types of semantics were identified. The static
semantics (a) were hardcoded into the specialized co-acts, layer
three in the conceptual model. The reconfigurable semantics
(b), i.e., interfaces, skills, and variables were configured in the
reconfigurable layer (layer four). By only reconfiguring the
agents, it is possible to change how they use the variables
shared with other agents. Hence, we change the semantics in
the system without reprogramming or changing anything in
layer three (specialized co-acts layer). Based on this
conclusion, the best practice is to place semantics that often
changes their meaning in layer four (reconfigurable layer).
 Further, the implementation shows that it is possible to limit
the number of choices one must make to implement a multi-
agent system for Plug & Produce by customizing layer three in
our model for a specific type of application. In this paper, the
scenario was customized for manufacturing systems. Hence,
one implementation of layer three can be used for many
scenarios with different configurations in layer four. This
means that it is in many cases possible to work only in layer
four when implementing a multi-agent system for a new
scenario. This helps the industry by hiding the complexity of
agent design and agent communication. Thus, making it
possible to avoid reprogramming and its related educational
requirements on personnel. Further, the flexibility of using a
Plug & Produce system increases the adaption speed for adding
new products and resources.

Acknowledgements

 Miljö för Flexibel och Innovativ Automation, Project
reference: 20201192, Funded under: Europeiska regionala
utvecklingsfonden/VGR

References

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V.

Krüger and O. Madsen, "Robot skills for manufacturing: From concept
to industrial deployment," Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282-291, 2015.

[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent
progress on programming methods for industrial robots," Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly
System by “Plug and Produce“," CIRP Ann Manuf Technol, vol. 49, no.
1, pp. 1-4, 2000.

[4] FIPA 97 Part 1 Version 1.0: Agent Management Specification,
Foundation for intelligent physical agents, 1997.

[5] FIPA, “FIPA Agent Management Specification,” in FIPA 2002,
Geneva, Switzerland, 2002.

[6] S. Poslad, “Specifying Protocols for Multi-Agent Systems Interaction,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 2, no. 4,
pp. 15:1-15:24, 2007.

[7] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and
practice," The Knowledge Engineering Review, vol. 10, no. 2, pp. 115-
152, 1995.

[8] P. Leitao, "Agent-based distributed manufacturing control : A state-of-
the-art survey," Engineering applications of artificial intelligence, vol.
22, no. 7, pp. 979-991, Oct. 2009.

[9] P. Leitao, V. Mařík and P. Vrba, "Past, present, and future of industrial
agent applications," IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 2360-
2372, Nov. 2013.

[10] FIPA, “FIPA ACL Message Structure Specification,” in FIPA 2002,
Geneva, Switzerland, 2002.

[11] FIPA, “FIPA Communicative Act Library Specification,” in FIPA
2002, Geneva, Switzerland, 2002.

[12] FIPA, “FIPA Agent Message Transport Service Specification,” in FIPA
2002, Geneva, Switzerland, 2002.

[13] M. Bennulf, F. Danielsson and B. Svensson, “Identification of
resources and parts in a Plug and Produce system using OPC UA,” in
FAIM 2019, Limerick, Ireland, 2019.

[14] F. Bellifemine, G. Caire and D. Greenwood, Developing multi-agent
systems with JADE, John Wiley & Sons, Ltd, 2007.

[15] W. Mahnke, S.-H. Leitner and M. Damm, OPC unified architecture,
Springer Science & Business Media, 2009.

Paper D

A Method for Configuring Agents in Plug
& Produce Systems

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the Swedish Production Symposium, SPS, in
Skövde, Sweden, April 2022

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US

Printed and published with permission

D

352 Mattias Bennulf et al. / Procedia CIRP 93 (2020) 347–352
6 Author name / Procedia CIRP 00 (2019) 000–000

variable 𝑣𝑣𝑣𝑣�. Resource 𝑟𝑟𝑟𝑟� translates 𝑣𝑣𝑣𝑣� to world coordinates
before sending it to 𝑝𝑝𝑝𝑝.

• (2) 𝑝𝑝𝑝𝑝 uses its grip location 𝑣𝑣𝑣𝑣� to calculate the pick and
place location to move between 𝑟𝑟𝑟𝑟� and 𝑟𝑟𝑟𝑟�. Then these are
sent to the gripper 𝑟𝑟𝑟𝑟�.

• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠�
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟�
• (5) 𝑝𝑝𝑝𝑝 tells 𝑟𝑟𝑟𝑟� that 𝑝𝑝𝑝𝑝 is attached to 𝑟𝑟𝑟𝑟�
• (3) 𝑝𝑝𝑝𝑝 unbooks the interface 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� on 𝑟𝑟𝑟𝑟�
• (2) 𝑝𝑝𝑝𝑝 gives the variable data 𝑣𝑣𝑣𝑣� to 𝑟𝑟𝑟𝑟�.
• (4) 𝑝𝑝𝑝𝑝 requests that 𝑟𝑟𝑟𝑟� runs the skill 𝑠𝑠𝑠𝑠�

5. Conclusion

 In this paper, a conceptual model was presented that divides
agent communication into four layers. The network layer (1),
General co-acts layer (2), Specialized co-acts layer (3) and a
Reconfigurable layer (4). This helps to separate the logic for
general communication (layer 2) from the specialized
communication in this paper a manufacturing system (layer 3).
The reconfigurable layer (4) makes it possible to change a
manufacturing system without reprogramming. A multi-agent
system was developed and used to evaluate the conceptual
model.
 Two types of semantics were identified. The static
semantics (a) were hardcoded into the specialized co-acts, layer
three in the conceptual model. The reconfigurable semantics
(b), i.e., interfaces, skills, and variables were configured in the
reconfigurable layer (layer four). By only reconfiguring the
agents, it is possible to change how they use the variables
shared with other agents. Hence, we change the semantics in
the system without reprogramming or changing anything in
layer three (specialized co-acts layer). Based on this
conclusion, the best practice is to place semantics that often
changes their meaning in layer four (reconfigurable layer).
 Further, the implementation shows that it is possible to limit
the number of choices one must make to implement a multi-
agent system for Plug & Produce by customizing layer three in
our model for a specific type of application. In this paper, the
scenario was customized for manufacturing systems. Hence,
one implementation of layer three can be used for many
scenarios with different configurations in layer four. This
means that it is in many cases possible to work only in layer
four when implementing a multi-agent system for a new
scenario. This helps the industry by hiding the complexity of
agent design and agent communication. Thus, making it
possible to avoid reprogramming and its related educational
requirements on personnel. Further, the flexibility of using a
Plug & Produce system increases the adaption speed for adding
new products and resources.

Acknowledgements

 Miljö för Flexibel och Innovativ Automation, Project
reference: 20201192, Funded under: Europeiska regionala
utvecklingsfonden/VGR

References

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V.

Krüger and O. Madsen, "Robot skills for manufacturing: From concept
to industrial deployment," Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282-291, 2015.

[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent
progress on programming methods for industrial robots," Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly
System by “Plug and Produce“," CIRP Ann Manuf Technol, vol. 49, no.
1, pp. 1-4, 2000.

[4] FIPA 97 Part 1 Version 1.0: Agent Management Specification,
Foundation for intelligent physical agents, 1997.

[5] FIPA, “FIPA Agent Management Specification,” in FIPA 2002,
Geneva, Switzerland, 2002.

[6] S. Poslad, “Specifying Protocols for Multi-Agent Systems Interaction,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 2, no. 4,
pp. 15:1-15:24, 2007.

[7] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and
practice," The Knowledge Engineering Review, vol. 10, no. 2, pp. 115-
152, 1995.

[8] P. Leitao, "Agent-based distributed manufacturing control : A state-of-
the-art survey," Engineering applications of artificial intelligence, vol.
22, no. 7, pp. 979-991, Oct. 2009.

[9] P. Leitao, V. Mařík and P. Vrba, "Past, present, and future of industrial
agent applications," IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 2360-
2372, Nov. 2013.

[10] FIPA, “FIPA ACL Message Structure Specification,” in FIPA 2002,
Geneva, Switzerland, 2002.

[11] FIPA, “FIPA Communicative Act Library Specification,” in FIPA
2002, Geneva, Switzerland, 2002.

[12] FIPA, “FIPA Agent Message Transport Service Specification,” in FIPA
2002, Geneva, Switzerland, 2002.

[13] M. Bennulf, F. Danielsson and B. Svensson, “Identification of
resources and parts in a Plug and Produce system using OPC UA,” in
FAIM 2019, Limerick, Ireland, 2019.

[14] F. Bellifemine, G. Caire and D. Greenwood, Developing multi-agent
systems with JADE, John Wiley & Sons, Ltd, 2007.

[15] W. Mahnke, S.-H. Leitner and M. Damm, OPC unified architecture,
Springer Science & Business Media, 2009.

Paper D

A Method for Configuring Agents in Plug
& Produce Systems

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the Swedish Production Symposium, SPS, in
Skövde, Sweden, April 2022

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US

Printed and published with permission

D

Paper D

A Method for Configuring Agents in Plug
& Produce Systems

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Presented at the Swedish Production Symposium, SPS, in
Skövde, Sweden, April 2022

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

https://creativecommons.org/licenses/by-nc/4.0/deed.en_US

D

A Method for Configuring Agents in Plug
& Produce Systems

Mattias Bennulf a,1, Fredrik Danielsson a and Bo Svensson a
a

 Department of Production Systems, University West, Trollhättan, Sweden

Abstract. Multi-agent technology, used for implementing Plug & Produce systems
have many proposed benefits for fast adaption of manufacturing systems. However,
still today multi-agent technology is not ready for the industry, due to the lack of
mature supporting tools and guidelines. The result is that today, multi-agent systems
are more complicated and time-consuming to use than traditional approaches. This
hides their true benefits. In this paper, a new method for configuring agents is
presented that includes automated deployment to manufacturing systems and by its
flexible design opens the possibility to connect many other supporting tools when
needed. A configuration tool is also designed that works with the proposed method
by connecting to an agent configuration database. The overall aim of the method is
to simplify the steps taken for adapting a manufacturing system for new parts and
resources.

Keywords. Plug & Produce, Configuration, Multi-Agent System, Deployment,
Industry 4.0

1. Introduction

For many years, the demand for low volume production and customization has
increased [1]. It is costly to rebuild a manufacturing system for each new type of part to
be produced, forcing many manufacturing processes to still be performed manually. The
reason that it is difficult to change automated manufacturing systems is that they usually
have rigid control solutions that are difficult to change, due to the lack of abstraction of
logic and encapsulation of code. Programming of a resource such as a robot takes up a
huge amount of time [2], limiting the possibilities to quickly add new product designs to
the system. Further, in traditional systems with central control, there typically exists
strong dependencies between resources. For example, it is not always easy to change the
code of one industrial robot without changing the code also in surrounding resources
such as a PLC or another robot. This makes it difficult to write the local code for one
resource without considering the specific manufacturing system where that resource is
to be used. This is a problem when implementing Plug & Produce systems, where
resources should be easy to connect/disconnect and even have the possibility to be moved
between different manufacturing areas or even plants.

Plug & Produce is a concept where resources are connected using standardized
hardware connectors and are automatically included in the manufacturing [3]. One
approach to implement the controller in a Plug & Produce system is to utilize multi-agent
technology that was described by Wooldridge et.al. [4]. Multi-agent systems simplify the

1 Corresponding Author. mattias.bennulf@hv.se

SPS2022
A.H.C. Ng et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE220133

135

A Method for Configuring Agents in Plug
& Produce Systems

Mattias Bennulf a,1, Fredrik Danielsson a and Bo Svensson a
a

 Department of Production Systems, University West, Trollhättan, Sweden

Abstract. Multi-agent technology, used for implementing Plug & Produce systems
have many proposed benefits for fast adaption of manufacturing systems. However,
still today multi-agent technology is not ready for the industry, due to the lack of
mature supporting tools and guidelines. The result is that today, multi-agent systems
are more complicated and time-consuming to use than traditional approaches. This
hides their true benefits. In this paper, a new method for configuring agents is
presented that includes automated deployment to manufacturing systems and by its
flexible design opens the possibility to connect many other supporting tools when
needed. A configuration tool is also designed that works with the proposed method
by connecting to an agent configuration database. The overall aim of the method is
to simplify the steps taken for adapting a manufacturing system for new parts and
resources.

Keywords. Plug & Produce, Configuration, Multi-Agent System, Deployment,
Industry 4.0

1. Introduction

For many years, the demand for low volume production and customization has
increased [1]. It is costly to rebuild a manufacturing system for each new type of part to
be produced, forcing many manufacturing processes to still be performed manually. The
reason that it is difficult to change automated manufacturing systems is that they usually
have rigid control solutions that are difficult to change, due to the lack of abstraction of
logic and encapsulation of code. Programming of a resource such as a robot takes up a
huge amount of time [2], limiting the possibilities to quickly add new product designs to
the system. Further, in traditional systems with central control, there typically exists
strong dependencies between resources. For example, it is not always easy to change the
code of one industrial robot without changing the code also in surrounding resources
such as a PLC or another robot. This makes it difficult to write the local code for one
resource without considering the specific manufacturing system where that resource is
to be used. This is a problem when implementing Plug & Produce systems, where
resources should be easy to connect/disconnect and even have the possibility to be moved
between different manufacturing areas or even plants.

Plug & Produce is a concept where resources are connected using standardized
hardware connectors and are automatically included in the manufacturing [3]. One
approach to implement the controller in a Plug & Produce system is to utilize multi-agent
technology that was described by Wooldridge et.al. [4]. Multi-agent systems simplify the

1 Corresponding Author. mattias.bennulf@hv.se

SPS2022
A.H.C. Ng et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE220133

135

design of manufacturing system controllers by encapsulating each resource logic in the
system. This is done by creating a separate agent (controller) for each resource and part
in the system. Each agent can communicate with each other to reach manufacturing goals
through a standardised communication interface. Hence, the agent for each resource is
independent of logic and signals of other resources and can act independently through
negotiation. This makes it possible to adapt to new types of parts and resources in
minutes rather than days or months as in conventional systems with hierarchical central
control. The reason that it is faster to adopt is that a resource such as an industrial robot
only needs to know its own skills, e.g., how to perform transportation of a robot tool.
While the tool, such as a robot gripper only need to know how to transport parts.
Dependencies between the robot and the tool, in this case, is only based on demands of
skills and are not hardcoded in the control logic itself. In this way, logic is completely
isolated into carefully defined resources with different skills and parts with
manufacturing goals. However, still today such a flexible system is not used in the
industry due to a lack of mature tools and platforms [5], [6]. Prototypes has been
developed but they are not used in large-scale production [7].

In existing multi-agent frameworks such as the Java Agent Development Framework
(JADE), each agent still has individual tailormade control code, that is manually written.
The idea is that the programmer writes the agent control code in such a way that the
agents automatically communicate and negotiate to make the dependencies between
them limited since they can find each other without for example mapping specific signals
to static addresses. This makes it easier to add new resources since they do not have
strong dependencies on surrounding resources. However, the control code still has to be
written manually to create or change the local behaviour of an agent.

To avoid programming of agents, one approach presented in [8] proposes to write
one single agent control code and then reuse the exact same agent code for all agents.
The unique and local behaviour of each agent is given through configurations. In contrast
to frameworks such as JADE, the one presented in [8] have predefined strategies for
negotiating and communicating among agents, making it easier to introduce new agents.
Our paper is a continuation of this agent framework presented in [8]. Hence, agents in
this paper are instantiated based on one single agent control code and are given individual
configuration data. The approach that one single agent code is developed and never
changed drastically limits the need for a deeper understanding of the internal control
logic since communication and negotiation are standardized and handled automatically
by the agents. However, this requires a standardized configuration ontology as well as a
special-purpose configuration tool that can be used to define the necessary configuration
data for each individual agent.

In this paper, such a tool for configuring agents is proposed and evaluated. This
paper also investigates how the configuration tool can include functionality for
automated deployment to physical manufacturing systems. Further, connections with
other supporting tools, such as extracting data from robotic simulations and product
designs are investigated.

2. Configurable Agents

As described earlier, one approach to implement a Plug & Produce system is to
create a multi-agent system, that consists of multiple agents that are communicating with
each other. This means that physical objects, such as resources and parts have a

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems136

corresponding agent (controller). If data should be synchronized between an agent and
its corresponding physical object, they should be connected. The separation of cyber and
physical components is identical to the concept of designing a Cyber-Physical System
such as the one presented in [9].

Using agents limits the direct communication between physical objects and instead
forces all resources to communicate through their agents using standardized
communication interfaces. This completely removes the need for defining specific
network details, such as addresses for communication between resources. Standards for
implementing agents exist today. Some of these standards are developed by the
Foundation for Intelligent Physical Agents (FIPA), which is an IEEE organization. They
specify an agent communication language, specified in the specification: FIPA Agent
Communication Language (ACL) [10]. Further, the FIPA Agent Management
Specification [11] describes the general guidelines on how to design an agent system. To
develop an agent system that follows FIPA it is common to use JADE. This is an agent
framework that implements the agent standards from FIPA. However, JADE and FIPA
are only considering agents in general, thus no information or supporting tools for the
manufacturing industry are included today. Configuration tools are not considered in
JADE, since the approach is mainly to design agents by manual coding in the JAVA
language.

There currently is a lack of standardized agent configuration formats since many
continue to write agent code manually. However, some initiatives exist, such as the one
presented in [8] that specifies that an agent’s configuration should consist of variables,
goals, skills, process plans, and interfaces. Further, the agent itself is defined and
specified as a part or a resource. This is shown in Figure. 1, which is based on the
ontology presented in [8].

Figure. 1. Agent classes for defining an agent configuration.

 In our method for configuring agents, these classes in Figure. 1 are used but
extended with more details such as using pre-conditions on goals. Each of the agent
classes is regarded as an entity that has a unique id, name, description, and type. The
detailed description of the configuration format that will be considered in the rest of this
paper is presented in the following sections:

Variable: A variable can be any data that is needed such as pick and place positions,
tool specifications such as weight, or the speed of a motor. It could also be more
advanced data such as a specific path for grinding with a robot. In that case, the path is
not configured for the robot but instead configured as a path locally defined on the part
agent.

Part

Skill

Variable

Process Plan

Goal

Has Has

Has

Need
Demands

Resource

Has

Agent

Interface

IsIs

Has

Has

Has Has

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 137

design of manufacturing system controllers by encapsulating each resource logic in the
system. This is done by creating a separate agent (controller) for each resource and part
in the system. Each agent can communicate with each other to reach manufacturing goals
through a standardised communication interface. Hence, the agent for each resource is
independent of logic and signals of other resources and can act independently through
negotiation. This makes it possible to adapt to new types of parts and resources in
minutes rather than days or months as in conventional systems with hierarchical central
control. The reason that it is faster to adopt is that a resource such as an industrial robot
only needs to know its own skills, e.g., how to perform transportation of a robot tool.
While the tool, such as a robot gripper only need to know how to transport parts.
Dependencies between the robot and the tool, in this case, is only based on demands of
skills and are not hardcoded in the control logic itself. In this way, logic is completely
isolated into carefully defined resources with different skills and parts with
manufacturing goals. However, still today such a flexible system is not used in the
industry due to a lack of mature tools and platforms [5], [6]. Prototypes has been
developed but they are not used in large-scale production [7].

In existing multi-agent frameworks such as the Java Agent Development Framework
(JADE), each agent still has individual tailormade control code, that is manually written.
The idea is that the programmer writes the agent control code in such a way that the
agents automatically communicate and negotiate to make the dependencies between
them limited since they can find each other without for example mapping specific signals
to static addresses. This makes it easier to add new resources since they do not have
strong dependencies on surrounding resources. However, the control code still has to be
written manually to create or change the local behaviour of an agent.

To avoid programming of agents, one approach presented in [8] proposes to write
one single agent control code and then reuse the exact same agent code for all agents.
The unique and local behaviour of each agent is given through configurations. In contrast
to frameworks such as JADE, the one presented in [8] have predefined strategies for
negotiating and communicating among agents, making it easier to introduce new agents.
Our paper is a continuation of this agent framework presented in [8]. Hence, agents in
this paper are instantiated based on one single agent control code and are given individual
configuration data. The approach that one single agent code is developed and never
changed drastically limits the need for a deeper understanding of the internal control
logic since communication and negotiation are standardized and handled automatically
by the agents. However, this requires a standardized configuration ontology as well as a
special-purpose configuration tool that can be used to define the necessary configuration
data for each individual agent.

In this paper, such a tool for configuring agents is proposed and evaluated. This
paper also investigates how the configuration tool can include functionality for
automated deployment to physical manufacturing systems. Further, connections with
other supporting tools, such as extracting data from robotic simulations and product
designs are investigated.

2. Configurable Agents

As described earlier, one approach to implement a Plug & Produce system is to
create a multi-agent system, that consists of multiple agents that are communicating with
each other. This means that physical objects, such as resources and parts have a

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems136

corresponding agent (controller). If data should be synchronized between an agent and
its corresponding physical object, they should be connected. The separation of cyber and
physical components is identical to the concept of designing a Cyber-Physical System
such as the one presented in [9].

Using agents limits the direct communication between physical objects and instead
forces all resources to communicate through their agents using standardized
communication interfaces. This completely removes the need for defining specific
network details, such as addresses for communication between resources. Standards for
implementing agents exist today. Some of these standards are developed by the
Foundation for Intelligent Physical Agents (FIPA), which is an IEEE organization. They
specify an agent communication language, specified in the specification: FIPA Agent
Communication Language (ACL) [10]. Further, the FIPA Agent Management
Specification [11] describes the general guidelines on how to design an agent system. To
develop an agent system that follows FIPA it is common to use JADE. This is an agent
framework that implements the agent standards from FIPA. However, JADE and FIPA
are only considering agents in general, thus no information or supporting tools for the
manufacturing industry are included today. Configuration tools are not considered in
JADE, since the approach is mainly to design agents by manual coding in the JAVA
language.

There currently is a lack of standardized agent configuration formats since many
continue to write agent code manually. However, some initiatives exist, such as the one
presented in [8] that specifies that an agent’s configuration should consist of variables,
goals, skills, process plans, and interfaces. Further, the agent itself is defined and
specified as a part or a resource. This is shown in Figure. 1, which is based on the
ontology presented in [8].

Figure. 1. Agent classes for defining an agent configuration.

 In our method for configuring agents, these classes in Figure. 1 are used but
extended with more details such as using pre-conditions on goals. Each of the agent
classes is regarded as an entity that has a unique id, name, description, and type. The
detailed description of the configuration format that will be considered in the rest of this
paper is presented in the following sections:

Variable: A variable can be any data that is needed such as pick and place positions,
tool specifications such as weight, or the speed of a motor. It could also be more
advanced data such as a specific path for grinding with a robot. In that case, the path is
not configured for the robot but instead configured as a path locally defined on the part
agent.

Part

Skill

Variable

Process Plan

Goal

Has Has

Has

Need
Demands

Resource

Has

Agent

Interface

IsIs

Has

Has

Has Has

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 137

Goal: Parts have goals that define what should happen to the part in the
manufacturing system. A goal can for example be to drill a hole with a specific diameter
or to grind a part to get soft edges. Goals are described with pre-conditions and can run
in parallel if the pre-conditions allow this.

Skill: Resources in the system has skills that describe a specific capability. This can
for example be a skill to transport a part, paint a part with colour, or store a part in a
buffer. Skills are always defined on interfaces in order to organize them and ensure that
hardware and software compatibility is maintained between connected agents. Implying
that a skill can only be utilized by agents that have compatible interfaces.

Process Plan: A process plan defines how to solve a specific goal or to execute a
skill. It is described as a recipe with demanded resource skills without referring to
specific resources. The syntax is similar to a high-level programming language such as
Structured Text (ST). However, the idea here is to not include advanced logic but to keep
a strong abstraction from the details of the control logic. The process plans for goals
typically only have a sequence of skills defined, while the process plans for running a
skill includes skills as well as some local abilities such as setting a local variable to true.

Interface: An interface is a point of interaction between two agents and is used for
agents to find each other. The interfaces are searchable in the agent network and can be
used for collaboration. An interface could, for instance, act as the boundary between a
robot gripper and a robot. Both the gripper and the robot need interfaces that are
compatible in order to be connected. In that case, the robot presents on its interface, a
skill with the functionality to transport the gripper. In this way, the gripper would never
request to be attached to a resource that cannot transport or that is not physically
compatible with the gripper.

There are many approaches to format such configuration data explained above.
General data formats exist such as XML, JSON and AutomationML. Extensible Markup
Language (XML) is a data format that supports objects and lists. Similarly, JavaScript
Object Notation (JSON) can be used to structure the same data in a slightly different way.
AutomationML is a standardized storage format for manufacturing systems, that was
presented at the Hannover fair in 2008 [12]. It is based on XML and was designed to be
used with engineering tools for manufacturing systems. AutomationML uses the object-
oriented paradigm in order to describe plant components. It can store the plant topology,
geometry, kinematic, behaviour description and references/relations. For this paper,
JSON has been considered due to its multiple existing libraries for implementation with
several programming languages and platforms. JSON is a format that is also currently
implemented in various industrial devices, such as the “Robot Web Services” for ABB
industrial robots. It also tends to be more lightweight as a format than XML, due to less
overhead in its data structure. Because of this, it is a bit more difficult to read by humans
than XML. However, this should not be a problem since the aim of this paper is to use a
configuration tool instead of editing the data directly. Specifically, we have considered
JSON RPC, which is a remote procedure call protocol for sending JSON data between
different components in the system. Note that, since the configuration classes presented
earlier are used for the configurations the JSON format must be combined with these
configuration classes to work properly.

To work directly in text-based formats is time-consuming, complex and exposed to
syntax mistakes when manually creating and handling the configuration parameters.
General tools for editing these formats exist, such as the “AutomationML Editor”,
Microsoft’s “XML Notepad” and Altova’s “XMLSpy”, which can edit both XML and
JSON. The problem with these tools is that they do not consider the agent configuration

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems138

classes presented earlier in this paper. It is however possible to include them in such tools
as a class tree. But still, these tools do not give enough support to the user since they are
not specifically made for use with the agent configurations. Instead, a configuration tool
should give the user support and simplify the understanding of the agent’s local
configurations and their possible interactions and compatibility with each other. The
configuration tool also needs to help the user to avoid syntax errors by verifying entered
data directly when configuring. This is limited if not impossible to do in a general editing
tool for these data formats. Further, in the considered agent system, all configurations
are stored in one single database that the configuration tool should edit directly.
Otherwise, it would be required to manually copy configuration files from the supporting
tools to the agents when instantiated. However, in the existing editors, the
synchronization with such an agent configuration database is not implemented. The
reason for choosing a central database to store the configurations is to enable the
integration of other software such as simulation tools which support the extraction of
data that otherwise has to be manually copied between software. It also simplifies the
deployment of configurations to agents and enables the possibility to work
simultaneously on editing the agent configurations.

Thus, this paper aims to develop a configuration tool that is specifically made for
the agent configuration format presented earlier in this chapter. All configuration data
defined in the developed configuration tool is then placed in a JSON structure. This can
then be communicated over JSON RPC to other devices. The approach is to use a central
database, in our case an SQL database, that contains all configuration data needed for the
complete manufacturing system. The configuration tool connects to this central database
over the JSON RPC and downloads the latest configuration as JSON objects and uploads
the changes made in the configuration tool. This will enable multiple users to work with
the configurations simultaneously.

3. Proposed Configuration Method

The configuration classes shown in Figure. 1 needs to be implemented in all the
agents, the configuration tool and in the data storage format for agent configurations.
Only then is it possible to share a common knowledge about the meaning, i.e. ontology,
of the configuration data. When a resource or part is added to the manufacturing system,
an agent is instantiated, running in a cloud service. As described earlier, there is
sometimes data to be controlled by the agent, e.g., sensor input or start signals to a motor.
In that case, a network connection is established automatically, based on the
configuration, between the agent in the cloud and the hardware in the added resource or
part. A similar concept of agents running in a cloud service is presented in [13], where
the agents are instantiated based on configurations in a configuration database. The
correct configuration is chosen based on the agent type presented by the added resource
or part.

3.1. Configuration tool design

The configuration tool presented in this paper is based on a standalone graphical
HMI to assist the configuration. Using the proposed configuration tool, it is possible to
focus on one single resource or part at a time. The work order for the configuration tool
presented in this paper is that resource agents are configured first with their related

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 139

Goal: Parts have goals that define what should happen to the part in the
manufacturing system. A goal can for example be to drill a hole with a specific diameter
or to grind a part to get soft edges. Goals are described with pre-conditions and can run
in parallel if the pre-conditions allow this.

Skill: Resources in the system has skills that describe a specific capability. This can
for example be a skill to transport a part, paint a part with colour, or store a part in a
buffer. Skills are always defined on interfaces in order to organize them and ensure that
hardware and software compatibility is maintained between connected agents. Implying
that a skill can only be utilized by agents that have compatible interfaces.

Process Plan: A process plan defines how to solve a specific goal or to execute a
skill. It is described as a recipe with demanded resource skills without referring to
specific resources. The syntax is similar to a high-level programming language such as
Structured Text (ST). However, the idea here is to not include advanced logic but to keep
a strong abstraction from the details of the control logic. The process plans for goals
typically only have a sequence of skills defined, while the process plans for running a
skill includes skills as well as some local abilities such as setting a local variable to true.

Interface: An interface is a point of interaction between two agents and is used for
agents to find each other. The interfaces are searchable in the agent network and can be
used for collaboration. An interface could, for instance, act as the boundary between a
robot gripper and a robot. Both the gripper and the robot need interfaces that are
compatible in order to be connected. In that case, the robot presents on its interface, a
skill with the functionality to transport the gripper. In this way, the gripper would never
request to be attached to a resource that cannot transport or that is not physically
compatible with the gripper.

There are many approaches to format such configuration data explained above.
General data formats exist such as XML, JSON and AutomationML. Extensible Markup
Language (XML) is a data format that supports objects and lists. Similarly, JavaScript
Object Notation (JSON) can be used to structure the same data in a slightly different way.
AutomationML is a standardized storage format for manufacturing systems, that was
presented at the Hannover fair in 2008 [12]. It is based on XML and was designed to be
used with engineering tools for manufacturing systems. AutomationML uses the object-
oriented paradigm in order to describe plant components. It can store the plant topology,
geometry, kinematic, behaviour description and references/relations. For this paper,
JSON has been considered due to its multiple existing libraries for implementation with
several programming languages and platforms. JSON is a format that is also currently
implemented in various industrial devices, such as the “Robot Web Services” for ABB
industrial robots. It also tends to be more lightweight as a format than XML, due to less
overhead in its data structure. Because of this, it is a bit more difficult to read by humans
than XML. However, this should not be a problem since the aim of this paper is to use a
configuration tool instead of editing the data directly. Specifically, we have considered
JSON RPC, which is a remote procedure call protocol for sending JSON data between
different components in the system. Note that, since the configuration classes presented
earlier are used for the configurations the JSON format must be combined with these
configuration classes to work properly.

To work directly in text-based formats is time-consuming, complex and exposed to
syntax mistakes when manually creating and handling the configuration parameters.
General tools for editing these formats exist, such as the “AutomationML Editor”,
Microsoft’s “XML Notepad” and Altova’s “XMLSpy”, which can edit both XML and
JSON. The problem with these tools is that they do not consider the agent configuration

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems138

classes presented earlier in this paper. It is however possible to include them in such tools
as a class tree. But still, these tools do not give enough support to the user since they are
not specifically made for use with the agent configurations. Instead, a configuration tool
should give the user support and simplify the understanding of the agent’s local
configurations and their possible interactions and compatibility with each other. The
configuration tool also needs to help the user to avoid syntax errors by verifying entered
data directly when configuring. This is limited if not impossible to do in a general editing
tool for these data formats. Further, in the considered agent system, all configurations
are stored in one single database that the configuration tool should edit directly.
Otherwise, it would be required to manually copy configuration files from the supporting
tools to the agents when instantiated. However, in the existing editors, the
synchronization with such an agent configuration database is not implemented. The
reason for choosing a central database to store the configurations is to enable the
integration of other software such as simulation tools which support the extraction of
data that otherwise has to be manually copied between software. It also simplifies the
deployment of configurations to agents and enables the possibility to work
simultaneously on editing the agent configurations.

Thus, this paper aims to develop a configuration tool that is specifically made for
the agent configuration format presented earlier in this chapter. All configuration data
defined in the developed configuration tool is then placed in a JSON structure. This can
then be communicated over JSON RPC to other devices. The approach is to use a central
database, in our case an SQL database, that contains all configuration data needed for the
complete manufacturing system. The configuration tool connects to this central database
over the JSON RPC and downloads the latest configuration as JSON objects and uploads
the changes made in the configuration tool. This will enable multiple users to work with
the configurations simultaneously.

3. Proposed Configuration Method

The configuration classes shown in Figure. 1 needs to be implemented in all the
agents, the configuration tool and in the data storage format for agent configurations.
Only then is it possible to share a common knowledge about the meaning, i.e. ontology,
of the configuration data. When a resource or part is added to the manufacturing system,
an agent is instantiated, running in a cloud service. As described earlier, there is
sometimes data to be controlled by the agent, e.g., sensor input or start signals to a motor.
In that case, a network connection is established automatically, based on the
configuration, between the agent in the cloud and the hardware in the added resource or
part. A similar concept of agents running in a cloud service is presented in [13], where
the agents are instantiated based on configurations in a configuration database. The
correct configuration is chosen based on the agent type presented by the added resource
or part.

3.1. Configuration tool design

The configuration tool presented in this paper is based on a standalone graphical
HMI to assist the configuration. Using the proposed configuration tool, it is possible to
focus on one single resource or part at a time. The work order for the configuration tool
presented in this paper is that resource agents are configured first with their related

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 139

interfaces and skills. Then the part agents and process plans are defined. Thus, it should
be possible to make a list of available skills and variables on the resources and to drag
and drop those onto the process plans and part configurations. This removes the need for
the user to remember all variables and skill names of the resources. Descriptions can also
be given on configuration parameters, describing with a user-friendly message what they
do. For example, such a message could describe what a certain skill on a resource can
achieve if executed. This is a great way to connect multiple users, working with
configuration parameters for the same manufacturing system. The configuration tool also
needs to assist the user with warnings when for example a resource with specific skills
is missing in the configuration database. The proposed configuration tool presents
several views to the user. Each of these views can also edit its related entity details, i.e.,
its id, name, description, and type. The views are created based on the classes described
in Figure. 1. Thus, the views are Main view, Agent view, Interface view, Goal view,
Process plan view, Skill view, and Variable view. Each of these views could for example
describe an individual window in the configuration tool.

3.2. Database for storage

A database was chosen for storing the agent configurations. This enables multiple
users to edit the data simultaneously. It also makes it possible to automate the deployment
of agent configurations directly to a real manufacturing system. It is in some cases even
possible to deploy updates while the manufacturing system is online. Imagine a new part
with a new agent configuration. It is then possible to deploy that agent configuration
directly to the configuration database used in the manufacturing system. When the new
part is entering the manufacturing system it gets a corresponding agent associated with
it, using the new configuration added.

 The JSON format is used for communicating with the database, see Figure. 2. This
means that a software is developed to convert between JSON and a database format, such
as SQL queries in the case of using an SQL database. The main aim of not using for
example SQL queries directly from the configuration tool is to avoid knowing anything
about the database format or type. This makes it possible to completely change the
database structure as long as the software attached to the database can convert it to JSON
objects. On the configuration tool, there is also a software that can convert JSON to
objects in the configuration tool. This can, for instance, be a JAVA object, in the case of
using that programming language. This makes it easier to extend the agent configuration
format in the future if needed.

Figure. 2. This figure shows the typical information flow for committing updates from the configuration tool
to the agents through the configuration database.

When an agent is instantiated using the standardized code for all agents, then it
downloads an agent configuration from the database based on some information about
what part or resource it should represent. All agents start by requesting their
configuration from the database by a JSON RPC call. The configuration is then
transferred to the agent as a JSON structure. Hence, the reason for using the database is
to automate the deployment of new configurations and to share the configurations
directly with other users of the configuration tool, enabling the possibility for

Running AgentsAgent Configuration tool JSON JSONConfiguration
Database

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems140

collaborating in projects to develop an entire manufacturing systems configuration. We
have now only considered a single database, meaning that we are changing the
manufacturing system directly when changes are applied. Thus, in the future, it could be
useful to make development copies of the entire system that could be used and tested in
simulations before deploying to the online manufacturing system.

3.3. Connecting to other supporting tools

Many parameters that should be entered into a configuration tool are defined or
calculated in other software such as 3D CAD tools or robotic simulation tools. This
makes it necessary to develop a bridge between those tools and the agent configuration
database. Such an approach is presented in Figure. 3, where the arrows show the
information flow for updates made in the configurations. However, it should be noted that
information can be accessed from the database by all software. This is needed when
editing an already existing agent configuration, nonetheless, updates are always
committed in the direction of the arrows.

Figure. 3. This figure shows the agent configuration tool together with some additional supporting tools 1,2
and 3. All these four tools can be connected to the agent configuration database and automatically deployed
to agents in the manufacturing system.

Product design 1): As an example, for a part designed in a CAD tool, it would be
useful if all specifications such as the definition of a hole with a specific diameter would
automatically be translated into a manufacturing goal for the part agent. This requires the
CAD tool to be extended with an add-on feature that can identify such goals and
synchronize them to the configuration database. In the configuration database there exist
multiple process plans designed for solving specific types of manufacturing goals. Thus,
the addon feature should fetch the goal names for these process plans as a list and present
them in the CAD tool. The user will then manually add goals from that list directly on
the part design. When the user adds such a goal, then it should also be visually reflected
on the part design, where the user then would see a hole. This will give the user an
experience similar to that of working in any other traditional CAD project. The main
difference from using a regular CAD tool will be the limitations to only using predefined
goals. However, this can in some cases completely remove all manual steps for
translating and preparing the part design for manufacturing. Only when a completely
new part is designed, details must be defined manually in the agent configuration tool.
This is not always needed if smaller part changes are made in a CAD tool such as adding
a goal.

Robot simulation 2): Similarly, other parameters such as pick and place locations on
a table or a location in a buffer station are usually defined on either a physical robot or
in a robotics simulation tool. One example of such a tool is RobotStudio, which is a robot
simulation software from ABB where robot programs can be developed and tested offline
[14]. However, when using the proposed concept of agents, then the robot should not
have such a standard robot program and act as a central controller. Instead, the control is

2) Robot simulation

3) Physical robot teaching

1) Product design (CAD)
Configuration

Database Agent Configuration tool

Running Agents

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 141

interfaces and skills. Then the part agents and process plans are defined. Thus, it should
be possible to make a list of available skills and variables on the resources and to drag
and drop those onto the process plans and part configurations. This removes the need for
the user to remember all variables and skill names of the resources. Descriptions can also
be given on configuration parameters, describing with a user-friendly message what they
do. For example, such a message could describe what a certain skill on a resource can
achieve if executed. This is a great way to connect multiple users, working with
configuration parameters for the same manufacturing system. The configuration tool also
needs to assist the user with warnings when for example a resource with specific skills
is missing in the configuration database. The proposed configuration tool presents
several views to the user. Each of these views can also edit its related entity details, i.e.,
its id, name, description, and type. The views are created based on the classes described
in Figure. 1. Thus, the views are Main view, Agent view, Interface view, Goal view,
Process plan view, Skill view, and Variable view. Each of these views could for example
describe an individual window in the configuration tool.

3.2. Database for storage

A database was chosen for storing the agent configurations. This enables multiple
users to edit the data simultaneously. It also makes it possible to automate the deployment
of agent configurations directly to a real manufacturing system. It is in some cases even
possible to deploy updates while the manufacturing system is online. Imagine a new part
with a new agent configuration. It is then possible to deploy that agent configuration
directly to the configuration database used in the manufacturing system. When the new
part is entering the manufacturing system it gets a corresponding agent associated with
it, using the new configuration added.

 The JSON format is used for communicating with the database, see Figure. 2. This
means that a software is developed to convert between JSON and a database format, such
as SQL queries in the case of using an SQL database. The main aim of not using for
example SQL queries directly from the configuration tool is to avoid knowing anything
about the database format or type. This makes it possible to completely change the
database structure as long as the software attached to the database can convert it to JSON
objects. On the configuration tool, there is also a software that can convert JSON to
objects in the configuration tool. This can, for instance, be a JAVA object, in the case of
using that programming language. This makes it easier to extend the agent configuration
format in the future if needed.

Figure. 2. This figure shows the typical information flow for committing updates from the configuration tool
to the agents through the configuration database.

When an agent is instantiated using the standardized code for all agents, then it
downloads an agent configuration from the database based on some information about
what part or resource it should represent. All agents start by requesting their
configuration from the database by a JSON RPC call. The configuration is then
transferred to the agent as a JSON structure. Hence, the reason for using the database is
to automate the deployment of new configurations and to share the configurations
directly with other users of the configuration tool, enabling the possibility for

Running AgentsAgent Configuration tool JSON JSONConfiguration
Database

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems140

collaborating in projects to develop an entire manufacturing systems configuration. We
have now only considered a single database, meaning that we are changing the
manufacturing system directly when changes are applied. Thus, in the future, it could be
useful to make development copies of the entire system that could be used and tested in
simulations before deploying to the online manufacturing system.

3.3. Connecting to other supporting tools

Many parameters that should be entered into a configuration tool are defined or
calculated in other software such as 3D CAD tools or robotic simulation tools. This
makes it necessary to develop a bridge between those tools and the agent configuration
database. Such an approach is presented in Figure. 3, where the arrows show the
information flow for updates made in the configurations. However, it should be noted that
information can be accessed from the database by all software. This is needed when
editing an already existing agent configuration, nonetheless, updates are always
committed in the direction of the arrows.

Figure. 3. This figure shows the agent configuration tool together with some additional supporting tools 1,2
and 3. All these four tools can be connected to the agent configuration database and automatically deployed
to agents in the manufacturing system.

Product design 1): As an example, for a part designed in a CAD tool, it would be
useful if all specifications such as the definition of a hole with a specific diameter would
automatically be translated into a manufacturing goal for the part agent. This requires the
CAD tool to be extended with an add-on feature that can identify such goals and
synchronize them to the configuration database. In the configuration database there exist
multiple process plans designed for solving specific types of manufacturing goals. Thus,
the addon feature should fetch the goal names for these process plans as a list and present
them in the CAD tool. The user will then manually add goals from that list directly on
the part design. When the user adds such a goal, then it should also be visually reflected
on the part design, where the user then would see a hole. This will give the user an
experience similar to that of working in any other traditional CAD project. The main
difference from using a regular CAD tool will be the limitations to only using predefined
goals. However, this can in some cases completely remove all manual steps for
translating and preparing the part design for manufacturing. Only when a completely
new part is designed, details must be defined manually in the agent configuration tool.
This is not always needed if smaller part changes are made in a CAD tool such as adding
a goal.

Robot simulation 2): Similarly, other parameters such as pick and place locations on
a table or a location in a buffer station are usually defined on either a physical robot or
in a robotics simulation tool. One example of such a tool is RobotStudio, which is a robot
simulation software from ABB where robot programs can be developed and tested offline
[14]. However, when using the proposed concept of agents, then the robot should not
have such a standard robot program and act as a central controller. Instead, the control is

2) Robot simulation

3) Physical robot teaching

1) Product design (CAD)
Configuration

Database Agent Configuration tool

Running Agents

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 141

a shared task between each configurable agent in the system that the positions can be
used on. For example, a part has local target positions that describe a suitable location
for gripping it with a robot gripper or placing it on a buffer. These positions are related
to the parts local coordinate system. The functions for translating between coordinate
systems are included in all agents (resources and parts) and used when they communicate.
A software should be developed that can identify which agent each target position should
be attached with in the configuration database.

Robot teaching 3): It is also possible to create a software to extract positions directly
from a physical robot, by teaching points and selecting which agent they belong to. This
would require a user-friendly HMI used by the operator that manually moves the robot
and stores target positions to the configuration database.

4. Evaluation

This section introduces a manufacturing scenario where a part should get painted
and then leave the manufacturing system. All configuration parameters needed for this
scenario are defined in this chapter. The proposed configuration tool is implemented in
the C# language as a form application. To evaluate the implemented configuration tool,
all parameters from the described scenario are entered into it.

The scenario, presented in this section, is used to evaluate the configuration tool. It
includes one part � with a goal � = ���������. The part is placed at the input position
���������� on the conveyor �� and is moved to the paint station �� by conveyors ��, ��
and the robot ��, see Figure. 4. After the part has been painted with the correct colour, it
should be transported by the robot �� to the unloading station ��. Each conveyor has two
position variables, describing where the part can be located: ���������� and
����������� . Thus, �� has: ���������� = 1 and ����������� = 2 while �� has:
���������� = 2 and ����������� = 3 . These correspond to the positions 1,2,3 in
Figure. 4.

Figure. 4. Example of a part � located on a conveyor ��with the goal � = ���������, that is solved by moving
to the paint station ��, using resources ��. �� and ��.

The letters �, �, �, � and �, describes locations where a resource is expected to exist.
This notation is used since resources can be replaced and the possibility exists that
multiple alternative resources may exist in the same location. For example, there could
exist parallel conveyors in location �. The part agent searches these locations for agents
that are available and selects one of them. More details about this are described later in

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems142

this paper, where the process plans are defined. All the required parameters for the
manufacturing scenario are presented in Table 1.

Table 1. Configuration data for the presented scenario, sorted by agents.

Id Parameter Name Agent Data type
�� PaintBlue Process Plan
��� BufferInterface � Interface
��� GripInterface � Interface

� PaintBlue � Goal

��� BufferInterface �� Interface
�� InLocation �� Variable
�� OutLocation �� Variable
�� Load �� Skill
�� Transport �� Skill
�� Input: From �� Variable
�� Input: To �� Variable

��� BufferInterface �� Interface
�� InLocation �� Variable
�� OutLocation �� Variable
�� Transport �� Skill
�� Input: From �� Variable
�� Input: To �� Variable

��� BufferInterface �� Interface
�� Paint �� Skill
�� BufferLocation �� Variable

��� BufferInterface �� Interface
�� Unload �� Skill

��� BufferLocation �� Variable

��� GripInterface �� Interface
�� Transport �� Skill

��� Input: From �� Variable
��� Input: To �� Variable

 The data types are the corresponding configuration classes from Figure. 1. The
name is the agent classes entity name and the id is the entity id. The process plan on the
first row in Table 1 that is noted as �� is not directly related to any specific agent. It is
related to solving the goal �, that may exist on multiple parts. A process plan is later
selected automatically that can reach the goal for the part. Hence, there can be multiple
plans that reach the same goal. Some variable descriptions in Table 1 are noted with
“Input:” meaning that these variables have no defined value in the configuration but act
as input signal holders that get values at runtime.

Multiple process plans may exist that can solve the same goal. In this paper, only
one process plan for the goal � is considered. In Figure. 4, the letters �, �, �, �, � are used
to define needed resources in the manufacturing system that are not known at the
configuration phase. Since the physical resources are not known when the process plan
is defined, they are searched for and found when the system is running.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 143

a shared task between each configurable agent in the system that the positions can be
used on. For example, a part has local target positions that describe a suitable location
for gripping it with a robot gripper or placing it on a buffer. These positions are related
to the parts local coordinate system. The functions for translating between coordinate
systems are included in all agents (resources and parts) and used when they communicate.
A software should be developed that can identify which agent each target position should
be attached with in the configuration database.

Robot teaching 3): It is also possible to create a software to extract positions directly
from a physical robot, by teaching points and selecting which agent they belong to. This
would require a user-friendly HMI used by the operator that manually moves the robot
and stores target positions to the configuration database.

4. Evaluation

This section introduces a manufacturing scenario where a part should get painted
and then leave the manufacturing system. All configuration parameters needed for this
scenario are defined in this chapter. The proposed configuration tool is implemented in
the C# language as a form application. To evaluate the implemented configuration tool,
all parameters from the described scenario are entered into it.

The scenario, presented in this section, is used to evaluate the configuration tool. It
includes one part � with a goal � = ���������. The part is placed at the input position
���������� on the conveyor �� and is moved to the paint station �� by conveyors ��, ��
and the robot ��, see Figure. 4. After the part has been painted with the correct colour, it
should be transported by the robot �� to the unloading station ��. Each conveyor has two
position variables, describing where the part can be located: ���������� and
����������� . Thus, �� has: ���������� = 1 and ����������� = 2 while �� has:
���������� = 2 and ����������� = 3 . These correspond to the positions 1,2,3 in
Figure. 4.

Figure. 4. Example of a part � located on a conveyor ��with the goal � = ���������, that is solved by moving
to the paint station ��, using resources ��. �� and ��.

The letters �, �, �, � and �, describes locations where a resource is expected to exist.
This notation is used since resources can be replaced and the possibility exists that
multiple alternative resources may exist in the same location. For example, there could
exist parallel conveyors in location �. The part agent searches these locations for agents
that are available and selects one of them. More details about this are described later in

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems142

this paper, where the process plans are defined. All the required parameters for the
manufacturing scenario are presented in Table 1.

Table 1. Configuration data for the presented scenario, sorted by agents.

Id Parameter Name Agent Data type
�� PaintBlue Process Plan
��� BufferInterface � Interface
��� GripInterface � Interface

� PaintBlue � Goal

��� BufferInterface �� Interface
�� InLocation �� Variable
�� OutLocation �� Variable
�� Load �� Skill
�� Transport �� Skill
�� Input: From �� Variable
�� Input: To �� Variable

��� BufferInterface �� Interface
�� InLocation �� Variable
�� OutLocation �� Variable
�� Transport �� Skill
�� Input: From �� Variable
�� Input: To �� Variable

��� BufferInterface �� Interface
�� Paint �� Skill
�� BufferLocation �� Variable

��� BufferInterface �� Interface
�� Unload �� Skill

��� BufferLocation �� Variable

��� GripInterface �� Interface
�� Transport �� Skill

��� Input: From �� Variable
��� Input: To �� Variable

 The data types are the corresponding configuration classes from Figure. 1. The
name is the agent classes entity name and the id is the entity id. The process plan on the
first row in Table 1 that is noted as �� is not directly related to any specific agent. It is
related to solving the goal �, that may exist on multiple parts. A process plan is later
selected automatically that can reach the goal for the part. Hence, there can be multiple
plans that reach the same goal. Some variable descriptions in Table 1 are noted with
“Input:” meaning that these variables have no defined value in the configuration but act
as input signal holders that get values at runtime.

Multiple process plans may exist that can solve the same goal. In this paper, only
one process plan for the goal � is considered. In Figure. 4, the letters �, �, �, �, � are used
to define needed resources in the manufacturing system that are not known at the
configuration phase. Since the physical resources are not known when the process plan
is defined, they are searched for and found when the system is running.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 143

For reaching the goal � = ���������, the following process plan �� is defined:
1. �.Load
2. �.Transport: �.From = �.InLocation

�.To = �.OutLocation
3. �.Transport: �.From = �. InLocation

�.To = �. OutLocation
4. �.Transport: �.From = �. OutLocation

�.To = �. BufferLocation
5. �.Paint
6. �.Transport: �.From = �. BufferLocation

�.To = �. BufferLocation
7. �.Unload

4.1. Implementation of the configuration tool

The configuration tool was implemented to evaluate the proposed design. All
configuration parameters are added into the implemented configuration tool to evaluate
it. In Figure. 5, the agent view of the configuration tool is shown for the part agent. We
can see that it has a BufferInterface, GripInterface and one goal PaintBlue. Each
configuration parameter presented in this view can be modified in detail on separate
views.

Figure. 5. The configuration tool, with the main view shown in the background and the agent view of part �
shown in the front.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems144

All views use a window design, similar to the one presented in Figure. 5. Note that
these views, together provide all the necessary functionality for creating the agent
configurations needed for the scenario, presented earlier in this paper.

5. Conclusion

In this paper, a method for configuring agents was presented that enables users to
adapt a manufacturing system to various scenarios with new parts and resources. The
considered manufacturing system is based on multi-agent technology, where the
configurations describe the agents for each resource and part. This makes it possible to
focus on one device at a time, removing the need to understand other controllers in the
manufacturing system. This is not the case in traditional systems where the users need to
understand most of the other controllers to add new resources or parts. The developed
method for configuring agents include a central agent configuration database. A
configuration tool was also developed where all agent configurations can be managed.
The configuration tool is connected to the database which makes the configurations easy
to deploy since agents can fetch their configurations automatically when instantiated. It
also enables multiple users to collaborate with the same configuration data. The
configuration tool is designed with multiple views that are specifically designed for
configuring agents, based on their configuration classes. This resulted in a lightweight
tool that avoids any unnecessary steps or functionalities. The developed configuration
tool was evaluated by configuring all necessary parameters for a manufacturing scenario.
The presented method also prepares the multi-agent system for adding many supporting
tools, for instance: product design tools for defining goals, and 3D simulation tools for
defining target positions such as buffer locations and gripping points.

6. Acknowledgements

This paper was written as part of the PoPCoRN project, funded by the K-K foundation
and the Miljö för Flexibel och Innovativ Automation, Project reference: 20201192,
Funded under: Europeiska regionala utvecklingsfonden/VGR.

References

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger and O. Madsen, "Robot

skills for manufacturing: From concept to industrial deployment," Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282-291, 2015.

[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent progress on programming methods for
industrial robots," Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly System by “Plug and Produce“,"
CIRP Ann Manuf Technol, vol. 49, no. 1, pp. 1-4, 2000.

[4] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," The Knowledge
Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 145

For reaching the goal � = ���������, the following process plan �� is defined:
1. �.Load
2. �.Transport: �.From = �.InLocation

�.To = �.OutLocation
3. �.Transport: �.From = �. InLocation

�.To = �. OutLocation
4. �.Transport: �.From = �. OutLocation

�.To = �. BufferLocation
5. �.Paint
6. �.Transport: �.From = �. BufferLocation

�.To = �. BufferLocation
7. �.Unload

4.1. Implementation of the configuration tool

The configuration tool was implemented to evaluate the proposed design. All
configuration parameters are added into the implemented configuration tool to evaluate
it. In Figure. 5, the agent view of the configuration tool is shown for the part agent. We
can see that it has a BufferInterface, GripInterface and one goal PaintBlue. Each
configuration parameter presented in this view can be modified in detail on separate
views.

Figure. 5. The configuration tool, with the main view shown in the background and the agent view of part �
shown in the front.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems144

All views use a window design, similar to the one presented in Figure. 5. Note that
these views, together provide all the necessary functionality for creating the agent
configurations needed for the scenario, presented earlier in this paper.

5. Conclusion

In this paper, a method for configuring agents was presented that enables users to
adapt a manufacturing system to various scenarios with new parts and resources. The
considered manufacturing system is based on multi-agent technology, where the
configurations describe the agents for each resource and part. This makes it possible to
focus on one device at a time, removing the need to understand other controllers in the
manufacturing system. This is not the case in traditional systems where the users need to
understand most of the other controllers to add new resources or parts. The developed
method for configuring agents include a central agent configuration database. A
configuration tool was also developed where all agent configurations can be managed.
The configuration tool is connected to the database which makes the configurations easy
to deploy since agents can fetch their configurations automatically when instantiated. It
also enables multiple users to collaborate with the same configuration data. The
configuration tool is designed with multiple views that are specifically designed for
configuring agents, based on their configuration classes. This resulted in a lightweight
tool that avoids any unnecessary steps or functionalities. The developed configuration
tool was evaluated by configuring all necessary parameters for a manufacturing scenario.
The presented method also prepares the multi-agent system for adding many supporting
tools, for instance: product design tools for defining goals, and 3D simulation tools for
defining target positions such as buffer locations and gripping points.

6. Acknowledgements

This paper was written as part of the PoPCoRN project, funded by the K-K foundation
and the Miljö för Flexibel och Innovativ Automation, Project reference: 20201192,
Funded under: Europeiska regionala utvecklingsfonden/VGR.

References

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger and O. Madsen, "Robot

skills for manufacturing: From concept to industrial deployment," Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282-291, 2015.

[2] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, "Recent progress on programming methods for
industrial robots," Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87-94, 2012.

[3] T.Araia, Y.Aiyama, Y.Maeda, M.Sugia and J.Otaa, "Agile Assembly System by “Plug and Produce“,"
CIRP Ann Manuf Technol, vol. 49, no. 1, pp. 1-4, 2000.

[4] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," The Knowledge
Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems 145

[5] P��IEEE Trans.
Ind. Informat, vol. 9, no. 4, pp. 2360-2372, Nov. 2013.

[6] P. Leitao, "Agent-based distributed manufacturing control : A state-of-the-art survey," Engineering
applications of artificial intelligence, vol. 22, no. 7, pp. 979-991, Oct. 2009.

[7] S. Karnouskos, P. Leitao, L. Ribeiro and A. W. Colombo, "Industrial Agents as a Key Enabler for
Realizing Industrial Cyber-Physical Systems: Multiagent Systems Entering Industry 4.0," IEEE
Industrial Electronics Magazine, vol. 14, no. 3, pp. 18-32, 2020.

[8] M. Bennulf, F. Danielsson, B. Svensson and B. Lennartson, "Goal-Oriented Process Plans in a
Multiagent System for Plug & Produce," IEEE Transactions on Industrial Informatics, vol. 17, no. 4,
pp. 2411-2421, 2021.

[9] E. A. Lee, "Cyber Physical Systems: Design Challenges," in International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 2008.

[10] FIPA, "FIPA ACL Message Structure Specification," in FIPA 2002, Geneva, Switzerland, 2002.
[11] FIPA, "FIPA Agent Management Specification," in FIPA 2002, Geneva, Switzerland, 2002.
[12] R. Drath, A. Lüder, J. Peschke and L. Hundt, "AutomationML - the glue for seamless automation

engineering," in Emerging Technologies and Factory Automation (ETFA), Hamburg, Germany, 2008.
[13] M. Bennulf, F. Danielsson and B. Svensson, "Identification of resources and parts in a Plug and Produce

system," in FAIM, Limerick, Ireland, 2019.
[14] P. Abreu, M. R. Barbosa and A. M. Lopes, "Virtual experiment for teaching robot programming," in

International Conference on Remote Engineering and Virtual Instrumentation, Porto, Portugal, 2014.

M. Bennulf et al. / A Method for Configuring Agents in Plug & Produce Systems146

Paper E

Part Oriented Planning for Unpredictable
Events in Plug & Produce

Mattias Bennulf, Fredrik Danielsson, Bo Svensson

Submitted to a Scientific Journal

Printed with permission

E

Tidigare avhandlingar – Produktionsteknik

PEIGANG LI Cold Lap Formation in Gas Metal Arc Welding
of Steel An Experimental Study of Micro-lack of Fusion
Defects, 2013:2.

NICHOLAS CURRY Design of Thermal Barrier Coatings,
2014:3.

JEROEN DE BACKER Feedback Control of Robotic Friction
Stir Welding, 2014:4.

MOHIT KUMAR GUPTA Design of Thermal Barrier Coatings
A modelling approach, 2014:5.

PER LINDSTRÖM Improved CWM Platform for Modelling
Welding Procedures and their Effects on Structural Behavior,
2015:6.

ERIK ÅSTRAND A Framework for Optimised Welding of
Fatigue Loaded Structures Applied to Gas Metal Arc Welding
of Fillet Welds, 2016:7.

EMILE GLORIEUX Multi-Robot Motion Planning Optimisation
for Handling Sheet Metal Parts, 2017:10.

 EBRAHIM HARATI Improving fatigue properties of welded
high strength steels, 2017:11.

ANDREAS SEGERSTARK Laser Metal Deposition using
Alloy 718 Powder Influence of Process Parameters on
Material Characteristics, 2017:12.

ANA ESTHER BONILLA HERNÁNDES On Cutting Tool
Resource Management, 2018:16.

SATYAPAL MAHADE Functional Performance of Gadolinium
Zirconate/YSZ Multi-layered Thermal Barrier Coatings,
2018:18.

ASHISH GANVIR Design of suspension plasma sprayed
thermal barrier coatings, 2018:20.

AMIR PARSIAN Regenerative Chatter Vibrations in
Indexable Drills: Modeling and Simulation, 2018:21.

ESMAEIL SADEGHIMERESHT High Temperature Corrosion
of Ni-based Coatings, 2018:23.

VAHID HOSSEINI Super Duplex Stainless Steels.
Microstructure and Properties of Physically Simulated Base
and Weld Metal, 2018:24.

MORGAN NILSEN Monitoring and control of laser beam butt
joint welding, 2019:27.

ARBAB REHAN Effect of heat treatment on microstructure
and mechanical properties of a 5 wt.% Cr cold work tool
steel, 2019:28.

KARL FAHLSTRÖM Laser welding of ultra-high strength
steel and a cast magnesium alloy for light-weight design,
2019:29.

EDVARD SVENMAN An inductive gap measurement method
for square butt joints, 2019:30.

NAGESWARAN TAMIL ALAGAN Enhanced heat transfer
and tool wear in high-pressure coolant assisted turning of
alloy 718, 2019:31.

ADNAN AGIC Edge Geometry Effects on Entry Phase by
Forces and Vibrations, 2020:32.

ANA CATARINA FERREIRA MAGALHÃES Thermoelectric
Measurements for Temperature Control of Robotic Friction
Stir Welding, 2020:33.

ASHWIN DEVOTTA Improved finite element modelingfor
chip morphology prediction inmachining of C45E steel,
2020:34.

TAHIRA RAZA Process Understanding and Weldability of
Laser-Powder Bed Fusion Manufactured Alloy 718, 2020:35

PARIA KARIMI Electron Beam-Powder Bed Fusion of Alloy
718. Effect of Process Parameters on Microstructure
Evolution, 2020:37.

JONAS HOLMBERG High volumetric machining strategies of
superalloy gas turbine components. Comparing conventional
and non-conventional machining methods for efficient
manufacturing, 2020:40.

SNEHA GOEL Thermal post-treatment of Alloy 718 produced
by electron beam melting, 2020:41.

ARUN RAMANATHAN BALACHANDRAMURTHI Towards
understanding the fatigue behaviour of Alloy 718
manufactured by Powder Bed Fusion processes, 2020:42

CHAMARA KUMARA Microstructure Modelling of Additive
Manufacturing of Alloy 718, 2020:43.

OLUTAYO ADEGOKE Processability of Laser Powder Bed
Fusion of Alloy 247LC - Influence of process parameters on
microstructure and defects, 2021:45

ANDERS JOHANSSON Challenging the traditional
manufacturing objectives: Designing manufacturing systems
for both product manufacturing and value production,
2022:48

SEYYED MOHAMMAD ALI NOORI RAHIM ABADI Laser
metal fusion and deposition using wire feedstock: Process
modelling and CFD simulation 2022:52

Plug & Produce can be used for automation when a manufacturing system needs to adapt fast
to changes such as new product designs or adjusted production volume. The demand for cus-
tomized products and low-volume production is constantly increasing. The industry has for
many years used dedicated manufacturing systems that are difficult and expensive to adapt to
changes. The result of this is that factories are forced to use human workers for certain tasks that
demand high flexibility. Resources in Plug & Produce are easy to add, move and remove, taking
only minutes rather than days in dedicated systems, making the system flexible to changes. This
thesis presents a framework that can be used as a control system for Plug & Produce. The frame-
work is based on the distributed approach called multi-agent systems, where each resource and
product part has a controller that communicates with each other to reach manufacturing goals.
The idea is that the system automatically adapts itself to manage changes. This decreases the
time spent manually preparing the system.

A Control Framework for
Industrial Plug & Produce

978-91-89325-42-5 (Printed version)
978-91-89325-41-8 (Electronic version)

Mattias Bennulf
Mattias received a B.S. degree in computer engineering from University
West, Sweden in 2014, and an M.S. degree in robotics and automation
from University West, Sweden in 2015. His research interests include
artificial intelligence, multi-agent systems, robotics, and automation.

